JP2936329B2 - Oxide superconductor with conductive material - Google Patents

Oxide superconductor with conductive material

Info

Publication number
JP2936329B2
JP2936329B2 JP62132875A JP13287587A JP2936329B2 JP 2936329 B2 JP2936329 B2 JP 2936329B2 JP 62132875 A JP62132875 A JP 62132875A JP 13287587 A JP13287587 A JP 13287587A JP 2936329 B2 JP2936329 B2 JP 2936329B2
Authority
JP
Japan
Prior art keywords
superconductor
oxide
alloy
conductive material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62132875A
Other languages
Japanese (ja)
Other versions
JPS63298983A (en
Inventor
修也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62132875A priority Critical patent/JP2936329B2/en
Publication of JPS63298983A publication Critical patent/JPS63298983A/en
Application granted granted Critical
Publication of JP2936329B2 publication Critical patent/JP2936329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば磁気浮上列車および粒子加速器等の
磁気コイル部分や電子デバイス等に使用される酸化物系
超伝導体に関するものである。 〔背景技術及び先行技術〕 現在、超伝導体はNb3Ge:Nb3Snに代表される金属系超
伝導体が実用化されているが、その臨界温度(Tc)はた
かだか23.2K程度までである。 しかし乍ら、近時希土類元素、アルカリ土類元素及び
酸化銅の混合物からなる酸化物系超伝導体はその臨界温
度が金属系超伝導体と比べ著しく高いものであることが
発表(例えば東京大学工学グループの米国物理学会では
90Kを達成したと発表)され、高価で極低温(4.2K=−2
68.8℃)の液体ヘリウム中に換え、安価で比較的高温
(77K=−196℃)である液体窒素(Liq・N2)中におい
て充分使用可能となったことから、この酸化物系超伝導
体の各種利用分野における実用化の目度に大きな前進が
見られた。これらの発表に伴い、この酸化物系超伝導体
の臨界温度(Tc)をさらに常温にまで高めようとする研
究がさかんに行われている。 〔発明が解決しようとする問題点〕 しかし乍ら、上記酸化物系超伝導体の製造において
は、酸化物粉末の粉砕・混合・焼成過程をふむため生成
される超伝導を引き起こす結晶(以下超伝導結晶と称
し、例えば層状ペロブスカイト型構造を有する結晶等)
が不安定となり易く、焼成体全体に均一かつ密にこの結
晶を生成させることが容易でない。したがって、そのた
めに焼成体中の超伝導結晶を均一かつ密にするための手
段を見出すか、又は超伝導結晶を何らかの方法で連結す
ることにより焼成体全体を超伝導化させ、超伝導現象を
安定化させる必要がある。 一方、酸化物系超伝導体に電極を付設する必要性につ
いて現在のところ報告がなされていない。超伝導体にわ
ざわざ高抵抗な電極を付設することは無意味なことの様
に思われるが、例えば電子デバイス等の外部周辺回路と
接続する必要がある場合、外部リードとの接合用、電極
接合用若しくはそれ自身が電極用として利用できる導電
物質を付設した超伝導体が要求される。 〔問題点を解決するための手段〕 そこで、本発明者は上記問題点に鑑みて鋭意研究の結
果、酸化物系超伝導体の表面に液体窒素中の低温度に有
効な物性からなる導電物質を塗付して、この超伝導体表
面に不均一に散在又は部分的に散在する超伝導結晶相互
間を前記導電物質により連結させることにより焼成体の
略全体を超伝導化させ得ること、及びこの酸化物系超伝
導体が外部周辺回路と何らかの接続を必要とする場合に
は、前記導電物質が外部リードとの接続用、電極接合用
若しくはそれ自身が電極として使用することができ、外
部周辺回路と接続可能な酸化物系超伝導体が得られるこ
とを見出した。 本発明においては酸化物系超伝導体の焼成体全体を超
伝導化して安定した超伝導現象が得られ、かつ外部周辺
回路と接続可能な導電物質を付設した酸化物系超伝導体
を提供することを目的とする。 本発明に依れば、常温以下で抵抗が零となる酸化物系
超伝導体の表面、あるいは該酸化物系超伝導体と他の部
材との間に、ガリウム(Ga)が40〜85重量%と、インジ
ウム(In)が15〜60重量%との合金からなる導電物質を
形成したことを特徴とする導電物質を付設した酸化物系
超伝導体が提供される。 ガリウム(Ga)とインジウム(In)との合金(以下単
にGa−In合金と称す)が液体窒素(Liq・N2)等の低温
度中で使用される酸化物系超伝導体に有効な理由は、先
ずガリウム(Ga)とインジウム(In)とを接触させると
ほぼ常温(Ga−In合金の組成比により異なる約16℃前
後)において融解状の合金となる。これに対し、従来電
極や、接合導体として提供されている金属として例えば
ロウ材、ウッドメタル及び銀ロウがあり、これら金属の
融点はロウ材が約250〜300℃、ウッドメタルが約60℃、
銀ロウが約700℃とGa−In合金と比べ極めて高い融点を
有する。この様な金属を高温で酸化物系超伝導体表面に
溶着すると、その超伝導体表面の溶着領域に存在する前
述の超伝導結晶が溶着時の温度により破壊され超伝導現
象を不安定化させる恐れがある。従って、Ga−In合金は
ほぼ常温で酸化物系超伝導体表面に付着させることがで
きるので、この超伝導体表面の結晶を破壊することなく
有効に使用できる。 また、Ga−In合金は酸化物である超伝導体に対し、フ
ァンデルワースカ(金属粒子間の引力)が強く、この超
伝導体表面に対し強固な結合力で接合することができ、
その結合力は低温になればなる程強固となるものと考え
られ、液体窒素中において有効に使用できる。また、Ga
−In合金は他の金属(金・銀・銅)と比べ酸化物と接す
る界面電位差が非常に小さいので他の金属と比べ界面の
接触部分で印加電流に対し電圧の立上りが早く、またコ
イル状として使用した場合一定の磁場を安定して作るこ
とができる。 Ga−In合金の組成比は、ガリウム(Ga)が40重量%未
満、インジウム(In)が60重量%を越えて含有すると、
インジウムが溶け難く超伝導体表面に付着し難い。ガリ
ウム(Ga)が85重量%を越え、インジウム(In)が15重
量%未満で含有すると、Ga−In合金としては完全に溶解
して粘性が極めて低くなり過ぎ、表面張力が働くため酸
化物系超伝導体表面に逆に付着し難くなる。 〔実験例1〕 Y2O3が約15重量%、BaCO3が約53重量%及びCuOが約32
重量%となる混合粉末を湿式回転ボールミルにより約20
時間混合し、この混合粉末を1cm2当たり約1000Kgの圧力
でプレス成形した。得られた成形体を850〜950℃の温度
にて空気中又は酸素中で焼成することにより第1図に示
す如き10×4.5×1.5mmの試料片1を得た。 得られた試料片に第1表に示す組成比を有するGa−In
合金を常温にて塗布し、この合金が塗布された各試料を
液体窒素(Liq・N2)中に浸漬し、塗布面を針先端で剥
