JP2934748B2 - Thermal recording method - Google Patents

Thermal recording method

Info

Publication number
JP2934748B2
JP2934748B2 JP9476890A JP9476890A JP2934748B2 JP 2934748 B2 JP2934748 B2 JP 2934748B2 JP 9476890 A JP9476890 A JP 9476890A JP 9476890 A JP9476890 A JP 9476890A JP 2934748 B2 JP2934748 B2 JP 2934748B2
Authority
JP
Japan
Prior art keywords
temperature
heating resistor
resistor
recording
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9476890A
Other languages
Japanese (ja)
Other versions
JPH03292161A (en
Inventor
克明 齋田
法光 三本木
義則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP9476890A priority Critical patent/JP2934748B2/en
Priority to DE69110523T priority patent/DE69110523T2/en
Priority to EP91105594A priority patent/EP0451778B1/en
Priority to US07/682,917 priority patent/US5359352A/en
Publication of JPH03292161A publication Critical patent/JPH03292161A/en
Application granted granted Critical
Publication of JP2934748B2 publication Critical patent/JP2934748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感熱記録、熱転写記録、通電感熱記録、通
電転写記録、サーマルインクジェット等の熱記録方法に
関する。
The present invention relates to a thermal recording method such as thermal recording, thermal transfer recording, energized thermal recording, energized transfer recording, and thermal inkjet.

〔発明の概要〕[Summary of the Invention]

本発明は、感熱記録のサーマルヘッドやサーマルイン
クジェットヘッド(いずれもサーマルヘッドと呼ぶ)の
発熱抵抗体あるいは通電記録紙の発熱抵抗層等の発熱抵
抗体(以下煩雑さを避けるため、前記発熱抵抗体および
前記通電発熱抵抗層をともに発熱抵抗体と呼ぶ)に通電
してこの発熱抵抗体を発熱させ、この発熱による発熱抵
抗体の温度上昇によって記録媒体に記録を行う感熱記
録、熱転写記録、サーマルインクジェット記録、通電感
熱記録、通電転写記録等の熱記録方法において、前記発
熱抵抗体に、特定温度領域を境界にして、この温度領域
より低温部でより低い抵抗値、高温部でより高い抵抗値
にほぼ階段状に変化する特性を備えさせ、発熱抵抗体の
前記部分の電圧印加前の温度が前記特定温度領域以下で
あるとき、前記発熱抵抗体に一電圧パルスを印加し通電
することによって、前記発熱抵抗体の電圧印加前の温度
から前記特定温度領域までは、より大きな電力消費によ
って前記発熱抵抗体の急峻な温度上昇を行わせ、前記一
電圧パルス内で前記特定温度領域に達した以降、電圧印
加を完了するまでの間はより小さい電力消費によって前
記発熱抵抗体の緩やかな温度上昇を行わせて記録を行
い、また、前記発熱抵抗体が前記電圧印加開始時点に前
記特定温度領域より高温にある場合は、前記パルス通電
のあいだ前記緩やかな昇温状態を維持することによっ
て、発熱抵抗体の電圧パルス印加前の温度に応じて前記
発熱抵抗体の温度上昇の速さを変え、一定パルス幅の電
圧印加による前記発熱抵抗体の昇温ピーク温度が一定温
度に近づきまとまるように発熱を行わせるという一種の
発熱温度制御機能を発熱抵抗体自身に与え、よって記録
品質等において優れた記録を実現するものである。
The present invention relates to a heating resistor such as a thermal head for thermal recording or a thermal inkjet head (both are referred to as a thermal head) or a heating resistor such as a heating resistor layer of energized recording paper (hereinafter referred to as the heating resistor to avoid complexity). And both the energized heating resistor layers are referred to as heating resistors) to cause the heating resistors to generate heat, and to perform recording on a recording medium by increasing the temperature of the heating resistors due to the heat generation. In a thermal recording method such as recording, energized heat-sensitive recording, and energized transfer recording, the heating resistor has a specific temperature region as a boundary, a lower resistance value in a lower temperature region than this temperature region, and a higher resistance value in a higher temperature region. When the temperature of the portion of the heating resistor before voltage application is equal to or lower than the specific temperature range, the heating resistor is provided. By applying one voltage pulse to the body and energizing, from the temperature before the voltage application of the heating resistor to the specific temperature region, the temperature of the heating resistor is sharply increased by larger power consumption, After the temperature reaches the specific temperature range within one voltage pulse, until the voltage application is completed, recording is performed by causing the temperature of the heating resistor to rise gently with less power consumption, and When the temperature of the body is higher than the specific temperature region at the time of the start of the voltage application, the gradual temperature rising state is maintained during the pulse energization, whereby the heating resistor is heated according to the temperature before the voltage pulse application. When the speed of the temperature rise of the heating resistor is changed and heat is generated so that the peak temperature rise of the heating resistor by application of a voltage having a constant pulse width approaches a certain temperature. Cormorant give a kind of heating temperature control function to the heating resistor itself, thus realizes the excellent recording in the recording quality or the like.

〔従来の技術〕[Conventional technology]

従来の熱記録方法においては、例えばサーマルヘッド
の発熱抵抗体による熱を直接感熱紙等に伝えて記録する
感熱記録方法や、サーマルヘッドの発熱抵抗体による熱
で液体インク内に気泡を発生させ、この気泡による圧力
で液体インクを飛ばすサーマルインクジェット方式で
は、サーマルヘッドの発熱抵抗体として、酸化ルテニウ
ム、窒化タンタル等の金属化合物抵抗体や、タンタル等
の高融点金属に酸化シリコン等の絶縁物を分散したサー
メット抵抗体等が用いられていた。
In the conventional thermal recording method, for example, a heat-sensitive recording method in which heat is generated by directly transmitting heat from a heating resistor of a thermal head to a thermal paper or the like, or bubbles are generated in liquid ink by heat generated by a heating resistor of a thermal head, In the thermal ink jet method, in which the liquid ink is blown off by the pressure generated by these bubbles, a metal compound resistor such as ruthenium oxide or tantalum nitride or an insulator such as silicon oxide is dispersed in a high melting point metal such as tantalum as a heating resistor of the thermal head. A cermet resistor or the like was used.

