JPH0256883A - Electrode fitting method for oxide crystal - Google Patents

Electrode fitting method for oxide crystal

Info

Publication number
JPH0256883A
JPH0256883A JP20758688A JP20758688A JPH0256883A JP H0256883 A JPH0256883 A JP H0256883A JP 20758688 A JP20758688 A JP 20758688A JP 20758688 A JP20758688 A JP 20758688A JP H0256883 A JPH0256883 A JP H0256883A
Authority
JP
Japan
Prior art keywords
crystal
oxide crystal
electrode member
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20758688A
Other languages
Japanese (ja)
Inventor
Kazuhiko Tomomatsu
友松 和彦
Akito Kurosaka
昭人 黒坂
Haruo Tominaga
晴夫 冨永
Teruyuki Takayama
高山 輝之
Sukeji Kamiyama
神山 祐侍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP20758688A priority Critical patent/JPH0256883A/en
Publication of JPH0256883A publication Critical patent/JPH0256883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PURPOSE:To obtain good electric connection without applying a physical external force to a crystal by arranging an Au film in the middle and connecting an electrode member and the oxide crystal. CONSTITUTION:An Au film is formed on the surface of an oxide crystal, then a metal or an alloy with the melting point of 450 deg.C or below is melted on the Au film, an electrode member is brought into contact with this melted metal material, then this metal material is coagulated, and the electrode member is fixed to the coagulated body. The electrode member is fixed to the oxide crystal via the Au film, and the electrode member is electrically connected to the oxide crystal. The electrode member is safely fitted to the crystal with high connecting strength without applying any external force to the crystal, and both of them can be electrically connected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物結晶に電極部材を取付ける方法に関し、
特に室温からそれよりも低温に至る迄、酸化物結晶と電
極部材との間を安定して電気的に接続することを可能に
した酸化物結晶の電極取付方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of attaching an electrode member to an oxide crystal,
In particular, the present invention relates to a method for attaching an oxide crystal electrode, which enables stable electrical connection between the oxide crystal and the electrode member from room temperature to lower temperatures.

[従来の技術] 酸化物に対して線状又は板状の電極部材を取付け、両者
を電気的に接続する方法としては、従来、Pb−5n合
金にZn、Ti、Sb、Al1.Si若しくはCuを微
量添加したセラミックス用ハンダ又はInハンダ等のハ
ンダを使用して接合するか、又はAu等の金属薄膜を形
成した後、ボンディングすることによって電極線を取付
ける方法がある。
[Prior Art] Conventionally, as a method for attaching a linear or plate-shaped electrode member to an oxide and electrically connecting the two, Zn, Ti, Sb, Al1. There are methods of attaching the electrode wires by using solder such as ceramic solder or In solder to which a small amount of Si or Cu is added, or by bonding after forming a thin film of metal such as Au.

[発明が解決しようとする課題] しかしながら、セラミックス用ハンダ及びInハンダは
焼結体に対しては強固な接合力を有するものの、単結晶
等のように平滑な表面を有するものに対しては接合力が
弱いという難点がある。特に、低温においては、接合が
剥がれやすく、ハンダ付けされた酸化物結晶は低温の使
用には供し得ないという問題点を有する。また、ハンダ
により接合する方法は数關程度の微小の結晶に対して適
用できないという欠点もある。
[Problems to be Solved by the Invention] However, although solder for ceramics and In solder have a strong bonding force to sintered bodies, they cannot bond to substances with smooth surfaces such as single crystals. It has the disadvantage of being weak. In particular, there is a problem in that the bond is likely to peel off at low temperatures, and soldered oxide crystals cannot be used at low temperatures. Another disadvantage is that the soldering method cannot be applied to crystals as small as several scales.

一方、電極線をボンディング接続する方法においては、
ボンディング時の応力によって酸化物単結晶に割れ及び
歪等の欠陥が発生するという問題点がある。
On the other hand, in the method of bonding electrode wires,
There is a problem in that defects such as cracks and distortions occur in the oxide single crystal due to stress during bonding.