がしてみた。この時の付着性を評価した結果を第1表に
示す。 第1表から理解されるように、Ga/Inが重量百分率
(%)で20/80及び90/10の組成比を有する試料番号1及
び6のものは容易に剥離したものに対し、試料番号2〜
5の本発明の試料については剥離せず試料片表面に強固
に付着していた。 第1表の結果からガリウム(Ga)が40〜85重量%、イ
ンジウム(In)が15〜60重量%の範囲の合金組成比が酸
化物系超伝導体に好適であることが理解される。好まし
くはガリウム(Ga)が45〜80重量%、インジウム(In)
が20〜55重量%である。 〔実験例2〕 前記実験例1と同一の試料片3を3個ずつ4組作成
し、1組目には前記実験例1の試料番号5の組成比を有
するGa−In合金を、常温で2乃至3組目にはロウ材、ウ
ッドメタル及び銀ロウを夫々第2図に示す如く各試料片
周囲に4つの電極として帯状に前述した温度で溶着させ
た。両側の2つの電極2,3は低電圧印加用、内側の2つ
の電極4,5は測定用電極としてこれらを治具に固化し、
液体窒素へ徐々に近づけ四端子法により抵抗値(比抵
抗)を測定した。抵抗値(ρ)は一測定電極4,5間の距
離を(L)、その間の断面積(II−II線断面)を(A)
試料片1に定電圧Vを印加した時のV/Iから求められる
抵抗(R)としたときは、抵抗値をρ=A・R/Lで求め
た。 そして、前記4組の各試料が抵抗値が3個中何個が零
となったか、又は零となった場合の臨界温度(Tc)を測
定し第2表に示す。 第2表から理解されるように、溶着温度が高いロウ
材、ウッドメタル及び銀ロウを電極材料として使用した
ものは夫々抵抗値が零となったものとならなかったもの
とのバラツキがあり、また臨界温度も79K以下であっ
た。これに対し、Ga−In合金を電極材料として使用した
ものは全て臨界温度84〜87Kにおいて抵抗値が零となっ
た。 第2表の結果から溶着温度の高い電極材料を酸化物系
超伝導体に付着させると、溶着時の温度の影響で超伝導
体である焼成体表面近傍に存在する超伝導結晶が破損さ
れるものと考えられ、安定した超伝導現象が得られず、
かつ臨界温度も低くなる傾向にあることが理解される。 〔実験例3〕 実験例2においてGa−In合金の電極を付した試料を液
体窒素中に徐々に近づけ抵抗値が零になることを確認し
たが、その時の温度降下に伴う抵抗値変化を読取り、そ
の温度特性曲線Xを第3図の温度特性図に実線で示し
た。 一方、実施例1で作成した電極を有しない酸化物系超
伝導体を第4図に示す如く、その両端に針状の金電極6,
7をスプリング8,9を介して超伝導体1の側面に押圧し、
超伝導体の底面を固定して上面に同様の針状の金属極1
0,11をスプリング12,13を介して超伝導体1上面に押圧
させ測定電流を出力させるようにし、これらを治具に固
定して液体窒素中に徐々に近づけ前記と同様、温度降下
に伴う抵抗値変化を読取り、その時の温度特性曲線Yを
第3図の温度特性図に点線で示した。 即ち、Ga−In合金電極を付した場合の温度特性曲線X
と、針状の金電極を押付けた場合の温度特性曲線Yとを
比較すると特性曲線Xに比べ特性曲線Yが高温時に不安
定である。 これは、金電極先端と超伝導体との界面における電位
差がGa−In合金と比べ大きいため印加電流が不安定とな
り、そのため抵抗零の超伝導状態となった場合において
も安定した磁場を作ることが出来なかったからだと考え
られる。 次に、本発明の実施例を説明する。 実施例1(第5図)及び実施例2(第6図)は超伝導
体の超伝導結晶を連結する場合、実施例3(第7図)、
実施例4(第8図)および実施例5(第9図)は外部接
続用として使用する場合、実施例6(第10図イ・ロ)は
外部接続用にそれ自体を電極として使用する場合に、Ga
−In合金を応用した例を示す。 〔実施例1〕 第5図では超伝導体1の表面及び裏面にGa−In合金か
ら成る導電物質14,15を塗布した。これによると、超伝
導体1表裏面において超伝導結晶がバラツク場合にこれ
らを有効に連結することができる。 〔実施例2〕 第6図では超伝導体1の表面及び裏面の他、側面にGa
−In合金から成る導電物質16,17を塗布した。これによ
ると、超伝導体1の表裏面及び側面において超伝導結晶
がバラツク場合にこれらを有効に連結することが出来
る。 〔実施例3〕 第7図では回路基板18上の配線パターン19,20とスル
ーホール21,22を介して裏面の配線パターン23,24とに超
伝導体1を接続するためにGa−In合金からなる導電物質
25,26を使用した。 〔実施例4〕 第8図では超伝導体1両端の銅電極27,28の接合用と
して超伝導体1と銅電極27,28間にGa−In合金から成る
導電物質29,30を介在させた。 〔実施例5〕 第9図では超伝導体1と外部素子31の電極とを接合す
る場合に、Ga−In合金からなる導電物質32を使用した。 〔実施例6〕 第10図(イ)及び該図のコイル端部の拡大断面を示す
第10図(ロ)ではコイル状超伝導体1aの両端に電源Vか
ら電線33を直接Ga−In合金からなる導電物質34により接
続したもので、Ga−In合金はそれ自体で電極として使用
できる。 尚、本発明は上記各実施例に示すものの他、各種用途
に応じて酸化物系超伝導体上に付設することができる。 〔発明の効果〕 上述の如く、本発明においては常温以下で抵抗が零と
なる酸化物系超伝導体の表面に、ガリウム(Ga)とイン
ジウム(In)との適切な組成比の合金からなる導電物質
を形成することにより、超伝導体表面に不均一に散在又
は部分的に散在する超伝導結晶の相互間をこの導電物質
により連結させることができ、安定した超伝導現象が得
られる一方、外部接続用及び電極としてこの導電物質を
使用して外部接続用超伝導体が得られると共に安定した
接続部を有する超伝導体が得られる。
Description: TECHNICAL FIELD The present invention relates to an oxide-based superconductor used for a magnetic levitation train, a magnetic coil portion of a particle accelerator, an electronic device, and the like. [Background Art and Prior Art] At present, metallic superconductors represented by Nb 3 Ge: Nb 3 Sn are in practical use, but their critical temperature (Tc) is only up to about 23.2K. is there. However, recently, oxide-based superconductors composed of a mixture of a rare earth element, an alkaline earth element, and copper oxide have a critical temperature significantly higher than that of a metal-based superconductor (for example, the University of Tokyo). In the American Physical Society of Engineering Group
90K achieved), expensive and very low temperature (4.2K = -2)