上記従来のサーマルヘッドの発熱抵抗体に適当な電圧
を印加すると、発熱抵抗体に電流が流れジュール熱が発
生し、この状態を一定時間維持して記録に必要な熱エネ
ルギーを感熱記録紙等に与える。上記発熱抵抗体で発生
するジュール熱エネルギーは、発熱抵抗体の抵抗値、印
加する電圧、この電圧を印加する時間で決定され、一般
的な熱記録機器においては、使用する感熱紙の熱感度特
性や、発熱抵抗体から感熱紙への熱伝達特性、発熱抵抗
体周辺のバックグラウンド温度、記録媒体自身の温度等
によって、前記印加電圧かまたは電圧印加時間を調整し
て最適な記録品質、あるいは階調記録における目的の記
録濃度となるように、発熱抵抗体での発生熱エネルギー
を最適値に合わせ込むことが行われていた。
When an appropriate voltage is applied to the heating resistor of the above-described conventional thermal head, a current flows through the heating resistor to generate Joule heat, and this state is maintained for a certain period of time to transfer the heat energy required for recording to a thermosensitive recording paper or the like. give. The Joule heat energy generated by the heating resistor is determined by the resistance value of the heating resistor, the voltage to be applied, and the time for applying this voltage. In general thermal recording equipment, the thermal sensitivity characteristics of the thermal paper used Depending on the heat transfer characteristics from the heating resistor to the thermal paper, the background temperature around the heating resistor, the temperature of the recording medium itself, or the like, the applied voltage or the voltage application time is adjusted to optimize the recording quality or the recording quality. Conventionally, the heat energy generated in the heating resistor is adjusted to an optimum value so as to obtain a target recording density in tone recording.

また、例えば通電発熱抵抗層を有するインクドナーシ
ート等と通電ヘッドを用いた通電転写記録方法において
は、上記通電発熱抵抗層としてカーボン塗料などが用い
られ、通電ヘッドによって上記通電発熱抵抗層に通電し
インクドナーシート自身を発熱させ、インクを溶融また
は昇華させ記録媒体にインクを転写するものであるが、
上述の感熱記録方法と同様に、通電発熱抵抗層のシート
抵抗、インクドナーシート自身の温度、通電ヘッドの電
極温度等の条件によって、印加電圧かまたは電圧印加時
間を調整して最適な記録品質、あるいは階調記録におけ
る目的の記録濃度となるように、通電発熱抵抗層での発
生熱エネルギーを最適値に合わせ込むことが行われてい
た。
Further, for example, in an energization transfer recording method using an ink donor sheet or the like having an energization heating resistance layer and an energization head, a carbon paint or the like is used as the energization heating resistance layer. Heating the ink donor sheet itself, melting or sublimating the ink and transferring the ink to the recording medium,
As in the above-described thermal recording method, the optimum recording quality is adjusted by adjusting the applied voltage or the voltage application time according to conditions such as the sheet resistance of the energized heating resistance layer, the temperature of the ink donor sheet itself, and the electrode temperature of the energized head. Alternatively, the thermal energy generated in the current-carrying resistance layer is adjusted to an optimum value so as to obtain a target recording density in gradation recording.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の熱記録方法においては、下記の理由により、発
熱抵抗体への印加電圧と電圧印加パルス幅の調整による
記録に関わる熱エネルギーの調整がきわめて煩雑で、か
つ記録機器を大きく高価なものとさせていた。
In the conventional thermal recording method, the adjustment of the thermal energy involved in recording by adjusting the voltage applied to the heating resistor and the pulse width of the voltage applied to the heating resistor is extremely complicated for the following reasons, and makes the recording apparatus large and expensive. I was

発熱抵抗体で電圧パルス印加によって発生する熱エネ
ルギーは、前述のように前記印加パルスの電圧またはパ
ルス幅で決定できるが、発熱抵抗体の温度は、上記パル
スの印加周期や、連続印加回数等のパルス印加履歴、注
目する発熱抵抗体周辺の発熱抵抗体のパルス印加履歴即
ち発熱履歴、サーマルヘッドの支持基板温度、インクド
ナーシートや液体インク温度、環境温度等によって変動
しやすい。
The heat energy generated by applying a voltage pulse to the heating resistor can be determined by the voltage or pulse width of the applied pulse as described above. However, the temperature of the heating resistor depends on the application cycle of the pulse, the number of continuous applications, and the like. It tends to fluctuate depending on the pulse application history, the pulse application history of the heating resistor around the heating resistor of interest, that is, the heating history, the temperature of the support substrate of the thermal head, the temperature of the ink donor sheet and liquid ink, the environmental temperature, and the like.

熱記録機構は、直接的には発熱抵抗体で発生する熱エ
ネルギーの大きさが問題となるのではなく感熱記録紙の
発色層の温度やインク層の温度、言い替えれば発熱抵抗
体の温度に依存する。従って、均一な記録熱記録を得る
ために、発熱抵抗体の発熱時温度を均一にしようとする
ならば、上述のような発熱しようとしている瞬間の発熱
抵抗体の置かれている熱的環境情報や、熱的履歴情報を
あつめるか、予測することをして、発熱抵抗体の温度が
特定温度まで昇温するよう前記印加電圧または電圧印加
パルス幅を調整決定してから発熱抵抗体を発熱させなけ
ればならない。
The thermal recording mechanism does not directly affect the magnitude of the heat energy generated by the heating resistor, but rather depends on the temperature of the coloring layer and ink layer of the thermal recording paper, in other words, the temperature of the heating resistor. I do. Therefore, if the temperature at the time of heat generation of the heating resistor is to be made uniform in order to obtain uniform recording heat recording, the thermal environment information where the heating resistor is placed at the moment when the heat is to be generated as described above. Or by collecting or predicting thermal history information, adjusting the applied voltage or voltage application pulse width so that the temperature of the heating resistor rises to a specific temperature, and then causing the heating resistor to generate heat. There must be.

