JP3625636B2 - Method for producing quartz glass crucible for pulling silicon single crystal - Google Patents

Method for producing quartz glass crucible for pulling silicon single crystal Download PDF

Info

Publication number
JP3625636B2
JP3625636B2 JP00254898A JP254898A JP3625636B2 JP 3625636 B2 JP3625636 B2 JP 3625636B2 JP 00254898 A JP00254898 A JP 00254898A JP 254898 A JP254898 A JP 254898A JP 3625636 B2 JP3625636 B2 JP 3625636B2
Authority
JP
Japan
Prior art keywords
crucible
quartz glass
glass crucible
single crystal
arc discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00254898A
Other languages
Japanese (ja)
Other versions
JPH11199369A (en
Inventor
浩三 北野
浩幸 本間
直之 小畑
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP00254898A priority Critical patent/JP3625636B2/en
Publication of JPH11199369A publication Critical patent/JPH11199369A/en
Application granted granted Critical
Publication of JP3625636B2 publication Critical patent/JP3625636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン単結晶引上げ用石英ガラスルツボの製造方法に係わり、特にシリコン単結晶引上げ収率を向上させたシリコン単結晶引上げ用石英ガラスルツボの製造方法に関する。
【0002】
【従来の技術】
半導体デバイスの基板に用いられるシリコン単結晶は、一般にチョクラルスキー法(CZ法)で製造されており、このCZ法は石英ガラスルツボ内に多結晶シリコン原料を装填し、装填されたシリコン原料を周囲から加熱して溶融し、上方から吊り下げた種結晶をシリコン融液に接触してから引き上げるものである。
【0003】
CZ法に使用される石英ガラスルツボは、シリコン単結晶の高純度化に伴い、石英ガラスルツボにも高純度のものが要求されている。
【0004】
このCZ法に使用される石英ガラスルツボは、一般に粉砕して精製した石英粉を回転可能な型を回転させながらこの型内に供給し遠心力により型の周囲に石英粉をルツボ状に充填させ、同時に内側からアークなどで溶融して造られている。
【0005】
しかしながら、この型製法で造られた石英ガラスルツボは、石英ガラスの中に気泡が多く含まれるといった問題があった。
【0006】
一方、このような気泡を含む石英ガラスルツボを用いてCZ法により多結晶シリコンから単結晶を製造する場合、石英ガラスルツボ内に存在する気泡に起因して結晶化が不安定になり、引上げられたシリコン単結晶に転位が生じ易くなり、歩留まり低下の原因となっていた。
【0007】
その主な理由としては、斑点状のクリストバライトの融液シリコンへの混入である。
【0008】
すなわち、この斑点状のクリストバライトは石英ガラスルツボに次のような現象により形成されると考えられる。
【0009】
第一に、シリコン単結晶の引上げ中に、シリコン融液によってシリコンルツボの内面が浸食され気泡が開裂状態となりルツボ内面が荒れ、この荒れにより生じた微細な突起が石英ガラスの結晶化の核となり斑点状のクリストバライトが形成される。
【0010】
次に、単結晶引上げ中に、ルツボの内表面近傍に存在する析出不純物がルツボ内面におけるクリストバライトの形成を促進して上記同様の斑点状のクリストバライトを形成する。
【0011】
このようにして生成されたクリストバライトがルツボから剥離し、溶融多結晶シリコン中に混入し、引上げられるシリコン単結晶の成長に悪影響を与えるなどの問題があった。
【0012】
この問題を解決するため、例えば特平4−22861号公報に記載されているように回転する型内にシリカの基体を載置し、この基体内面にシリカ粉末を供給し実質的に無気泡の透明石英ガラス層を形成して2層とする石英ガラスルツボの製造方法の開示がある。
【0013】
しかし、この方法は工程が複雑でかつ無気泡の透明石英ガラス層の厚さを適正に制御するのが難しいなどの問題点がある。
【0014】
また、クリストバライトに起因する不純物の溶融シリコン中に混入するのを防止するために、失透促進剤を石英ガラスルツボの内面に付着させ、石英ガラスルツボが高温に加熱されたとき失透したシリカの層を形成し、結晶シリカ粒子が溶融シリコン中に混入するのを防止する方法が特開平9−110579号公報に開示されている。
【0015】
しかし、この方法は例えば金属酸化物やその他の酸化物を失透促進剤として用いるので、これら酸化物が溶融シリコンに融出し、単結晶化およびシリコンウェーハ特性に悪影響を与える虞があり、また信頼性にも疑問がある。
【0016】
さらに、石英ガラスルツボの気泡の膨脹を抑制し、気泡の開裂によるSiO破片が溶融シリコン中に混入するのを防止するために、石英ガラスルツボの内面を所定の温度で、長時間加熱処理して石英ガラスルツボを製造する方法が特開平5−124889号公報に開示されているが、この方法は比較的高温で、長時間加熱するものであるので、生産性が悪く製造コストも高くなるなどの問題点がある。
【0017】
【発明が解決しようとする課題】
このため、シリコン単結晶引上げ収率が高く生産性に優れたシリコン単結晶引上げ用石英ガラスルツボの製造方法が要望されていた。
【0018】
本発明は上述した事情を考慮してなされたもので、単結晶引上げ中にクリストバライトの発生が少なく、シリコン単結晶引上げ収率を向上させたシリコン単結晶引上げ用石英ガラスルツボの製造方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記目的を達成するためになされた本願請求項1の発明は、酸素濃度が21%以下の溶融室に石英粉がルツボ状に充填され減圧可能なルツボ成形用型を用意し、このルツボ成形用型を減圧しながら所定時間保持し、さらにルツボ成形用型を減圧しながらアーク放電を開始するとともにアーク放電の開始直後より所定量の還元性ガスを溶融室に所定時間流し、その後ルツボ成形用型の減圧を停止し、この停止状態でさらに所定時間アーク放電を行うことにより、還元雰囲気中で溶融することを特徴とするシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0020】
本願請求項の発明は、ルツボ成形用型を減圧しながら所定時間保持し、さらにルツボ成形用型を減圧しながらアーク放電を開始するとともにアーク放電の開始直後より50〜300リットル/分の水素を溶融室に5〜15分間流し、その後ルツボ成形用型の減圧を停止し、この停止状態でさらに所定時間アーク放電を行うことにより、還元雰囲気中で溶融することを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0021】