(68.8 ° C) liquid helium instead of liquid nitrogen (Liq · N 2 ), which is inexpensive and relatively high temperature (77K = -196 ° C). Significant progress has been made in the prospects for practical application in various applications. Along with these announcements, research is being actively conducted to further increase the critical temperature (Tc) of this oxide-based superconductor to room temperature. [Problems to be Solved by the Invention] However, in the production of the above-mentioned oxide-based superconductor, a crystal (hereinafter referred to as “super-crystal”) which is generated due to the pulverization, mixing and firing processes of the oxide powder is generated. A conductive crystal, for example, a crystal having a layered perovskite structure)
Is likely to be unstable, and it is not easy to generate these crystals uniformly and densely throughout the fired body. Therefore, for that purpose, find a means to make the superconducting crystals in the fired body uniform and dense, or make the whole fired body superconductive by connecting the superconducting crystals in some way, and stabilize the superconducting phenomenon. Need to be converted. On the other hand, there is no report on the necessity of attaching an electrode to the oxide-based superconductor at present. It seems pointless to attach a high-resistance electrode to the superconductor, but if it is necessary to connect to an external peripheral circuit such as an electronic device, it is necessary to connect the external lead to There is a demand for a superconductor provided with a conductive substance that can be used for the electrode itself or for the electrode. [Means for Solving the Problems] Accordingly, the present inventor has conducted intensive studies in view of the above problems, and as a result, has found that a conductive material having physical properties effective at a low temperature in liquid nitrogen on the surface of an oxide-based superconductor. By applying the conductive material between the superconducting crystals non-uniformly scattered or partially scattered on the surface of the superconductor by the conductive material, and When the oxide-based superconductor requires some connection with an external peripheral circuit, the conductive material can be used for connection to an external lead, for electrode bonding, or as an electrode itself. It has been found that an oxide-based superconductor that can be connected to a circuit can be obtained. The present invention provides an oxide-based superconductor in which a fired body of an oxide-based superconductor is made superconductive so that a stable superconducting phenomenon is obtained and a conductive material that can be connected to an external peripheral circuit is provided. The purpose is to: According to the present invention, gallium (Ga) is 40 to 85% by weight between the surface of the oxide-based superconductor having zero resistance at room temperature or lower, or between the oxide-based superconductor and another member. %, And an oxide-based superconductor provided with a conductive material, characterized in that the conductive material is formed of an alloy of 15% to 60% by weight of indium (In). Reasons why alloys of gallium (Ga) and indium (In) (hereinafter simply referred to as Ga-In alloys) are effective for oxide-based superconductors used at low temperatures such as liquid nitrogen (Liq · N 2 ) First, when gallium (Ga) and indium (In) are brought into contact with each other, the alloy becomes a molten alloy at almost normal temperature (about 16 ° C. that depends on the composition ratio of the Ga—In alloy). On the other hand, conventional electrodes and metals provided as bonding conductors include, for example, brazing materials, wood metals and silver brazing, and the melting points of these metals are about 250-300 ° C. for brazing materials, about 60 ° C. for wood metals,