上述のような情報収集手段、予測手段、記録条件決定
手段は、サーマルヘッド基板の温度や環境温度を検出す
る各種温度センサ、記録履歴を把握するための過去の記
録データを記憶するメモリや、熱的状態を予測する熱等
価回路等のシミュレータ、演算処理するCPUやゲート回
路等ハードウェア上の負荷がきわめて大きい。またこれ
らのハードウェアをサポートするソフトウェアもきわめ
て複雑なものである。特に発熱抵抗体を多数有する大
型、高精細の熱記録機器や、階調記録を行う機器では、
処理情報も膨大となってしまい、装置の大型化、高価格
化が避けられなく、記録品質を犠牲にすることもある。
また、情報収集、予測、記録条件決定のための処理時間
もCPU等の制約を受け、高速記録の障害ともなってしま
っている。
The information collecting means, the predicting means, and the recording condition determining means as described above include various temperature sensors for detecting the temperature of the thermal head substrate and the environmental temperature, a memory for storing past recording data for grasping the recording history, The load on hardware such as a simulator such as a thermal equivalent circuit for predicting a dynamic state, a CPU for processing, and a gate circuit is extremely large. The software supporting these hardware is also very complicated. In particular, large-scale, high-definition thermal recording equipment having a large number of heating resistors, and equipment that performs gradation recording,
The amount of processing information is enormous, and an increase in the size and cost of the apparatus is unavoidable, and the recording quality may be sacrificed.
In addition, the processing time for information collection, prediction, and determination of recording conditions is also restricted by the CPU and the like, which is an obstacle to high-speed recording.

さらに、サーマルヘッドでは一般に熱効率を高くする
ために保温層としてのグレーズ層を設けているが、この
グレーズ層は厚膜プロセスで作られているため、厚さの
バラツキが厚みの平均値の±20%以上に達し、個々のサ
ーマルヘッドでこのグレーズ層による保温効果がランダ
ムに大きくばらついてしまう。従って、前述のようにい
くら発熱抵抗体の熱的環境の情報を正確に捕らえ、処理
して、その都度記録条件を決定しても、サーマルヘッド
の熱的特性のバラツキによって精度の高い発熱温度制御
はできない。もし、より高い精度の発熱温度制御を行お
うとすれば、サーマルヘッド個々の熱特性のバラツキを
も制御パラメータとして盛り込まねばならず、記録機器
1台1台で調整するなど量産性に多大な犠牲を払わねば
ならない。また、サーマルヘッドの故障や寿命などで、
記録機器内のサーマルヘッドを交換する場合等を考える
と、実質的には、サーマルヘッド個々の特性に記録機器
の設定を調整するなどのことは、ほとんど困難である。
熱容量、熱抵抗のバラツキは、通電熱記録における発熱
抵抗層周辺部にも存在し、上述のサーマルヘッドの場合
と同様の問題がある。
Further, in the thermal head, a glaze layer is generally provided as a heat insulating layer in order to increase thermal efficiency.Since the glaze layer is made by a thick film process, the thickness variation is ± 20 of the average value of the thickness. % Or more, and the thermal insulation effect of this glaze layer varies greatly in individual thermal heads at random. Therefore, even if information on the thermal environment of the heating resistor is accurately captured and processed as described above, and the recording conditions are determined each time, even if the thermal characteristics of the thermal head vary, highly accurate heating temperature control can be performed. Can not. If a more accurate control of the heat generation temperature is to be performed, the variation in the thermal characteristics of the thermal head must be incorporated as a control parameter, and there is a great sacrifice in mass productivity, such as adjusting each recording device one by one. I have to pay. Also, due to failure or life of the thermal head,
Considering the case where the thermal head in the recording device is replaced, it is practically difficult to adjust the setting of the recording device to the characteristics of the individual thermal head.
Variations in heat capacity and thermal resistance also exist in the peripheral portion of the heat-generating resistive layer in energized thermal recording, and have the same problems as in the above-described thermal head.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記発熱抵抗体温度均一化のための種々の
問題を解決するためになされたもので、発熱抵抗体の温
度を特定温度以上に昇温させない自己温度制御機能をも
たせることによって、従来の様な、発熱抵抗体の温度制
御の煩雑さを払拭するものである。
The present invention has been made in order to solve the various problems for uniformizing the temperature of the heating resistor, and has a self-temperature control function of preventing the temperature of the heating resistor from being raised to a specific temperature or higher. This eliminates the complexity of controlling the temperature of the heating resistor.

本発明は、発熱抵抗体に、特定温度領域を境界にし
て、この温度領域より低温部でより低い抵抗値、高温部
でより高い抵抗値にほぼ階段状に変化する特性を備えさ
せ、発熱抵抗体の前記部分の電圧印加前の温度が前記特
定温度領域以下であるとき、前記発熱抵抗体に一電圧パ
ルスを印加し通電することによって、前記発熱抵抗体の
電圧印加前の温度から前記特定温度領域までは、より大
きな電力消費によって短時間で前記発熱抵抗体の急峻な
温度上昇を行わせ、前記一電圧パルス内で前記特定温度
領域に達した以降、電圧印加を完了するまでの間はより
小さい電力消費によって前記発熱抵抗体の緩やかな温度
上昇を行わせて記録を行い、また、前記発熱抵抗体が前
記電圧印加開始時点に前記特定温度領域より高温にある
場合は、前記パルス通電のあいだ前記緩やかな昇温状態
を維持させて記録を行う。
The present invention provides a heating resistor having a characteristic in which a specific temperature region is a boundary and a resistance value is changed in a stepwise manner to a lower resistance value in a lower temperature portion and a higher resistance value in a high temperature portion below this temperature region. When the temperature of the portion of the body before application of the voltage is equal to or lower than the specific temperature region, a voltage pulse is applied to the heating resistor to energize the heating resistor. Up to the region, the temperature of the heating resistor is increased sharply in a short time by a larger power consumption, and after reaching the specific temperature region within the one voltage pulse, it is more until the voltage application is completed. The recording is performed by causing the temperature of the heating resistor to rise gently with low power consumption, and when the heating resistor is higher than the specific temperature region at the time of starting the voltage application, the pulse transmission is performed. Wherein to maintain the moderate Atsushi Nobori during the recording is performed.

〔作用〕[Action]

発熱抵抗体が前記特定温度領域より高い温度にあると
きの発熱抵抗体を、仮に第1のヒータとすると、前記特
定温度領域より低い温度にあるときは、前記第1のヒー
タに別の第2ヒータが前記発熱抵抗体の回路に並列に組
まれていることになる。
Assuming that the heating resistor when the heating resistor is at a temperature higher than the specific temperature region is a first heater, when the heating resistor is at a temperature lower than the specific temperature region, another second heater is connected to the first heater. A heater is assembled in parallel with the circuit of the heating resistor.