近時、酸化物超電導体の開発が進み、有用な材料が種々
提案されているものの、上述の如く、低温においてこれ
らの酸化物超電導体に対して安定して且つ確実に電極を
取付る方法が未だ確立されていないため、この点が酸化
物超電導体の開発及び研究を更に進展させるための障害
になっている。
Although the development of oxide superconductors has progressed in recent years and various useful materials have been proposed, as mentioned above, there is no way to stably and reliably attach electrodes to these oxide superconductors at low temperatures. Since it has not yet been established, this point is an obstacle to further progress in the development and research of oxide superconductors.

本発明はかかる問題点に鑑みてなされたものであって、
特に低温から室温の温度範囲においても、酸化物単結晶
に対し、割れ及び歪等を発生させることなく確実に且つ
安定して電極を取付ることができる酸化物結晶への電極
取付方法を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
To provide a method for attaching an electrode to an oxide crystal, in which an electrode can be attached reliably and stably to the oxide single crystal without causing cracks, distortions, etc., even in the temperature range from low temperature to room temperature. The purpose is to

[課題を解決するための手段] 本発明に係る酸化物結晶への電極取付方法、酸化物結晶
の表面にAu膜を形成する工程と、前記Au膜上で融点
が450℃以下の金属又は合金を溶融させる工程と、こ
の溶融した金属又は合金に電極部材を接触させる工程と
、前記金属又は合金を凝固させて前記電極部材を前記酸
化物結晶に固定する工程とを有することを特徴とする。
[Means for Solving the Problems] A method for attaching an electrode to an oxide crystal according to the present invention, a step of forming an Au film on the surface of the oxide crystal, and a metal or alloy having a melting point of 450° C. or less on the Au film. The method is characterized by comprising a step of melting the molten metal or alloy, a step of bringing an electrode member into contact with the molten metal or alloy, and a step of solidifying the metal or alloy to fix the electrode member to the oxide crystal.

[作用] 本発明においては、酸化物結晶の表面にAu膜を形成し
た後、融点が450℃以下の金属又は合金(以下、金属
材という)をこのAu膜上で溶融させ、電極部材をこの
溶融した金属材に接触させた後この金属材を凝固させて
前記電極部材をその凝固体に固着させる。これにより、
電極部材はAu膜を介して前記酸化物結晶に固定され、
電極部材が酸化物結晶に電気的に接続される。
[Function] In the present invention, after forming an Au film on the surface of the oxide crystal, a metal or alloy (hereinafter referred to as metal material) having a melting point of 450°C or less is melted on the Au film, and the electrode member is attached to the surface of the oxide crystal. After contacting the molten metal material, the metal material is solidified and the electrode member is fixed to the solidified body. This results in
The electrode member is fixed to the oxide crystal via an Au film,
An electrode member is electrically connected to the oxide crystal.

このように、Au膜を中間に配設して電極部材と酸化物
結晶とを接続しているから、結晶に物理的な外力を印加
させることなく、良好な電気的接続をとることができる
。また、Au膜の存在により、結晶を加熱した際の高温
での安定性が向上する。
In this way, since the electrode member and the oxide crystal are connected by disposing the Au film in the middle, a good electrical connection can be established without applying any physical external force to the crystal. Furthermore, the presence of the Au film improves stability at high temperatures when the crystal is heated.

また、Au膜上で融点が450℃以下の金属材を溶融さ
せ、この溶融金属材と電極部材とが接触した状態で前記
金属材を凝固させることにより前記電極部材を前記金属
材を介してAu膜及び酸化物結晶に固着するから、結晶
に物理的な外力を印加することなく電極部材を取付るこ
とかできる。
Further, by melting a metal material having a melting point of 450° C. or less on the Au film and solidifying the metal material in a state where the molten metal material and the electrode member are in contact with each other, the electrode member is transferred to the Au film through the metal material. Since it is fixed to the film and oxide crystal, the electrode member can be attached without applying any physical external force to the crystal.