本願請求項の発明は、ルツボ成形用型の減圧の停止と共に水素の流入を停止し、この状態でさらに所定時間アーク放電を行うことにより、還元雰囲気中で溶融することを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0022】
本願請求項の発明は、処理炉内に石英ガラスルツボをその底部を上にして載置し、石英ガラスルツボの内外の気密を保ち、石英ガラスルツボ内部に不活性ガスを所定量流して酸素濃度を1%以下にし、処理炉内を所定の温度まで昇温し、この温度を維持しながら不活性ガスを還元性ガスと置換して所定時間維持し、この時間経過後再度処理炉内に不活性ガスを流入し炉内温度を室温まで降温することにより、還元雰囲気中で加熱処理するシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0023】
【発明の実施の形態】
以下、本発明に係わる石英ガラスルツボの製造方法の実施の形態について添付図面に基づき説明する。
【0024】
図1は本発明に係わる石英ガラスルツボの製造方法により製造された石英ガラスルツボ1で、石英ガラスルツボ1の内表面2から1mm以内の層3は酸素欠乏欠陥を20〜150ppm有する酸素欠乏欠陥層として形成されている。
【0025】
このような石英ガラスルツボ1を製造するのに用いる製造装置を図2に従い説明する。
【0026】
建屋内に隔壁4で仕切られた、例えば床が3×3m、高さが5mの溶融室5が形成されこの溶融室5に雰囲気ガスの流入口6と流出口7が備えられている。溶融室5には、ルツボ製造装置8が設置され、このルツボ製造装置8は回転台9に載置されたルツボ成形用型10を有する。
【0027】
このルツボ成形用型10は、ガス透過性部材、例えばカーボンで形成され、ルツボ状に石英粉11が充填されるカーボン型12と、このカーボン型12の外周にガス通気路13を設けて配置された耐熱性、例えばSUS製で水冷される保持ジャケット14から構成されている。
【0028】
前記ルツボ成形用型10の上方には、ルツボ状に充填された石英粉11に対向して熱源として、例えばアーク電極15が設けられている。
【0029】
前記ガス通気路13は、保持ジャケット14の下部に設けられた開口部16を介して、モータ17によって駆動される回転軸18の中央に設けられたガス導入路19と連結され、このガス導入路19は真空ポンプ20に接続されている。
【0030】
また、前記保持ジャケット14には水冷用の冷却路21が設けられ、この冷却路21は回転軸18の中心に設けられた水路22に接続されている。
【0031】
本発明に係わる石英ガラスルツボの製造方法に用いられる製造装置は以上のような構造になっており、次に、本発明に係わる石英ガラスルツボの製造方法を説明する。
【0032】
最初に、モータ17を付勢し回転軸18を介してルツボ成形用型10を回転させて、ルツボ成形用型10を構成するカーボン型12と保持ジャケット14を回転させ、カーボン型12に石英粉11をルツボ状に充填する。
【0033】
次に、溶融室5に石英が充填されたルツボ成形用型10を移す。そして、流入口6から不活性ガス、例えば窒素を溶融室5に流して置換し、溶融室5の雰囲気を酸素濃度21%以下、例えば1%以下とする。
【0034】
なお、不活性ガスには窒素を含め、窒素のほかアルゴン、ヘリウム等、またはこれらと窒素との混合ガスでもよい。
【0035】
しかる後、アーク電極15に通電し、ルツボ状に充填された石英粉11をアーク放電による加熱によって内側から順次溶融する。アーク開始直後、真空ポンプ20を作動させ、所定時間、例えば10分間減圧状態に保持する。
【0036】
アーク放電の開始直前から還元性ガス、例えば水素を50〜300リットル/分、例えば150リットル/分溶融室に流入させ、この状態を5〜15分間、例えば10分間継続させ、溶融室3を還元雰囲気、すなわち水素雰囲気に保つ。
【0037】
所定時間経過後、例えば10分経過後減圧を止め大気圧に戻し、水素の流入も停止させ、この状態で所定時間、例えば30分間アーク放電を維持し、石英ガラスルツボ1を製造した。
【0038】
なお、この製造工程ではルツボ1の層3以外の層の溶融が行われているので、必ずしも水素を溶融室5に送り完全な還元雰囲気を維持する必要はなく水素の供給を止めてもよいが、水素を継続的に流し続けてもよい。
【0039】
また、還元性ガスは一酸化炭素、あるいはメタン等の炭化水素ガスでもよい。
【0040】
上述のように還元性雰囲気中で溶融されて製造されたルツボ1は肉厚12〜20mmであり、内側には3〜7mmの透明層部を有し、この透明層部について可視・紫外分光光度計により測定したところ、245nmに強い吸収が見られ、約120ppmの酸素欠乏欠陥を有していた。
【0041】
次に他の本発明に係わる石英ガラスルツボの製造方法の他の実施の形態について説明する。
【0042】
図3は本発明に係わる石英ガラスルツボの製造方法の他の実施の形態に用いられる雰囲気処理炉を示す概略図で、処理炉31は本体32と、この本体32内に設けられ本体32の底部33に固定された炉台34と、この炉台34に不活性ガス、例えば窒素、および還元性ガス、例えば水素を送る仕切弁35、36が設けられた送気管37と石英ガラスルツボ38内のガスを排出する排気管39が設けられている。
【0043】
前記炉台34には底面を上にして載置される石英ガラスルツボ38の上端部40の外周に位置して石英リング41が設けられ、この石英リング41と上端部40間には、気密用のパウダーシール42が敷き詰められている。
【0044】
また、底部33および炉台34に設けられ、送気管37と排気管39が貫通する透孔43はパウダーシールと石英ウールよりなるシール部材44で封止されている。
【0045】
本発明に係わる石英ガラスルツボの製造方法の他の実施の形態に用いられる雰囲気処理炉は以上のような構造になっているから、石英ガラスルツボを製造するには、上述石英ガラスルツボの製造方法の一部の製造工程と同様にする。
【0046】
すなわち、例えば28インチのルツボ成形用型に石英粉をルツボ状に充填し、このルツボ成形用型を回転させ、アーク放電により溶融し、外径28インチの石英ガラスルツボを製造する。
【0047】
このようにして製造された石英ガラスルツボの上端部を一定幅、例えば100mm切除し、この上端部の平行度をそろえる。
【0048】
しかる後、図3に示されるように、送気管37と排気管39が石英ガラスルツボ38の内部に位置するように石英ガラスルツボ38の底面を上にして石英ガラスルツボ38を炉台34に載置し、上端部40の外側と石英リング41間にパウダーシール42を敷き詰め、石英ガラスルツボ38の内外の気密を保つ。
【0049】
その後、仕切弁35、送気管37を介して石英ガラスルツボ38内に所定量、例えば0.5m/時間の不活性ガス、例えば窒素を流しながら処理炉31内の温度を800〜1200℃、例えば1100℃まで上昇させ、仕切弁35を閉じる一方、仕切弁36を開放し、窒素に代わる還元ガス、例えば水素を送気管37を介して所定量、例えば0.5立方米/時間供給する。還元ガスである水素を0.5〜10時間、例えば3時間供給し続け、この状態を保持する。
【0050】
しかる後、仕切弁36を閉じ、仕切弁35を開放して水素を窒素に切替え、窒素を流しながら室温まで降温する。
【0051】
上述のように還元性雰囲気中で加熱処理されて製造された石英ガラスルツボ1は、肉厚12〜20mmであり、内側には3〜7mmの透明層部を有し、この透明層部について可視・紫外分光光度計により測定したところ、245nmに強い吸収が見られ、100ppmの酸素欠乏欠陥を有していた。
【0052】
なお、この245nmの吸収波長は、Si−O−SiからOがとれた状態の酸素欠乏欠陥を示すものであり、この濃度はLamber−Beerの法則に基づき、
【数1】
A=loge I0/I =kcd