従って、発熱抵抗体の温度が前記特定温度領域より低
いときに一定電圧を印加すると、前記第1のヒータでの
発熱と前記第2のヒータでの発熱が行われ、発熱抵抗体
の温度上昇を急峻にする。前記特定温度領域に達する
か、より高い温度においては、前記第2のヒータは発熱
を中止し第1のヒータによる緩やかな昇温が行われる。
すなわち、前記第2のヒータは前記特定温度領域に発熱
抵抗体が昇温するまでの補助ヒータの役割を果たす。
Therefore, when a constant voltage is applied when the temperature of the heating resistor is lower than the specific temperature range, heat is generated by the first heater and the second heater, and the temperature of the heating resistor is increased. Make it steep. When the temperature reaches the specific temperature range or is higher, the second heater stops generating heat, and the first heater gradually increases the temperature.
That is, the second heater serves as an auxiliary heater until the temperature of the heating resistor rises to the specific temperature range.

従って、電圧パルスを印加する直前の前記発熱抵抗体
の温度に応じて、前記補助ヒータの発熱時間を変え発熱
量を制御する、すなわち発熱抵抗体のピーク温度を制御
する働きを、前記発熱抵抗体自身がもつことになる。そ
の結果、発熱抵抗体のあらゆる熱環境下、例えばあらゆ
る環境温度・発熱履歴等のもとにおいても、より均一な
温度による記録を実現でき、発熱抵抗体の駆動を外部か
ら微妙に制御する必要がなくなる。
Therefore, according to the temperature of the heating resistor immediately before the voltage pulse is applied, the heating time of the auxiliary heater is changed to control the amount of heat generation, that is, the function of controlling the peak temperature of the heating resistor is controlled by the heating resistor. You will have yourself. As a result, it is possible to realize recording with a more uniform temperature under any thermal environment of the heating resistor, for example, under any environmental temperature and heat generation history, and it is necessary to finely control the driving of the heating resistor from outside. Disappears.

〔実施例〕〔Example〕

本発明の詳細を実施例をもって説明する。 The details of the present invention will be described with reference to examples.

第1の実施例 第1図は、本発明の熱記録方法における感熱記録等に
用いられるサーマルヘッドの平面図で、第2図は、この
サーマルヘッドの発熱抵抗体部の断面図である。グレー
ジング処理されたアルミナセラミック等の基板6上に、
約150℃を境に低温側で金属的、高温側で半導体的な電
気伝導度特性を持つ材料からなる薄膜の発熱抵抗体1を
設け、この発熱抵抗体の一端を個別電極2と接続し、他
端を第1の共通電極3と接続する。前記個別電極はトラ
ンジスタ等の電流のスイッチング素子4と接続されてい
る。5は上記スイッチング素子4と接続された第2の共
通電極である。サーマルヘッドとしては前記スイッチン
グ素子4および第2の共通電極5を設けず、記録機器と
して別個に設けても構わない。
First Embodiment FIG. 1 is a plan view of a thermal head used for thermal recording or the like in the thermal recording method of the present invention, and FIG. 2 is a cross-sectional view of a heating resistor portion of the thermal head. On a substrate 6 of glazed alumina ceramic or the like,
A heating resistor 1 of a thin film made of a material having an electrical conductivity characteristic of a metal on a low temperature side and a semiconductor property on a high temperature side at about 150 ° C. is connected, and one end of the heating resistor is connected to the individual electrode 2. The other end is connected to the first common electrode 3. The individual electrodes are connected to a current switching element 4 such as a transistor. Reference numeral 5 denotes a second common electrode connected to the switching element 4. The switching element 4 and the second common electrode 5 may not be provided as a thermal head, but may be provided separately as a recording device.

前記第1の共通電極にプラス電位、前記第2の共通電
極にマイナス電位を与えておき、前記スイッチング素子
4を開閉することによって、前記発熱抵抗体1に電圧パ
ルスを印加する。発熱抵抗体1に電圧パルスを印加すれ
ば、印加電圧と発熱抵抗体1の抵抗値によって適当な電
力消費がおきてジュール熱を発生し、発熱抵抗体1の温
度上昇が開始する。今の場合、前記発熱抵抗体は前記金
属半導体相転移の低温相すなわち金属相にあるとする
と、抵抗値はより低い値となって一定電圧下ではより大
きい電力消費の状態となって、急峻な温度上昇がもたら
される。
A positive potential is applied to the first common electrode and a negative potential is applied to the second common electrode, and a voltage pulse is applied to the heating resistor 1 by opening and closing the switching element 4. When a voltage pulse is applied to the heating resistor 1, appropriate power consumption occurs depending on the applied voltage and the resistance value of the heating resistor 1 to generate Joule heat, and the temperature of the heating resistor 1 starts to rise. In this case, assuming that the heating resistor is in the low-temperature phase of the metal-semiconductor phase transition, that is, in the metal phase, the resistance value becomes lower and the power consumption becomes larger under a constant voltage, resulting in a steep state. A temperature rise results.