この金属材を融点が450℃以下のものに限定したのは
、450℃を超える高温においては、結晶に変質をもた
らす虞れがあるからである。また、450℃を超える融
点を有する金属材においては、電気伝導性及び下地Au
膜との濡れ性の双方が優れたものが極めて少ない。
The reason why this metal material is limited to one having a melting point of 450° C. or lower is that at high temperatures exceeding 450° C., there is a risk of deterioration of the crystal. In addition, in metal materials with a melting point exceeding 450°C, the electrical conductivity and the underlying Au
There are very few materials that have excellent wettability with membranes.

なお、電極部材としては、線状のものの外に板状のもの
等もある。また、前記金属材をAu膜上で溶解させる工
程においては、前記金属材を酸化物結晶と共に加熱する
ことが好ましい。金属材をハンダごて等で局所的に加熱
しただけでは、Au膜と溶融金属材との間の十分な接合
が取れにくいため、結晶全体を溶融金属材の融点以上の
温度に保つことが好ましいからである。
In addition to linear electrode members, there are also plate-shaped electrode members. Further, in the step of melting the metal material on the Au film, it is preferable that the metal material is heated together with the oxide crystal. It is difficult to form a sufficient bond between the Au film and the molten metal by only heating the metal locally with a soldering iron, etc., so it is preferable to keep the entire crystal at a temperature higher than the melting point of the molten metal. It is from.

なお、本発明により電極線の取り付けが可能な酸化物結
晶は、その結晶組成又は表面性等で限定されるものでは
なく、種々の酸化物結晶に本発明を適用することができ
る。
Note that the oxide crystal to which the electrode wire can be attached according to the present invention is not limited by its crystal composition or surface properties, and the present invention can be applied to various oxide crystals.

[実施例] 以下、本発明の実施例について、その比較例と比較して
説明する。
[Example] Examples of the present invention will be described below in comparison with comparative examples thereof.

及1匠L Bi、Sr、Ca、Cu及び0を原子比でBi:Sr:
Ca:Cu:O=1  :0.8 :0.5 :0.9
:3.5の割合で夫々含有する組成の酸化物結晶(大き
さ; 2mmX2mmX0.2 +u)に対し、以下に
示す各方法で4端子の電極線を取り付けた。そして、端
子間抵抗の測定及び直流4端子法による温度対抵抗特性
の測定を行った。
and 1 Takumi L Bi, Sr, Ca, Cu and 0 in atomic ratio Bi:Sr:
Ca:Cu:O=1:0.8:0.5:0.9
:4-terminal electrode wires were attached to oxide crystals (size: 2 mm x 2 mm x 0.2 + u) having a composition of: Then, the inter-terminal resistance was measured and the temperature vs. resistance characteristic was measured using a DC four-terminal method.

なお、上記組成の酸化物結晶を選択したのは、この結晶
が約80にで超電導遷移を起こす超電導体であるという
ように温度対抵抗特性が既知であるため、低温での電極
の健全性を容易に評価できるためである。また、上述の
大、きさの結晶を使用したのは、微小な結晶への電極取
り付けの可能性を評価するためである。電極取り付けは
、以下の工程で実施した。
The reason why we selected the oxide crystal with the above composition is that this crystal is a superconductor that undergoes a superconducting transition at about 80°C, and its resistance versus temperature characteristics are known. This is because it can be easily evaluated. Furthermore, the reason why crystals of the above-mentioned size and size were used was to evaluate the possibility of attaching electrodes to minute crystals. Electrode attachment was carried out in the following steps.

■結晶表面にAu膜を蒸着する。■ Depositing an Au film on the crystal surface.

■少量のPb−3nハンダをAu膜上にのせる。■Place a small amount of Pb-3n solder on the Au film.

■結晶全体を加熱しPb−3nハンダを溶融させる。(2) Heat the entire crystal to melt the Pb-3n solder.

■Cuリード線を溶けたPb−3nハンダに浸漬する。■Immerse the Cu lead wire in melted Pb-3n solder.

K11 溶融金属としてInを使用し、その他は実施例1と同一
の方法で電極線を取り付け、同様に端子間抵抗の測定及
び直流4端子法による温度対抵抗特性の測定を行った。
K11 In was used as the molten metal, and electrode wires were attached in the same manner as in Example 1, and the inter-terminal resistance and temperature versus resistance characteristics were similarly measured using the DC four-terminal method.