の式によって、c(吸収成分濃度)の値として算出することができる。
【0053】
上記式においては、Aは吸光度、I0は入射光の強さ、Iは透過光の強さ、kは吸光係数、dは試料の厚さを示すものである。
【0054】
【実施例】
(1)実施例1上記外径28インチで120ppmの酸素欠乏欠陥を有する石英ガラスルツボを用い、カスプ(CUSP)型MCZ単結晶引上装置を用いて例えば直径300mmシリコン単結晶の引上げを行った。原料であるポリシリコンの200kgチャージで約100時間使用しても、転位の発生が全く見られず、完全なシリコン単結晶が得られた。
【0055】
単結晶引上げに使用した後の石英ガラスルツボの内表面は、全体に光沢のある状態を維持しており、クリストバライトの発生が見られた面積は約20%であった。
【0056】
(2)実施例2上述本発明に係わる石英ガラスルツボの製造方法の他の実施の形態により製造された石英ガラスルツボを用い、カスプ型MCZ単結晶引上装置を用いて例えば直径300mmシリコン単結晶の引上げを行った。ポリシリコン200kgチャージで約100時間使用しても、転位の発生が全く見られず、完全なシリコン単結晶が得られた。
【0057】
単結晶引上げに使用した後の石英ガラスルツボの内表面は、全体に光沢のある状態を維持しており、クリストバライトの発生が見られた面積は20%であった。
【0058】
(3)比較例1カーボン型とSUS製水冷ジャケットからなる減圧可能な回転型内に石英粉充填し、大気雰囲気の溶融室ヘ型を移動し、アーク放電により溶融を開始し、アーク開始直後から水素を150リットル/分流入した。
【0059】
10分後に減圧と水素流入を停止し、さらに20分間アークを維持して溶融し、外径28インチの石英ルツボを製作した。
【0060】
このルツボは肉厚12〜20mmであり内面側には3〜7mmの透明層を有していた。透明層部につき可視・紫外分光光度計により測定したところ、245nmに弱い吸収が見られ、20ppm酸素欠乏欠陥を有していた。
【0061】
このルツボを用いてカスプ型MCZ引上装置により単結晶引上げを行った。
【0062】
ポリシリコン200kgチャージで約100時間使用し、直径300mm単結晶の引上げを行った。引上げテイル部で転位が発生し、単結晶化率は80%であった。引上げに使用した後の石英ガラスルツボの内表面は全体に粗れが目立ち、クリストバライトの発生が見られた面積は約70%であった。
【0063】
(4)比較例2カーボン型とSUS製水冷ジャケットからなる減圧可能な回転型内に石英粉充填し、窒素フローにより酸素濃度1%以下に置換された溶融室ヘ型を移動し、減圧しながら10分間保持した。その後、アーク放電により溶融を開始し、アーク開始直後から水素を300リットル/分流入したところ、SiOのべーパーが激しく発生し、電極への付着によりアークの中断が頻発した。10分後に減圧と水素流入を停止し、さらに20分間アークを維持して溶融し、外径28インチの石英ルツボを製作した。
【0064】
このルツボの内表面は、電極からのペーパーの落下による不具合が多数見られた。また、透明層部は200ppmの酸素欠乏欠陥を有していた。
【0065】
【発明の効果】
以上に述べたように本発明に係わる石英ガラスルツボの製造方法によればは、単結晶引上げ中にクリストバライトの発生が少なく、従って単結晶の転位が発生せずシリコン単結晶の収率を改善できる石英ガラスルツボを容易に製造することができる。
【図面の簡単な説明】
【図1】本発明に係わる石英ガラスルツボの製造方法により製造された石英ガラスルツボの断面図。
【図2】本発明に係わる石英ガラスルツボの製造方法に用いられる製造装置の概念図。
【図3】本発明に係わる石英ガラスルツボの製造方法の他の実施の形態に用いられる製造装置の概念図。
【符号の説明】
1 石英ガラスルツボ
2 内表面
3 層
4 隔壁
5 溶融室
6 流入口
7 流出口
8 ルツボ製造装置
9 回転台
10 ルツボ成形用型
11 石英粉
12 カーボン型
13 通気路
14 保持ジャケット
15 アーク電極
16 開口部
17 モータ
18 回転軸
19 ガス導入路
20 真空ポンプ
21 冷却路
22 水路
31 処理炉
32 本体
33 底部
34 炉台
35 仕切弁
36 仕切弁
37 送気管
38 石英ガラスルツボ
39 排気管
40 上端部
41 石英リング
42 パウダーシール
43 透孔
44 シール部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a silicon single crystal for pulling quartz Garasuru pot, more particularly, to a method of manufacturing a silicon single crystal pulling yield silicon single crystal for pulling quartz Garasurutsu board with improved.
[0002]
[Prior art]
A silicon single crystal used for a substrate of a semiconductor device is generally manufactured by the Czochralski method (CZ method). In this CZ method, a polycrystalline silicon raw material is loaded into a quartz glass crucible, and the loaded silicon raw material is used. The seed crystal heated and melted from the surroundings and suspended from above is brought into contact with the silicon melt and then pulled up.
[0003]
The quartz glass crucible used in the CZ method is required to have a high purity in the quartz glass crucible as the silicon single crystal is highly purified.
[0004]
The quartz glass crucible used in this CZ method is generally supplied into this mold while rotating a rotatable mold of quartz powder that has been crushed and purified, and the quartz powder is filled in a crucible around the mold by centrifugal force. At the same time, it is melted by an arc from the inside.
[0005]
However, the quartz glass crucible produced by this mold manufacturing method has a problem that many bubbles are contained in the quartz glass.
[0006]