第10図は、前記パルス印加に伴う前記発熱抵抗体1の
表面温度71の時間変化を表す図である。この図で、Tcは
前記発熱抵抗体の電気伝導度における金属半導体相転移
の温度を表し、tonは前記パルスの印加開始時刻、tpは
前記発熱抵抗体表面温度が前記相転移温度Tcに達する時
刻、toffは前記パルスの印加終了時刻を表す。tpからto
ffまでの間は前記発熱抵抗体4は金属半導体相転移によ
ってより高い抵抗値をもつ発熱抵抗体となっており、こ
の発熱抵抗体の表面温度は、ほとんど前記相転移温度Tc
の付近から緩やかな上昇を行う。実際の発熱抵抗体温度
は発熱抵抗体自身と周辺の構造部材の熱容量や熱抵抗に
よる熱的慣性から上記Tcより若干高くなることもある。
tonからtpまでの発熱抵抗体の表面温度上昇は、発熱抵
抗体1の面積を8ドット/mmの発熱抵抗体密度相当の0.0
15mm2、発熱抵抗体の低温側での抵抗値を500Ω程度、高
温側での抵抗値を2000Ω程度、印加電圧を20Vとした場
合、発熱抵抗体表面に感熱紙等の熱吸収体を接触させな
ければ、室温状態のtonから約0.2ミリ秒程度以下の時間
で前記発熱抵抗体のベース温度とも言うべき約150℃のT
cに達し、さらに1ミリ秒程度で感熱記録十分な約300℃
以上に達する。この時間は、サーマルヘッドの前記グレ
ージング基板のグレーズ厚みや、発熱抵抗体表面にコー
トされている保護層の厚み等によって発熱抵抗体周辺の
熱抵抗や熱容量の熱特性が変わるので、サーマルヘッド
の構造に伴い個々に違ってくる。しかし、発熱抵抗体の
前記ベース温度は、この発熱抵抗体を構成する材料の持
つ前記相転移温度Tcで決まり、サーマルヘッドの上述の
ような熱特性、サーマルヘッドの構造には依存せず、き
わめて短時間のうちに前記Tcの温度レベルまで発熱抵抗
体温度を押し上げる。
FIG. 10 is a diagram showing a temporal change of the surface temperature 71 of the heating resistor 1 due to the pulse application. In this figure, Tc represents the temperature of the metal-semiconductor phase transition in the electrical conductivity of the heating resistor, ton is the start time of application of the pulse, and tp is the time at which the surface temperature of the heating resistor reaches the phase transition temperature Tc. , Toff represent the application end time of the pulse. tp to to
Until ff, the heating resistor 4 is a heating resistor having a higher resistance value due to the metal-semiconductor phase transition, and the surface temperature of the heating resistor is almost equal to the phase transition temperature Tc.
Make a gradual rise from near. The actual temperature of the heating resistor may be slightly higher than the above Tc due to thermal inertia due to the heat capacity of the heating resistor itself and surrounding structural members and thermal resistance.
The rise in the surface temperature of the heating resistor from ton to tp increases the area of the heating resistor 1 by 0.08 corresponding to the heating resistor density of 8 dots / mm.
15 mm 2, 500 [Omega about the resistance of the low temperature side of the heat-generating resistor, of about 2000Ω resistance value at the high temperature side, if the applied voltage is 20V, contacting the heat absorber of the heat-sensitive paper or the like to the heating resistor surface If not, a temperature of about 150 ° C., which is also referred to as a base temperature of the heating resistor, in a time of about 0.2 milliseconds or less from the room temperature ton
approx. 300 ° C, which is enough for thermal recording in about 1 millisecond
Reach more. This time depends on the glaze thickness of the glazing substrate of the thermal head, the thickness of the protective layer coated on the surface of the heating resistor, and the like. With each other. However, the base temperature of the heating resistor is determined by the phase transition temperature Tc of the material constituting the heating resistor, and does not depend on the above-described thermal characteristics of the thermal head and the structure of the thermal head, and is extremely high. The temperature of the heating resistor is raised to the temperature level of Tc within a short time.

サーマルヘッドには従来技術の問題点で説明したよう
に、発熱抵抗体にとっての熱放射特性等の熱特性のバラ
ツキが存在するが、このバラツキは、前記Tc以上の即ち
前記tp以降の昇温冷却の時定数と、前記tonからtpまで
の昇温勾配のバラツキ即ちtpの時刻の多少のバラツキに
現れるが、前記Tcの値自体をばらつかせることはない。
ところで、熱記録における発色機構は、直接感熱方式で
は発色剤の熱による化学反応であって反応速度は温度に
依存し、また熱転写方式やサーマルインクジェットでは
インクの物理的溶融、昇華、蒸発といった物理的相変化
の類でありインクの温度によって記録が支配される。従
って、昇温の中間点で一定の温度Tcに制御される本発明
の方法においては、従来のような温度を直接制御するこ
との出来ない場合に較べ、サーマルヘッド等の熱特性の
バラツキの記録特性への影響は、はるかに小さいものと
なる。
As described in the related art, the thermal head has variations in thermal characteristics such as thermal radiation characteristics for the heating resistor, and this variation is caused by the temperature rise cooling above the Tc, that is, after the tp. And the variation of the temperature rising gradient from the ton to tp, that is, a slight variation in the time of tp, but the value of Tc itself does not vary.
By the way, the coloring mechanism in thermal recording is a chemical reaction due to the heat of a coloring agent in the direct thermal method, and the reaction speed depends on the temperature.In the thermal transfer method and thermal inkjet, the physical properties such as physical melting, sublimation, and evaporation of the ink are used. This is a kind of phase change, and recording is controlled by the temperature of the ink. Therefore, in the method of the present invention in which the temperature is controlled to a constant temperature Tc at the intermediate point of the temperature increase, compared to the conventional case where the temperature cannot be directly controlled, the recording of the variation in the thermal characteristics of the thermal head or the like is performed. The effect on the properties will be much smaller.

また、発熱抵抗体の抵抗値バラツキが、抵抗膜厚等に
より従来の熱記録におけるサーマルヘッド等、本発明の
熱記録におけるサーマルヘッド等問わず存在しうるが、
このバラツキも、本発明では前記tonの温度からTcまで
に至る時間のバラツキとtpからtoffまでの温度上昇勾配
に現れるが、前記Tcは物質の固有のもので抵抗値そのも
のとは無関係で、前述の熱特性バラツキの場合と同様に
抵抗値バラツキの記録特性への影響はきわめて小さい。
Also, the resistance value variation of the heating resistor may be present regardless of the thermal head in the thermal recording of the present invention, such as the thermal head in the conventional thermal recording due to the resistance film thickness, etc.
In the present invention, this variation also appears in the variation of the time from the temperature of ton to Tc and the temperature rise gradient from tp to toff, but the Tc is unique to the substance and has nothing to do with the resistance itself. As in the case of the thermal characteristic variation described above, the variation of the resistance value has very little effect on the recording characteristics.

前記発熱抵抗体の抵抗値バラツキによる昇温勾配、時
刻toffでのピーク温度バラツキをより小さく、均一なも
のにしようとするなら、前記発熱抵抗体の高温側におけ
る半導体的電気伝導度の相での発熱抵抗体抵抗値の大小
に合わせ、電力で均一になるように印加電圧または電流
を調整設定するか、tpからtoff(現実的にはtonからtof
f)を調整設定してやればよい。
If the temperature rise gradient due to the resistance value variation of the heating resistor and the peak temperature variation at time toff are to be made smaller and uniform, if the heating resistor has a semiconductor-like electrical conductivity phase on the high temperature side, Adjust the applied voltage or current according to the magnitude of the resistance of the heating resistor so that it becomes uniform with power, or set tp to toff (actually ton to tof
f) should be adjusted and set.