Silver brazing has an extremely high melting point of about 700 ° C. as compared with a Ga-In alloy. When such a metal is deposited on the surface of an oxide-based superconductor at a high temperature, the above-mentioned superconducting crystal present in the welding region on the surface of the superconductor is destroyed by the temperature at the time of welding, destabilizing the superconducting phenomenon. There is fear. Therefore, the Ga-In alloy can be adhered to the surface of the oxide-based superconductor at almost room temperature, and can be used effectively without destroying the crystals on the surface of the superconductor. In addition, the Ga-In alloy has a strong van der Waalsker (attraction between metal particles) with respect to a superconductor which is an oxide, and can be bonded to the superconductor surface with a strong bonding force.
It is considered that the bonding force becomes stronger as the temperature becomes lower, and it can be used effectively in liquid nitrogen. Also, Ga
-In alloy has a very small interfacial potential difference in contact with the oxide compared to other metals (gold, silver, copper), so the voltage rises faster at the interface current than applied to other metals compared to other metals. When used as, a constant magnetic field can be produced stably. When the composition ratio of the Ga-In alloy is less than 40% by weight of gallium (Ga) and more than 60% by weight of indium (In),
Indium is hardly melted and hardly adheres to the superconductor surface. If gallium (Ga) exceeds 85% by weight and indium (In) contains less than 15% by weight, the Ga-In alloy will be completely dissolved and the viscosity will be extremely low. Conversely, it is difficult to adhere to the superconductor surface. [Experimental Example 1] Y 2 O 3 was about 15% by weight, BaCO 3 was about 53% by weight, and CuO was about 32% by weight.
Weight% of the mixed powder by a wet rotary ball mill for about 20
After mixing for a time, the mixed powder was pressed at a pressure of about 1000 kg / cm 2 . The obtained molded body was fired in air or oxygen at a temperature of 850 to 950 ° C. to obtain a sample 1 of 10 × 4.5 × 1.5 mm as shown in FIG. Ga-In having the composition ratio shown in Table 1 was added to the obtained sample.
The alloy was applied at room temperature, and each sample coated with the alloy was immersed in liquid nitrogen (Liq · N 2 ), and the applied surface was peeled off at the tip of the needle. Table 1 shows the results of evaluation of the adhesion at this time. As can be understood from Table 1, Sample Nos. 1 and 6 in which Ga / In has a composition ratio of 20/80 and 90/10 by weight percentage (%) were easily peeled, whereas Sample Nos. Two
The sample No. 5 of the present invention did not peel off but adhered firmly to the surface of the sample piece. From the results in Table 1, it is understood that an alloy composition ratio of gallium (Ga) in the range of 40 to 85% by weight and indium (In) in the range of 15 to 60% by weight is suitable for the oxide-based superconductor. Preferably gallium (Ga) is 45-80% by weight, indium (In)