肛11L−1 セラミックス用ハンダ(比較例1)及びInハンダ(比
較例2)を使用して超音波ハンダ法によりリード線を結
晶表面に取り付けて、同様の測定を行った。
11L-1 Similar measurements were made using ceramic solder (Comparative Example 1) and In solder (Comparative Example 2) by attaching lead wires to the crystal surface by ultrasonic soldering.

ル豊r]−エ( 結晶として実施例1,2、比較例1.2よりも大きいも
の(大きさ;5龍×4龍×1龍)を使用し、夫々比較例
1及び比較9例2と同様のセラミック用ハンダ(比較例
3)及びInハンダ(比較例4)を使用して超音波ハン
ダ法によりリード線を取り付け、同様の測定を行った。
Crystals larger than Examples 1 and 2 and Comparative Examples 1 and 2 (size: 5 dragons x 4 dragons x 1 dragon) were used as crystals, and Comparative Examples 1 and 9 Comparative Examples 2 were used. Using the same ceramic solder (Comparative Example 3) and In solder (Comparative Example 4), lead wires were attached by the ultrasonic soldering method, and the same measurements were performed.

比ffi 結晶表面にAuを蒸着した後、直径が0.25+amの
Au線をボンディング加重50gでボールボンディング
し、4端子の電極を取り付けた後、同様の測定を行った
。結晶のサイズは実施例1,2の場合と同一である。
Ratio ffi After Au was deposited on the crystal surface, an Au wire having a diameter of 0.25+am was ball-bonded with a bonding weight of 50 g, and a 4-terminal electrode was attached, followed by similar measurements. The crystal size is the same as in Examples 1 and 2.

以上の各実施例及び比較例の測定結果を下記第1表に示
す。
The measurement results of each of the above Examples and Comparative Examples are shown in Table 1 below.

第1表 実施例1,2では正常な超電導特性が測定され、また、
IOKという極低温まで測定が可能であった。それに対
し、各比較例では、端子間抵抗が極端に高く、電極界面
で半導体的接合になってしまうもの(比較例3.4)、
正常な特性を測定できたものの80乃至90に程度まで
しか電極の接続がもたなかったもの(比較例3.4)、
・更には微小な部分への電極取付が不可能だったらのく
比較例1.2)等満足な結果が得られなかった。なお、
比較例3.4が夫々2通りの結果を有するのは、同一の
方法で電極を取付ても得られた特性にバラツキが存在し
たためである。
In Examples 1 and 2 of Table 1, normal superconducting properties were measured, and
It was possible to measure temperatures down to the extremely low temperature of IOK. On the other hand, in each comparative example, the resistance between the terminals is extremely high, resulting in a semiconductor-like junction at the electrode interface (Comparative Example 3.4),
Although normal characteristics could be measured, the electrode connection was only at a level of 80 to 90 (Comparative Example 3.4);
-Furthermore, if it was impossible to attach the electrode to a minute part, satisfactory results such as Comparative Example 1.2) could not be obtained. In addition,
The reason why Comparative Examples 3 and 4 each have two different results is because there were variations in the characteristics obtained even when the electrodes were attached using the same method.

[発明の効果] 以上説明したように本発明によれば、結晶に対して何ら
外力を印加することなく、電極部材を高接合強度で安定
して取付け、両者を電気的に接続することができる。そ
の結果、微小な結晶への電極取り付けが可能となる外、
極低温においても安定な接続が確保されるという優れた
効果が得られる。
[Effects of the Invention] As explained above, according to the present invention, the electrode member can be stably attached with high bonding strength and the two can be electrically connected without applying any external force to the crystal. . As a result, in addition to making it possible to attach electrodes to minute crystals,
This provides an excellent effect of ensuring stable connection even at extremely low temperatures.

従って、本発明は超電導酸化物の開発及び研究にとって
、極めて有益な技術を提供することができ、超電導技術
の進歩に対し著しい貢献をなす。
Therefore, the present invention can provide extremely useful technology for the development and research of superconducting oxides, and will make a significant contribution to the progress of superconducting technology.