さらにより厳密な均一化が必要ならば、低温側におけ
る金属的電気伝導度の相での発熱抵抗体抵抗値の大小に
合わせ、印加電圧を調整設定すればよい。この場合は、
tonからtpまでの、即ち前記Tcまでの温度勾配を均一に
しようとするもので、tonからtpまでの時間そのものは
直接調整できず、電圧調整あるいは電流調整のみであ
る。
If stricter uniformity is required, the applied voltage may be adjusted and set according to the magnitude of the resistance value of the heating resistor in the phase of metallic electrical conductivity on the low temperature side. in this case,
The temperature gradient from ton to tp, that is, the temperature gradient from Tc to Tc is made uniform. The time itself from ton to tp cannot be directly adjusted, but only voltage adjustment or current adjustment.

一般的な本発明の記録方法におけるtonからtpまでの
時間は、tonからtoffまでの時間よりきわめて短く、ま
たtonからtpまでは温度Tcによって自己制御されてしま
っているので、記録特性への調整効果は、電圧・電流を
調整した場合、tpからtoffまでの間の高温側でより強く
発揮する。従って、前述の発熱抵抗体の高温側における
半導体的電気伝導度の相での発熱抵抗体抵抗値の大小に
合わせ、電力で均一になるように印加電圧または電流の
調整設定の場合は、tonからtpまでの前記調整設定の影
響を無視してかまわない。逆に、前述の低温側における
金属的電気伝導度の相での発熱抵抗体抵抗値の大小に合
わせ、印加電圧・電流を調整設定の場合は、この調整が
及ぼすtpからtoffまでの温度振舞いへの影響に注意する
必要がある。
The time from ton to tp in the general recording method of the present invention is much shorter than the time from ton to toff, and since the time from ton to tp is self-controlled by the temperature Tc, adjustment to the recording characteristics When the voltage and current are adjusted, the effect is more pronounced on the high temperature side between tp and toff. Therefore, according to the magnitude of the resistance of the heating resistor in the phase of semiconductor electric conductivity on the high-temperature side of the heating resistor described above, in the case of adjusting the applied voltage or current so as to be uniform with electric power, from ton The effect of the adjustment setting up to tp can be ignored. Conversely, if the applied voltage and current are adjusted according to the magnitude of the resistance of the heating resistor in the metallic conductivity phase on the low-temperature side described above, the temperature behavior from tp to toff affected by this adjustment We need to be aware of the effects of

上述したようにサーマルヘッドの熱特性バラツキ、抵
抗値バラツキによる記録特性への影響は、本発明の場合
極めて小さいのであるが、第10図に示した前記相転移温
度即ち中間制御温度Tcが高く、十分な記録に必要なピー
ク温度Tpに近いほど、より均一な記録が可能となる。ま
た、Tcより低温側の電力消費に較べ高温側の電力消費が
より小さいほど、あるいは、定電圧駆動を考えたとき抵
抗値が高温側で低温側より高く差が大きいほど、より均
一な記録が可能となる。
As described above, the influence on the recording characteristics due to the variation in the thermal characteristics of the thermal head and the variation in the resistance value is extremely small in the case of the present invention, but the phase transition temperature, that is, the intermediate control temperature Tc shown in FIG. The closer to the peak temperature Tp required for sufficient recording, the more uniform recording becomes possible. In addition, as the power consumption on the high temperature side is smaller than the power consumption on the lower temperature side of Tc, or when the resistance value is higher at the higher temperature side than at the lower temperature side and the difference is larger when considering constant voltage driving, more uniform recording is possible. It becomes possible.

特に、上述のより均一な記録を行うための条件を共に
高い充足度で満足させたとき、感熱記録などにおける濃
度階調の制御は、tonからtoffのパルス印加時間の制御
で簡単に高精細な階調を実現できる。
In particular, when the above-mentioned conditions for performing more uniform recording are both satisfied with a high degree of satisfaction, the control of density gradation in thermal recording and the like can be performed simply by controlling the pulse application time from ton to toff, thereby achieving high definition. Gradation can be realized.

前述の実施例では前記発熱抵抗体の金属半導体転移の
温度を約150℃と設定したが、より高いピーク温度をを
要求されるような、高速熱記録装置や、高温発色感熱紙
等を用いる車載の熱記録機器、短いパルスで記録するサ
ーマルインクジェットでは、200℃あるいは250℃等と高
い相転移温度の発熱抵抗体にし、発熱抵抗体としての抵
抗値を低く(あるいは印加電圧を高く)して電力を大き
くすれば、急速昇温高ピーク温度で、感熱紙の発色反応
等が高温によって短時間で充分起き、前記tpからtoffの
時間の短い印加パルス幅(toff−ton)でも発熱ピーク
温度を確保でき、均一な記録が可能となる。逆に低速低
消費電力型のサーマルヘッドなどでは、発熱抵抗体とし
ての低温側の抵抗値、高温側の抵抗値をより高くし(あ
るいは印加電圧を低くし)ゆっくりTcまで昇温させ、さ
らにゆっくりピーク温度まで到達させればよい。この場
合、ピーク温度はあまり高い必要がないから前記相転移
温度Tcを120℃等に下げてやるのがよい。
In the above-described embodiment, the temperature of the metal-to-semiconductor transition of the heating resistor is set to about 150 ° C., but a high-speed thermal recording device that requires a higher peak temperature, or a vehicle using a high-temperature coloring thermal paper or the like In thermal ink-jet recording equipment, thermal ink jet recording with short pulses, heat generating resistors with a high phase transition temperature of 200 ° C or 250 ° C, etc., and lowering the resistance value of the heating resistor (or increasing the applied voltage) to power When the temperature is increased, the color developing reaction of the thermal paper occurs sufficiently in a short time due to the rapid temperature rise and the high peak temperature due to the high temperature, and the exothermic peak temperature is secured even with the short applied pulse width (toff-ton) from tp to toff. And uniform recording becomes possible. Conversely, in a low-speed and low-power-consumption type thermal head, the resistance of the low-temperature side and the high-temperature side of the heating resistor are increased (or the applied voltage is reduced), and the temperature is slowly raised to Tc. What is necessary is just to reach a peak temperature. In this case, since the peak temperature does not need to be very high, it is preferable to lower the phase transition temperature Tc to 120 ° C. or the like.