On the other hand, when a single crystal is produced from polycrystalline silicon by the CZ method using such a quartz glass crucible containing bubbles, the crystallization becomes unstable due to the bubbles present in the quartz glass crucible and pulled up. In addition, dislocations were likely to occur in the silicon single crystal, causing a decrease in yield.
[0007]
The main reason is the mixing of spotted cristobalite into the melted silicon.
[0008]
That is, it is considered that the spotted cristobalite is formed in the quartz glass crucible by the following phenomenon.
[0009]
First, during the pulling of the silicon single crystal, the inner surface of the silicon crucible is eroded by the silicon melt, the bubbles are cleaved, and the inner surface of the crucible is roughened, and the fine protrusions generated by the roughening become the nucleus for crystallization of quartz glass. Spotted cristobalite is formed.
[0010]
Next, during the pulling of the single crystal, the precipitated impurities existing in the vicinity of the inner surface of the crucible promote the formation of cristobalite on the inner surface of the crucible to form the same spot-like cristobalite as described above.
[0011]
The cristobalite produced in this way has peeled from the crucible and mixed into the molten polycrystalline silicon, which has a problem of adversely affecting the growth of the pulled silicon single crystal.
[0012]
To solve this problem, the substrate of the silica was placed in a rotating mold for example, as described in JP fairness 4-22861, substantially bubble-free supply silica powder to the substrate inner surface There is a disclosure of a method for producing a quartz glass crucible in which a transparent quartz glass layer is formed into two layers.
[0013]
However, this method has a problem that the process is complicated and it is difficult to appropriately control the thickness of the bubble-free transparent quartz glass layer.
[0014]
In order to prevent impurities due to cristobalite from mixing into the molten silicon, a devitrification accelerator is attached to the inner surface of the quartz glass crucible, and the silica devitrified when the quartz glass crucible is heated to a high temperature. JP-A-9-110579 discloses a method for forming a layer and preventing crystalline silica particles from being mixed into molten silicon.
[0015]
However, since this method uses, for example, metal oxides or other oxides as devitrification accelerators, these oxides may melt into molten silicon, which may adversely affect single crystallization and silicon wafer characteristics, and may be reliable. There is also doubt about sex.
[0016]
Furthermore, in order to suppress the expansion of the bubbles in the quartz glass crucible and prevent the SiO 2 debris from being mixed into the molten silicon due to the opening of the bubbles, the inner surface of the quartz glass crucible is heat-treated at a predetermined temperature for a long time. A method for producing a quartz glass crucible is disclosed in Japanese Patent Application Laid-Open No. 5-1224889. However, this method involves heating at a relatively high temperature for a long time, resulting in poor productivity and high production cost. There are problems.
[0017]
[Problems to be solved by the invention]
Therefore, there has been a demand for a method for producing a quartz glass crucible for pulling a silicon single crystal that has a high yield of pulling a silicon single crystal and is excellent in productivity.