Claims (3)

【特許請求の範囲】[Claims] (1)酸化物結晶の表面にAu膜を形成する工程と、前
記Au膜上で融点が450℃以下の金属又は合金を溶融
させる工程と、この溶融した金属又は合金に電極部材を
接触させる工程と、前記金属又は合金を凝固させて前記
電極部材を前記酸化物結晶に固定する工程とを有するこ
とを特徴とする酸化物結晶への電極取付方法。
(1) A step of forming an Au film on the surface of an oxide crystal, a step of melting a metal or alloy with a melting point of 450°C or less on the Au film, and a step of bringing an electrode member into contact with the molten metal or alloy. A method for attaching an electrode to an oxide crystal, comprising the steps of: solidifying the metal or alloy to fix the electrode member to the oxide crystal.
(2)前記金属又は合金を溶融させる工程は、前記金属
又は合金を前記酸化物結晶と共に加熱することを特徴と
する請求項1に記載の酸化物結晶への電極取付方法。
(2) The method for attaching an electrode to an oxide crystal according to claim 1, wherein in the step of melting the metal or alloy, the metal or alloy is heated together with the oxide crystal.
(3)前記電極部材は線状又は板状であることを特徴と
する請求項1に記載の酸化物結晶への電極取付方法。
(3) The method for attaching an electrode to an oxide crystal according to claim 1, wherein the electrode member is linear or plate-shaped.
JP20758688A 1988-08-22 1988-08-22 Electrode fitting method for oxide crystal Pending JPH0256883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20758688A JPH0256883A (en) 1988-08-22 1988-08-22 Electrode fitting method for oxide crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20758688A JPH0256883A (en) 1988-08-22 1988-08-22 Electrode fitting method for oxide crystal

Publications (1)

Publication Number Publication Date
JPH0256883A true JPH0256883A (en) 1990-02-26

Family

ID=16542219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20758688A Pending JPH0256883A (en) 1988-08-22 1988-08-22 Electrode fitting method for oxide crystal

Country Status (1)

Country Link
JP (1) JPH0256883A (en)

Similar Documents

Publication Publication Date Title
US4180700A (en) Alloy composition and brazing therewith, particularly for _ceramic-metal seals in electrical feedthroughs
GB2233344A (en) Alloys for electrically joining superconductors to themselves, to normal conductors, and to semi-conductors
JP2008030047A (en) Unleaded solder
JPH0256883A (en) Electrode fitting method for oxide crystal
US20020050921A1 (en) Circuit arrangement comprising an smd-component, in particular a temperature sensor, and a method of manufacturing a temperature sensor
JP3969987B2 (en) Ceramic / alloy joints
US3179535A (en) Method of bonding an electrode to a ceramic body and article
NO303156B1 (en) Solid bodies of high temperature superconductor materials in contact with metallic conductors and their manufacture
JPS60137847A (en) Composition for forming thick film
JPH0997637A (en) Joint part of oxide superconductor and metal terminal, and its forming method
JPH02109285A (en) Installation of electrode onto oxide crystal
JPS63284767A (en) Connecting structure for superconducting wire
JP2001274037A (en) Ceramic electronic part
JPH05279140A (en) Method for joining oxide superconductor
JPS63298983A (en) Oxide system superconductor with conductive substrate
JPS6199319A (en) Ceramic electronic component
JPH0674463B2 (en) Copper alloy for lead frame
JPH05251451A (en) Solder bump forming material for semiconductor element
JPS61247672A (en) Method of joining metal particle to substrate and adhesive composition
JPH0697625B2 (en) Method of joining electrode terminals to oxide superconductor
JP3117519B2 (en) Oxide superconducting wire
JPH0210801A (en) Manufacture of glass sealed thermistor
JPS6389477A (en) Method of directly joining cu base member to ceramic substrate
JPH02212372A (en) Joined structure of oxide superconductor
JPS63187601A (en) Thick film circuit board and manufacture of the same