第2の実施例 第3図は、本発明の第2の実施例を説明する図で、窒
化タンタルやサーメット等の通常の発熱抵抗体材料から
成る第1の抵抗体7と、特定温度Tc2で金属非金属(絶
縁体)相転移する膜パターンからなる第2抵抗体8を積
層形成し、この第2の抵抗体8を、前記抵抗体7と並列
に個別電極2と共通電極3の間に接続した構成の発熱抵
抗体を備えるサーマルヘッドの要部平面図である。第4
図は、この発熱抵抗体部のA−A′断面図で、第5図
は、B−B′断面図である。前記個別電極2と共通電極
3との間に電圧印加した場合、その時の温度が前記第2
の抵抗体8の前記相転移温度Tc2より低いときは、記録
に寄与する発熱は第1の抵抗体7と第2の抵抗体8で発
生し、この発熱によって発熱抵抗体の温度(即ち第2抵
抗体の温度)が前記Tc2に達すると、第2の抵抗体は非
金属化(あるいは絶縁物化)して第1の抵抗体での発熱
に較べほとんど無視できる程度の発熱しかしない。従っ
てこの状態においては、前記Tc2より低い温度での発熱
状態に較べ僅かにしか発熱せず、発熱抵抗体表面の温度
上昇は第10図の温度変化を表す図と同様の変化をする。
tonからtpまでの発熱抵抗体の表面温度上昇は、発熱抵
抗体7,8の面積を8ドット/mmの発熱抵抗体密度相当の0.
015mm2、第1の抵抗体の抵抗値を2200Ω、第2の抵抗体
の前記Tcより低温側での抵抗値を650Ω程度、高温側で
の抵抗値を20kΩ程度とすると、発熱抵抗体としての並
列抵抗値は、前記Tc2の温度以下で約500Ω、Tc2以上で
約2000Ωとなり、前述の第1の実施例の場合と抵抗値特
性は同等で、従って発熱特性もほぼ同等である。上述の
抵抗値例では第2の抵抗体はTc2を境に約30倍の抵抗値
変化をしたが、材料の選択によって、2桁以上変化する
ものも可能である。
Second Embodiment FIG. 3 is a view for explaining a second embodiment of the present invention, in which a first resistor 7 made of a normal heating resistor material such as tantalum nitride or cermet and a specific temperature Tc2 are used. A second resistor 8 composed of a film pattern that undergoes a metal-non-metal (insulator) phase transition is formed in a laminated manner, and this second resistor 8 is disposed between the individual electrode 2 and the common electrode 3 in parallel with the resistor 7. FIG. 3 is a plan view of a main part of a thermal head including a heating resistor having a connected configuration. 4th
The drawing is a cross-sectional view of the heating resistor section taken along the line AA ', and FIG. 5 is a cross-sectional view taken along the line BB'. When a voltage is applied between the individual electrode 2 and the common electrode 3, the temperature at that time is the second temperature.
When the temperature of the resistor 8 is lower than the phase transition temperature Tc2, heat that contributes to recording is generated in the first resistor 7 and the second resistor 8, and this heat generates a temperature of the heating resistor (that is, the second resistor 8). When the temperature of the resistor reaches Tc2, the second resistor is made non-metallic (or made into an insulator) and generates almost negligible heat as compared with the heat generated by the first resistor. Accordingly, in this state, heat is generated only slightly compared to the heat generation state at a temperature lower than Tc2, and the temperature rise on the surface of the heating resistor changes in the same manner as the temperature change in FIG.
The surface temperature rise of the heating resistor from ton to tp increases the area of the heating resistors 7, 8 to 8 dots / mm, which is equivalent to the heating resistor density of 0.
015mm 2, 2200Ω the resistance of the first resistor, 650Omu about the resistance of the low temperature side than the Tc of the second resistor, the resistance value in the high temperature side when about 20 k [Omega, as a heat generating resistor The parallel resistance value is about 500Ω below the temperature of Tc2, and about 2000Ω above Tc2. The resistance value characteristics are the same as those of the first embodiment, and the heat generation characteristics are almost the same. In the above-described example of the resistance value, the resistance value of the second resistor changes about 30 times from Tc2 as a boundary. However, the resistance value can be changed by two digits or more depending on the material selection.

第1の実施例では単一の抵抗材料で、Tc2の前後で2
通りの抵抗値を実現していたが、第2の実施例では並列
抵抗で実現しているため、必要抵抗値実現のための材料
選択の自由度が高い。
In the first embodiment, a single resistance material is used.
Although the same resistance value is realized, in the second embodiment, since the resistance is realized by the parallel resistance, the degree of freedom of material selection for realizing the required resistance value is high.

第3の実施例 材料選択の自由度の高い前述の第2実施例の構造を利
用し、前記Tc2以上の温度で、面積当りの消費電力があ
る程度低くなるように抵抗値設計をすると、第11図に示
す発熱体表面温度の変化曲線72ように、たとえDC電圧を
印加し定常的な電力消費が行われても、発熱体表面温度
は発熱抵抗体が焼損しない温度範囲で発熱と放熱が等し
くなる平衡温度Teに達し、電圧印加を終了しない限りほ
ぼ前記平衡温度Teを維持することができる。前記第1の
抵抗体のような通常の抵抗体単独でも平衡温度を維持す
る状態を形成することは可能だが、本発明の場合、前記
平衡温度Teより若干低い温度である前記Tc2でバイアス
温度のような温度制御がされているため、前記平衡温度
Teが、周辺の温度条件に振られにくく、また、Tc2まで
の昇温を前記第2の抵抗体での発熱が支援するため、よ
り短時間でかつ僅かな時間バラツキで平衡温度Teに達す
るメリットがある。この様な安定した平衡温度Teを実現
すると、toffのタイミング制御による階調記録制御の再
現性を高くでき、品質の優れた階調印字を提供できる。
Third Embodiment If the resistance value is designed so that the power consumption per area is reduced to some extent at a temperature equal to or higher than Tc2 by using the structure of the second embodiment having a high degree of freedom in material selection, As shown in the graph of the heating element surface temperature change curve 72, even if a DC voltage is applied and steady power consumption is performed, the heating element surface temperature is equal to heat generation and heat dissipation within a temperature range in which the heating resistor does not burn out. If the temperature reaches a certain equilibrium temperature Te, the equilibrium temperature Te can be maintained substantially as long as the voltage application is not terminated. Although it is possible to form a state in which an ordinary resistor such as the first resistor alone maintains the equilibrium temperature, in the case of the present invention, the bias temperature is set at Tc2 which is a temperature slightly lower than the equilibrium temperature Te. Because such temperature control is performed, the equilibrium temperature
Advantageously, Te is hardly fluctuated by the surrounding temperature conditions, and the temperature rise up to Tc2 is assisted by the heat generated by the second resistor. There is. If such a stable equilibrium temperature Te is realized, the reproducibility of the gradation recording control by the timing control of toff can be improved, and gradation printing with excellent quality can be provided.