[0018]
The present invention has been made in consideration of the above-described circumstances, and provides a method for producing a quartz glass crucible for pulling a silicon single crystal with less generation of cristobalite during pulling of the single crystal and improving the yield of pulling the silicon single crystal. For the purpose.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention provides a crucible molding die in which a melting chamber having an oxygen concentration of 21% or less is filled with quartz powder in a crucible shape and can be decompressed. Hold the mold for a predetermined time while depressurizing, and then start arc discharge while depressurizing the crucible molding die and flow a predetermined amount of reducing gas into the melting chamber for a predetermined time immediately after the start of the arc discharge, and then crucible molding die The gist of the present invention is to produce a quartz glass crucible for pulling up a silicon single crystal, which is characterized by melting in a reducing atmosphere by stopping the decompression of this and further performing arc discharge for a predetermined time in the stopped state.
[0020]
According to the second aspect of the present invention, the crucible molding die is held for a predetermined time while reducing the pressure, and further, the arc discharge is started while reducing the pressure of the crucible forming die, and at the same time, 50 to 300 liters / minute of hydrogen is generated immediately after the start of the arc discharge. the flow in the melter 5-15 minutes, then stopped decompression of crucible mold, by performing a further predetermined time arc discharge in this stop state, to claim 1, characterized in that melt in a reducing atmosphere The gist of the present invention is a method for producing a quartz glass crucible for pulling a silicon single crystal as described.
[0021]
The invention of claim 3 of the present application is characterized by melting in a reducing atmosphere by stopping the inflow of hydrogen at the same time as the depressurization of the crucible molding die is stopped, and further performing arc discharge for a predetermined time in this state. The gist of the method is a method for producing a quartz glass crucible for pulling a silicon single crystal described in 2 .
[0022]
According to the invention of claim 4 of the present application, a quartz glass crucible is placed in a processing furnace with its bottom facing up, the inside and outside of the quartz glass crucible are kept airtight, and a predetermined amount of inert gas is allowed to flow inside the quartz glass crucible. Reduce the concentration to 1% or less, raise the temperature in the processing furnace to a predetermined temperature, replace the inert gas with the reducing gas while maintaining this temperature, and maintain it for a predetermined time. The gist of the present invention is a method for producing a silica glass crucible for pulling a silicon single crystal, in which an inert gas is introduced and the temperature in the furnace is lowered to room temperature, whereby heat treatment is performed in a reducing atmosphere.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a method for producing a quartz glass crucible according to the present invention will be described below with reference to the accompanying drawings.
[0024]
FIG. 1 shows a quartz glass crucible 1 produced by the method for producing a quartz glass crucible according to the present invention. A layer 3 within 1 mm from the inner surface 2 of the quartz glass crucible 1 is an oxygen-deficient defect layer having an oxygen-deficiency defect of 20 to 150 ppm. It is formed as.
[0025]
A manufacturing apparatus used to manufacture such a quartz glass crucible 1 will be described with reference to FIG.
[0026]
A melting chamber 5 having a floor of 3 × 3 m and a height of 5 m, for example, is formed in the building by a partition wall 4. The melting chamber 5 is provided with an inlet 6 and an outlet 7 for atmospheric gas. In the melting chamber 5, a crucible manufacturing apparatus 8 is installed, and the crucible manufacturing apparatus 8 has a crucible forming mold 10 mounted on a turntable 9.
[0027]
The crucible molding die 10 is formed of a gas permeable member, for example, carbon, a carbon die 12 filled with quartz powder 11 in a crucible shape, and a gas ventilation path 13 provided on the outer periphery of the carbon die 12. The holding jacket 14 is made of SUS and is water-cooled.
[0028]
Above the crucible mold 10, for example, an arc electrode 15 is provided as a heat source facing the quartz powder 11 filled in a crucible shape.
[0029]
The gas ventilation path 13 is connected to a gas introduction path 19 provided in the center of a rotating shaft 18 driven by a motor 17 through an opening 16 provided in a lower portion of the holding jacket 14. 19 is connected to the vacuum pump 20.
[0030]
The holding jacket 14 is provided with a cooling passage 21 for water cooling, and the cooling passage 21 is connected to a water passage 22 provided at the center of the rotating shaft 18.
[0031]
The manufacturing apparatus used in the method for manufacturing a silica glass crucible according to the present invention has the above-described structure. Next, a method for manufacturing a silica glass crucible according to the present invention will be described.
[0032]
First, the motor 17 is energized to rotate the crucible molding die 10 via the rotating shaft 18 to rotate the carbon mold 12 and the holding jacket 14 constituting the crucible molding mold 10. 11 is filled in a crucible shape.
[0033]
Next, the crucible molding die 10 filled with quartz is transferred to the melting chamber 5. Then, an inert gas, such as nitrogen, is flowed from the inlet 6 into the melting chamber 5 for replacement, and the atmosphere in the melting chamber 5 is set to an oxygen concentration of 21% or less, for example, 1% or less.
[0034]
The inert gas includes nitrogen, and may be argon, helium, or a mixed gas of nitrogen and nitrogen in addition to nitrogen.
[0035]
Thereafter, the arc electrode 15 is energized, and the quartz powder 11 filled in a crucible shape is sequentially melted from the inside by heating by arc discharge. Immediately after the start of the arc, the vacuum pump 20 is operated and held in a reduced pressure state for a predetermined time, for example, 10 minutes.
[0036]
Immediately before the start of the arc discharge, a reducing gas such as hydrogen is allowed to flow into the melting chamber at 50 to 300 liters / minute, for example 150 liters / minute, and this state is continued for 5 to 15 minutes, for example, 10 minutes to reduce the melting chamber 3. Keep atmosphere, ie hydrogen atmosphere.
[0037]
After elapse of a predetermined time, for example, after 10 minutes, the decompression was stopped and the pressure was returned to the atmospheric pressure, and the inflow of hydrogen was stopped. In this state, arc discharge was maintained for a predetermined time, for example, 30 minutes, thereby producing a quartz glass crucible 1.