Is 20 to 55% by weight. [Experimental Example 2] Four sets of three sample pieces 3 identical to those of Experimental Example 1 were prepared, and the first set was made of a Ga-In alloy having the composition ratio of Sample No. 5 of Experimental Example 1 at room temperature. In the second and third sets, a brazing material, a wood metal and a silver brazing material were welded in a band shape at the above-mentioned temperature as four electrodes around each sample piece as shown in FIG. The two electrodes 2 and 3 on both sides are used for applying a low voltage, and the two inner electrodes 4 and 5 are solidified in a jig as electrodes for measurement.
The resistance value (specific resistance) was measured by a four-terminal method by gradually approaching liquid nitrogen. The resistance value (ρ) is the distance between one measuring electrode 4 and 5 (L), and the cross-sectional area between them (II-II line cross section) is (A)
When the resistance (R) determined from V / I when a constant voltage V was applied to the sample piece 1, the resistance value was determined by ρ = A · R / L. Then, for each of the four sets of samples, the number of resistance values out of three was zero, or the critical temperature (Tc) when the resistance value was zero was measured. As can be understood from Table 2, there is a difference between those in which the brazing filler metal having a high welding temperature, wood metal and silver brazing are used as electrode materials, in which the resistance value did not become zero, respectively. The critical temperature was below 79K. On the other hand, all the samples using the Ga-In alloy as the electrode material had a resistance value of zero at the critical temperature of 84 to 87K. From the results shown in Table 2, when an electrode material having a high welding temperature is attached to the oxide-based superconductor, the superconducting crystal existing near the surface of the fired body, which is a superconductor, is damaged by the effect of the temperature during welding. It was not possible to obtain a stable superconductivity phenomenon,
It is also understood that the critical temperature tends to decrease. [Experimental Example 3] In Example 2, a sample provided with a Ga-In alloy electrode was gradually brought closer to liquid nitrogen, and it was confirmed that the resistance value became zero. The temperature characteristic curve X is shown by a solid line in the temperature characteristic diagram of FIG. On the other hand, as shown in FIG. 4, the oxide-based superconductor having no electrode prepared in Example 1 had needle-like gold electrodes 6,
7 is pressed against the side surface of the superconductor 1 via the springs 8 and 9,
A similar needle-shaped metal pole on the top with the bottom of the superconductor fixed.
0, 11 are pressed against the upper surface of the superconductor 1 via the springs 12, 13 so as to output a measuring current, and these are fixed to a jig and gradually approached to liquid nitrogen, and the temperature decreases similarly to the above. The resistance value change was read, and the temperature characteristic curve Y at that time was indicated by a dotted line in the temperature characteristic diagram of FIG. That is, the temperature characteristic curve X when the Ga-In alloy electrode is attached
When the temperature characteristic curve Y when the needle-shaped gold electrode is pressed is compared with the characteristic curve X, the characteristic curve Y is unstable at a high temperature. This is because the applied current becomes unstable because the potential difference at the interface between the gold electrode tip and the superconductor is larger than that of the Ga-In alloy, and a stable magnetic field is created even in the superconducting state with zero resistance. It is thought that it was not possible. Next, examples of the present invention will be described. In the first embodiment (FIG. 5) and the second embodiment (FIG. 6), when the superconducting crystal of the superconductor is connected, the third embodiment (FIG. 7),
The embodiment 4 (FIG. 8) and the embodiment 5 (FIG. 9) are used for external connection, and the embodiment 6 (FIG. 10 (a) and (b)) is used as an electrode for external connection. And Ga
An example in which an -In alloy is applied will be described. Example 1 In FIG. 5, conductive materials 14 and 15 made of a Ga—In alloy were applied to the front and back surfaces of the superconductor 1. According to this, when the superconducting crystals vary on the front and back surfaces of the superconductor 1, they can be effectively connected. [Example 2] In FIG. 6, in addition to the front and back surfaces of the superconductor 1, Ga
Conductive materials 16 and 17 made of -In alloy were applied. According to this, when the superconducting crystals vary on the front and back surfaces and side surfaces of the superconductor 1, they can be effectively connected. [Embodiment 3] In FIG. 7, a Ga-In alloy is used to connect the superconductor 1 to the wiring patterns 19 and 20 on the circuit board 18 and the wiring patterns 23 and 24 on the back surface through the through holes 21 and 22. Conductive material consisting of
25,26 were used. Embodiment 4 In FIG. 8, conductive materials 29 and 30 made of a Ga-In alloy are interposed between the superconductor 1 and the copper electrodes 27 and 28 for joining the copper electrodes 27 and 28 at both ends of the superconductor 1. Was. Embodiment 5 In FIG. 9, a conductive material 32 made of a Ga—In alloy was used when joining the superconductor 1 and the electrode of the external element 31. [Embodiment 6] Fig. 10 (a) and Fig. 10 (b) showing an enlarged cross section of the coil end portion of the figure show that a wire 33 is directly supplied from a power source V to a Ga-In alloy at both ends of a coiled superconductor 1a. The Ga-In alloy can be used as an electrode by itself. The present invention can be provided on an oxide-based superconductor in accordance with various applications, in addition to those described in the above embodiments. [Effects of the Invention] As described above, in the present invention, the surface of an oxide superconductor having zero resistance at room temperature or lower is formed of an alloy having an appropriate composition ratio of gallium (Ga) and indium (In). By forming the conductive material, the superconductive crystals that are scattered unevenly or partially scattered on the surface of the superconductor can be connected to each other by the conductive material, and a stable superconducting phenomenon can be obtained. By using this conductive material for external connection and as an electrode, a superconductor for external connection can be obtained and a superconductor having a stable connection can be obtained.