[0038]
In this manufacturing process, since layers other than the layer 3 of the crucible 1 are melted, it is not always necessary to send hydrogen to the melting chamber 5 to maintain a complete reducing atmosphere, but the supply of hydrogen may be stopped. , Hydrogen may be continuously supplied.
[0039]
The reducing gas may be carbon monoxide or a hydrocarbon gas such as methane.
[0040]
The crucible 1 manufactured by melting in a reducing atmosphere as described above has a thickness of 12 to 20 mm, and has a transparent layer portion of 3 to 7 mm on the inner side. When measured by a meter, strong absorption was observed at 245 nm, and the oxygen deficiency defect was about 120 ppm.
[0041]
Next, another embodiment of the method for producing a quartz glass crucible according to the present invention will be described.
[0042]
FIG. 3 is a schematic view showing an atmospheric treatment furnace used in another embodiment of the method for producing a quartz glass crucible according to the present invention. The treatment furnace 31 is provided with a main body 32 and a bottom portion of the main body 32 provided in the main body 32. A gas flow in a quartz tube crucible 38 and a gas supply tube 37 provided with a gate 34 fixed to 33, a gate valve 35, 36 for supplying inert gas, for example, nitrogen, and a reducing gas, for example, hydrogen, to the gas furnace 34. An exhaust pipe 39 for discharging is provided.
[0043]
A quartz ring 41 is provided at the outer periphery of the upper end portion 40 of the quartz glass crucible 38 placed on the furnace table 34 with the bottom face up, and an airtight space is provided between the quartz ring 41 and the upper end portion 40. A powder seal 42 is laid down.
[0044]
A through hole 43 provided in the bottom 33 and the furnace table 34 through which the air supply pipe 37 and the exhaust pipe 39 penetrate is sealed with a seal member 44 made of powder seal and quartz wool.
[0045]
Since the atmosphere treatment furnace used in another embodiment of the method for producing a silica glass crucible according to the present invention has the above-described structure, the above method for producing a silica glass crucible is used to produce the silica glass crucible. The same manufacturing process as that described above is performed.
[0046]
That is, for example, a 28-inch crucible molding die is filled with quartz powder in a crucible shape, and this crucible molding die is rotated and melted by arc discharge to produce a quartz glass crucible having an outer diameter of 28 inches.
[0047]
The upper end portion of the quartz glass crucible thus manufactured is cut out by a certain width, for example, 100 mm, and the parallelism of the upper end portion is made uniform.
[0048]
Thereafter, as shown in FIG. 3, the quartz glass crucible 38 is placed on the furnace table 34 with the bottom surface of the quartz glass crucible 38 facing up so that the air supply pipe 37 and the exhaust pipe 39 are located inside the quartz glass crucible 38. Then, a powder seal 42 is laid between the outside of the upper end portion 40 and the quartz ring 41 to keep the inside and outside of the quartz glass crucible 38 airtight.
[0049]
Thereafter, the temperature in the processing furnace 31 is set to 800 to 1200 ° C. while flowing a predetermined amount, for example, 0.5 m 3 / hour of an inert gas, for example, nitrogen into the quartz glass crucible 38 through the gate valve 35 and the air supply pipe 37. For example, the temperature is raised to 1100 ° C., the gate valve 35 is closed, and the gate valve 36 is opened, and a reducing gas instead of nitrogen, for example, hydrogen, is supplied through the air pipe 37 to a predetermined amount, for example, 0.5 cubic rice / hour. Hydrogen, which is a reducing gas, is continuously supplied for 0.5 to 10 hours, for example, 3 hours, and this state is maintained.
[0050]
Thereafter, the gate valve 36 is closed, the gate valve 35 is opened, the hydrogen is switched to nitrogen, and the temperature is lowered to room temperature while flowing nitrogen.
[0051]
The quartz glass crucible 1 manufactured by heat treatment in a reducing atmosphere as described above has a wall thickness of 12 to 20 mm, and has a transparent layer portion of 3 to 7 mm on the inner side. The transparent layer portion is visible. When measured with an ultraviolet spectrophotometer, strong absorption was observed at 245 nm, and it had a 100 ppm oxygen deficiency defect.
[0052]
The absorption wavelength of 245 nm indicates an oxygen deficiency defect in which O is removed from Si—O—Si, and this concentration is based on the Lamber-Beer law.
[Expression 1]
A = log I0 / I = kcd
The value of c (absorbing component concentration) can be calculated by the following equation.
[0053]
In the above formula, A is the absorbance, I0 is the intensity of the incident light, I is the intensity of the transmitted light, k is the extinction coefficient, and d is the thickness of the sample.
[0054]
【Example】
(1) Example 1 Using a quartz glass crucible having an outer diameter of 28 inches and an oxygen-deficient defect of 120 ppm, a silicon single crystal having a diameter of 300 mm, for example, was pulled using a cusp type MCZ single crystal pulling apparatus. . Even when the raw material polysilicon was used for about 100 hours with a 200 kg charge, no dislocation was observed, and a complete silicon single crystal was obtained.
[0055]
The inner surface of the quartz glass crucible after being used for pulling a single crystal maintained a glossy state as a whole, and the area where cristobalite was observed was about 20%.
[0056]
(2) Example 2 Using a quartz glass crucible manufactured according to another embodiment of the method for manufacturing a silica glass crucible according to the present invention, using a cusp type MCZ single crystal pulling apparatus, for example, a silicon single crystal having a diameter of 300 mm Was raised. Even when used for about 100 hours with a 200 kg polysilicon charge, no dislocations were observed, and a complete silicon single crystal was obtained.
[0057]
The inner surface of the quartz glass crucible after being used for pulling the single crystal maintained a glossy state as a whole, and the area where cristobalite was observed was 20%.
[0058]
(3) Comparative Example 1 Quartz powder is filled into a depressurizable rotary mold consisting of a carbon mold and a SUS water-cooled jacket, moved to a melting chamber in an atmospheric atmosphere, and melting is started by arc discharge. Hydrogen was introduced at 150 liters / minute.
[0059]
After 10 minutes, the decompression and hydrogen inflow were stopped, and the arc was maintained for 20 minutes to melt, producing a quartz crucible with an outer diameter of 28 inches.
[0060]
This crucible had a wall thickness of 12 to 20 mm and had a transparent layer of 3 to 7 mm on the inner surface side. When the transparent layer portion was measured with a visible / ultraviolet spectrophotometer, weak absorption was observed at 245 nm and it had a 20 ppm oxygen deficiency defect.
[0061]
Using this crucible, single crystal pulling was performed by a cusp type MCZ pulling apparatus.
[0062]
Using a polysilicon 200 kg charge for about 100 hours, a single crystal having a diameter of 300 mm was pulled up. Dislocation occurred in the pulled tail portion, and the single crystallization rate was 80%. The inner surface of the quartz glass crucible after use for pulling was conspicuous on the entire surface, and the area where cristobalite was observed was about 70%.
[0063]
(4) Comparative Example 2 Quartz powder is filled into a depressurizable rotary mold composed of a carbon mold and a SUS water-cooled jacket, and the mold is moved to a melting chamber substituted with an oxygen concentration of 1% or less by nitrogen flow, while depressurizing. Hold for 10 minutes. After that, melting was started by arc discharge, and when hydrogen was flowed in at 300 liters / min immediately after the start of the arc, SiO 2 vapor was vigorously generated, and the arc was frequently interrupted due to adhesion to the electrodes. After 10 minutes, the decompression and hydrogen inflow were stopped, and the arc was maintained for 20 minutes to melt, producing a quartz crucible with an outer diameter of 28 inches.
[0064]
On the inner surface of this crucible, many defects due to the fall of the paper from the electrodes were observed. Moreover, the transparent layer part had a 200 ppm oxygen deficiency defect.
[0065]
【The invention's effect】
Is According to the method for manufacturing a silica glass crucible according to the present invention as described above, generates less cristobalite in the single crystal pulling, thus improving the yield of silicon single crystal without generating dislocations of the single crystal the possible quartz Garasuru pot can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a quartz glass crucible manufactured by a method for manufacturing a silica glass crucible according to the present invention.
FIG. 2 is a conceptual diagram of a production apparatus used in a method for producing a quartz glass crucible according to the present invention.
FIG. 3 is a conceptual diagram of a manufacturing apparatus used in another embodiment of a method for manufacturing a quartz glass crucible according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Quartz glass crucible 2 Inner surface 3 Layer 4 Partition 5 Melting chamber 6 Inlet 7 Outlet 8 Crucible manufacturing apparatus 9 Turntable 10 Crucible molding die 11 Quartz powder 12 Carbon die 13 Air passage 14 Holding jacket 15 Arc electrode 16 Opening 17 Motor 18 Rotating shaft 19 Gas introduction path 20 Vacuum pump 21 Cooling path 22 Water path 31 Processing furnace 32 Main body 33 Bottom 34 Furnace 35 Gate valve 36 Gate valve 37 Air supply pipe 38 Quartz glass crucible 39 Exhaust pipe 40 Upper end 41 Quartz ring 42 Powder Seal 43 Through hole 44 Seal member

Claims (4)

酸素濃度が21%以下の溶融室に石英粉がルツボ状に充填され減圧可能なルツボ成形用型を用意し、このルツボ成形用型を減圧しながら所定時間保持し、さらにルツボ成形用型を減圧しながらアーク放電を開始するとともにアーク放電の開始直後より所定量の還元性ガスを溶融室に所定時間流し、その後ルツボ成形用型の減圧を停止し、この停止状態でさらに所定時間アーク放電を行うことにより、還元雰囲気中で溶融することを特徴とするシリコン単結晶引上げ用石英ガラスルツボの製造方法。Prepare a crucible molding die that can be decompressed by filling the melting chamber with an oxygen concentration of 21% or less in a crucible shape, hold the crucible molding die for a predetermined time while reducing the pressure, and further reduce the pressure of the crucible molding die. While starting the arc discharge, a predetermined amount of reducing gas is allowed to flow into the melting chamber for a predetermined time immediately after the start of the arc discharge, and then the pressure reduction of the crucible molding die is stopped, and arc discharge is further performed for a predetermined time in this stopped state. it allows the method for manufacturing a silicon single crystal for pulling up the quartz glass crucible, wherein soluble Torusu Rukoto in a reducing atmosphere. ルツボ成形用型を減圧しながら所定時間保持し、さらにルツボ成形用型を減圧しながらアーク放電を開始するとともにアーク放電の開始直後より50〜300リットル/分の水素を溶融室に5〜15分間流し、その後ルツボ成形用型の減圧を停止し、この停止状態でさらに所定時間アーク放電を行うことにより、還元雰囲気中で溶融することを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法。Holding the crucible molding die for a predetermined time while reducing the pressure, starting arc discharge while reducing the pressure of the crucible molding die, and adding 50 to 300 liters / minute of hydrogen to the melting chamber for 5 to 15 minutes immediately after the start of the arc discharge. flow, then the pressure reduction of the crucible mold was stopped, by performing a further predetermined time arc discharge in this stop state, a silicon single crystal for pulling quartz according to claim 1, characterized in that melt in a reducing atmosphere A method for producing a glass crucible. ルツボ成形用型の減圧の停止と共に水素の流入を停止し、この状態でさらに所定時間アーク放電を行うことにより、還元雰囲気中で溶融することを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法。3. The silicon single crystal pulling according to claim 2 , wherein the melting of the crucible molding die is stopped while the inflow of hydrogen is stopped and arc discharge is further performed in this state for a predetermined time to melt in a reducing atmosphere. Of manufacturing quartz glass crucibles for use. 処理炉内に石英ガラスルツボをその底部を上にして載置し、石英ガラスルツボの内外の気密を保ち、石英ガラスルツボ内部に不活性ガスを所定量流して酸素濃度を1%以下にし、処理炉内を所定の温度まで昇温し、この温度を維持しながら不活性ガスを還元性ガスと置換して所定時間維持し、この時間経過後再度処理炉内に不活性ガスを流入し炉内温度を室温まで降温することにより、還元雰囲気中で加熱処理するシリコン単結晶引上げ用石英ガラスルツボの製造方法。 Place the quartz glass crucible in the processing furnace with its bottom facing up, keep the inside and outside of the quartz glass crucible airtight, flow a predetermined amount of inert gas inside the quartz glass crucible to reduce the oxygen concentration to 1% or less, and process The temperature inside the furnace is raised to a predetermined temperature, and while maintaining this temperature, the inert gas is replaced with a reducing gas and maintained for a predetermined time, and after this time has passed, the inert gas is again flowed into the processing furnace. A method for producing a quartz glass crucible for pulling a silicon single crystal, which is heat- treated in a reducing atmosphere by lowering the temperature to room temperature.