【図面の簡単な説明】 第1図は本発明の実験に使用した超伝導試料片を示す
図、第2図は測定のために電極を付設した超伝導試料片
を示す図、第3図は測定のために本発明の導電物質から
なる電極を使用した場合と金電極を使用した場合とを比
較するための温度特性図、第4図は測定方法を示す説明
図、第5図及び第6図は超伝導体の結晶を連結する場合
の実施態様例を示す説明図、第7図乃至第9図はそれぞ
れ外部接続用として使用する場合の実施態様例を示す説
明図、第10図(イ)は外部接続用としてそれ自体が電極
に使用する場合の実施態様例を示す説明図、第10図
(ロ)はその要部拡大断面図である。 1,1a……酸化物系超伝導体 2,3,4,5,14,15,16,17……導電物質 21,24,29,30,32,34……導電物質
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a superconducting sample used in the experiment of the present invention, FIG. 2 is a diagram showing a superconducting sample provided with electrodes for measurement, and FIG. FIG. 4 is a temperature characteristic diagram for comparing a case where an electrode made of the conductive material of the present invention is used for measurement with a case where a gold electrode is used, FIG. 4 is an explanatory view showing a measuring method, FIG. FIGS. 7A, 7B, 8A, 8B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B, 9A, 9B ' ) Is an explanatory view showing an embodiment in which the electrode itself is used as an electrode for external connection, and FIG. 10 (b) is an enlarged sectional view of a main part thereof. 1,1a ... oxide superconductor 2,3,4,5,14,15,16,17 ... conductive material 21,24,29,30,32,34 ... conductive material

Claims (1)

(57)【特許請求の範囲】 1.常温以下で抵抗が零となる酸化物系超伝導体の表
面、あるいは該酸化物系超伝導体と他の部材との間に、
ガリウム(Ga)が40〜85重量%と、インジウム(In)が
15〜60重量%との合金からなる導電物質を形成したこと
を特徴とする導電物質を付設した酸化物系超伝導体。
(57) [Claims] The surface of the oxide-based superconductor having a resistance of zero at room temperature or lower, or between the oxide-based superconductor and other members,
Gallium (Ga) is 40-85% by weight and indium (In) is
An oxide superconductor provided with a conductive material, wherein a conductive material made of an alloy of 15 to 60% by weight is formed.
JP62132875A 1987-05-28 1987-05-28 Oxide superconductor with conductive material Expired - Lifetime JP2936329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62132875A JP2936329B2 (en) 1987-05-28 1987-05-28 Oxide superconductor with conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62132875A JP2936329B2 (en) 1987-05-28 1987-05-28 Oxide superconductor with conductive material

Publications (2)

Publication Number Publication Date
JPS63298983A JPS63298983A (en) 1988-12-06
JP2936329B2 true JP2936329B2 (en) 1999-08-23

Family

ID=15091597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62132875A Expired - Lifetime JP2936329B2 (en) 1987-05-28 1987-05-28 Oxide superconductor with conductive material

Country Status (1)

Country Link
JP (1) JP2936329B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167910A (en) * 1987-12-24 1989-07-03 Kurabe:Kk Ceramic superconductor
US4966142A (en) * 1989-06-30 1990-10-30 Trustees Of Boston University Method for electrically joining superconductors to themselves, to normal conductors, and to semi-conductors
JP2005244703A (en) * 2004-02-27 2005-09-08 Kyocera Kinseki Corp Base substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994480A (en) * 1983-10-24 1984-05-31 Hitachi Ltd Superconductive device

Also Published As

Publication number Publication date
JPS63298983A (en) 1988-12-06

Similar Documents

Publication Publication Date Title
JP2538104B2 (en) Method for electrically joining superconducting materials to themselves, to conducting materials, or to semiconductor materials
US5051397A (en) Joined body of high-temperature oxide superconductor and method of joining oxide superconductors
JP2936329B2 (en) Oxide superconductor with conductive material
US5098656A (en) Alloys for electrically joining superconductors to themselves, to normal conductors, and to semi-conductors
JP2567389B2 (en) Oxide superconducting material
JP2550188B2 (en) Oxide-based high temperature superconductor, joining method and brazing material
JPH10275641A (en) Superconductor and alternating current metal terminal connecting structure
JPS5596665A (en) Lead component for semiconductor element
JPH03156809A (en) Application of oxide superconductive conductor
JPS60250506A (en) Compound superconductive wire blank
JPH0697625B2 (en) Method of joining electrode terminals to oxide superconductor
JP4171253B2 (en) Low resistance composite conductor and method of manufacturing the same
JP7277721B2 (en) Oxide superconducting bulk conductor and its manufacturing method
JPS63237314A (en) Manufacture of superconductive compound material
JPH06163255A (en) Superconducting current connection part
JPS63290230A (en) Metal for calcined oxide superconductor, calcining method, and calcined superconductor thereof
Negm et al. Increased Critical Current and Improved Magnetic Field Response of BSCCO Material by Surface Diffusion of Silver
JPS63257191A (en) Connection of ceramic superconductive material
JPH04335506A (en) Low resistance current lead material and manufacture thereof
JP2560088B2 (en) How to join superconductors
JPH02212372A (en) Joined structure of oxide superconductor
JPH0256883A (en) Electrode fitting method for oxide crystal
Hsi et al. A new method for measuring low resistivity contacts between silver and YBa2Cu3O7− x superconductor
JP2001085221A (en) Structure and formation of electrode for oxide superconducting current lead
JPH0375103A (en) Production of superconductive layer