JP00254898A 1998-01-08 1998-01-08 Method for producing quartz glass crucible for pulling silicon single crystal Expired - Lifetime JP3625636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00254898A JP3625636B2 (en) 1998-01-08 1998-01-08 Method for producing quartz glass crucible for pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00254898A JP3625636B2 (en) 1998-01-08 1998-01-08 Method for producing quartz glass crucible for pulling silicon single crystal

Publications (2)

Publication Number Publication Date
JPH11199369A JPH11199369A (en) 1999-07-27
JP3625636B2 true JP3625636B2 (en) 2005-03-02

Family

ID=11532444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00254898A Expired - Lifetime JP3625636B2 (en) 1998-01-08 1998-01-08 Method for producing quartz glass crucible for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP3625636B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212977A (en) * 2021-12-17 2022-03-22 上海大学 Double-heating-cavity high-temperature fusion casting device for preparing quartz glass products

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502422B1 (en) * 2000-10-27 2003-01-07 General Electric Company Method for quartz crucible fabrication
US6546754B1 (en) 2000-10-27 2003-04-15 General Electric Company Apparatus for silica crucible manufacture
EP2172432A4 (en) * 2007-07-28 2014-04-16 Japan Super Quartz Corp Process for producing quartz glass crucible and apparatus for producing the quartz glass crucible
JP5441106B2 (en) 2008-06-28 2014-03-12 株式会社Sumco Water cooling mold
DE102008033945B4 (en) * 2008-07-19 2012-03-08 Heraeus Quarzglas Gmbh & Co. Kg Process for the preparation of quartz glass doped with nitrogen and quartz glass grains suitable for carrying out the process, process for producing a quartz glass strand and method for producing a quartz glass crucible
US8272234B2 (en) 2008-12-19 2012-09-25 Heraeus Shin-Etsu America, Inc. Silica crucible with pure and bubble free inner crucible layer and method of making the same
JP4922355B2 (en) * 2009-07-15 2012-04-25 信越石英株式会社 Silica container and method for producing the same
JP4951040B2 (en) * 2009-08-05 2012-06-13 信越石英株式会社 Silica container and method for producing the same
US9003832B2 (en) 2009-11-20 2015-04-14 Heraeus Shin-Etsu America, Inc. Method of making a silica crucible in a controlled atmosphere
JP6220772B2 (en) * 2014-12-26 2017-10-25 クアーズテック株式会社 Method for producing quartz glass crucible
CN113493925A (en) * 2020-04-08 2021-10-12 阔斯泰公司 Quartz glass crucible and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212977A (en) * 2021-12-17 2022-03-22 上海大学 Double-heating-cavity high-temperature fusion casting device for preparing quartz glass products

Also Published As

Publication number Publication date
JPH11199369A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP4447738B2 (en) Method for producing a quartz glass crucible having a multilayer structure
JP4907735B2 (en) Silica container and method for producing the same
JP3765368B2 (en) Quartz glass crucible and method for producing the same
WO2000059837A1 (en) Method for manufacturing quartz glass crucible
US8915096B2 (en) Silica container and method for producing the same
JP3625636B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP2004059410A (en) Quartz glass crucible for pulling up silicon single crystal and method of manufacturing the same
TWI460317B (en) Silicone container for single crystal silicon pulling and its manufacturing method
JP4702898B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
WO2007000864A1 (en) Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
JPH0920586A (en) Production of quartz glass crucible for pulling silicon single crystal
JP4841764B2 (en) Method and apparatus for producing quartz glass crucible for pulling silicon single crystal
JP5497247B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP2018104248A (en) Quartz glass crucible for pulling silicon single crystal
JP4548682B2 (en) Manufacturing method of quartz glass crucible
JP5595615B2 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP2001261353A (en) Synthetic silica glass powder for quartz glass crucible, and method of manufacturing the same, and method of manufacturing quartz glass crucible using synthetic silica glass powder
JP3672460B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
EP1337482B1 (en) Apparatus for silica crucible manufacture
KR20100042506A (en) Manufacturing device for silicon ingot having refining function
JP4054434B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP2005145731A (en) Crystallized quartz crucible
JP4549008B2 (en) Hydrogen-doped silica powder and quartz glass crucible for pulling silicon single crystal using the same
JP4140868B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JPH07118089A (en) Recharging device and recharging method for polycrystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term