第4の実施例 第2の実施例における前記第1の抵抗体7を、前記第
2の抵抗体の相転移温度Tc2と異なるTc1で金属非金属
(絶縁体あるいは半導体)転移する材料で構成すること
も可能である。
Fourth Embodiment The first resistor 7 in the second embodiment is made of a material that undergoes a metal-to-metal (insulator or semiconductor) transition at Tc1 different from the phase transition temperature Tc2 of the second resistor. It is also possible.

例えば第1の抵抗体の相転移温度Tc1を200℃、第2の
抵抗体の相転移温度を150℃とし、この様な構成の発熱
抵抗体に一定電圧を印加すると、発熱抵抗体の表面温度
は第12図の発熱体表面温度の変化曲線73の様な振舞いを
示す。電圧印加を開始するtonから温度Tc2までは急峻な
温度上昇をし、次いでTc1までは緩やかな温度上昇を
し、その後の温度はより緩やかな上昇かまたはTc1以上
に上がらない安定しな状態になる。この温度Tc1以上に
昇温しない条件は、前記Tc1以上の温度で前記第1およ
び第2の抵抗体の並列抵抗値が高く、Tc1以上に昇温さ
せるのに不十分な発熱程度しかさせないことであって、
前記Tc1の近傍温度で前記第2の抵抗体が電圧印加され
続ける間、金属相から非金属相、非金属相から金属相へ
と前記相転移が起こり続ける状態を実現することであ
る。この様な状態を実現すれば前述の平衡温度Teの実現
の場合と同様に、階調記録が容易に行え、温度の高い領
域即ち、Tc2からTc1までをやや緩やかな温度勾配にして
いるため、高温部での発熱抵抗体周辺への熱衝撃をやわ
らげ、従って信頼性の高い発熱構造となる。
For example, when the phase transition temperature Tc1 of the first resistor is 200 ° C. and the phase transition temperature of the second resistor is 150 ° C., and a constant voltage is applied to the heating resistor having such a configuration, the surface temperature of the heating resistor becomes Shows a behavior like a change curve 73 of the heating element surface temperature in FIG. The temperature rises sharply from ton when voltage is applied to temperature Tc2, then rises slowly up to Tc1, then the temperature rises more slowly or becomes a stable state that does not rise above Tc1 . The condition that the temperature is not raised to the temperature Tc1 or more is that the parallel resistance value of the first and second resistors is high at the temperature of the temperature Tc1 or more, and only enough heat is generated to raise the temperature to the temperature Tc1 or more. So,
It is to realize a state in which the phase transition continues to occur from a metal phase to a non-metal phase and from a non-metal phase to a metal phase while a voltage is continuously applied to the second resistor at a temperature near Tc1. If such a state is realized, similarly to the case of the above-described equilibrium temperature Te, gradation recording can be easily performed, and a high temperature region, that is, from Tc2 to Tc1, has a slightly gentle temperature gradient, The thermal shock to the periphery of the heating resistor in the high-temperature portion is relieved, so that a highly reliable heating structure is obtained.

第1図、第3図に示した第1および第2の実施例の発
熱抵抗体構造を、連続パルスで駆動した場合の、発熱抵
抗体表面の温度変化の様子を第13図に、また第3および
第4の実施例の発熱抵抗体構造を、連続パルスで駆動し
た場合の、発熱抵抗体表面の温度変化の様子を第14図に
示した。第1のパルスから第nのパルスまで、急勾配で
立ち上がり到達する中間温度Tcは一定であり、第1のパ
ルスによるTcまでの昇温時間が、発熱抵抗体の初期のバ
ックグラウンド温度が低い分長めとなるが、第2のパル
ス以降はほとんど発熱カーブが同じとなる。このように
一切駆動上の制御を行うことなく一定発熱温度に自己制
御することができる。上記第1のパルスでの発熱昇温時
間が長いことは、たとえ昇華型階調プリンタなどにおい
ても特に問題とならないが、厳密な記録濃度管理を必要
とする場合は、第1のパルス即ちバックグラウンド温度
が低い場合のみ昇温時間の長い分印加パルス幅を延ばし
て、ピーク温度保持時間を均一に制御してやっても良
い。
FIGS. 13 and 13 show how the temperature of the heating resistor surface changes when the heating resistor structures of the first and second embodiments shown in FIGS. 1 and 3 are driven by continuous pulses. FIG. 14 shows how the temperature of the heating resistor surface changes when the heating resistor structures of the third and fourth embodiments are driven by continuous pulses. From the first pulse to the n-th pulse, the intermediate temperature Tc at which the temperature rises steeply is constant, and the temperature rise time up to Tc by the first pulse corresponds to the low initial background temperature of the heating resistor. Although it becomes longer, the heat generation curve becomes almost the same after the second pulse. In this way, self-control to a constant heat generation temperature can be performed without performing any drive control. The long heat-up time of the first pulse does not cause any particular problem even in a sublimation type gradation printer, but when strict recording density control is required, the first pulse, that is, the background Only when the temperature is low, the applied pulse width may be extended by the longer heating time to uniformly control the peak temperature holding time.

階調記録を行う記録機器においては、直接感熱方式、
昇華転写方式、通電記録を問わず、印加パルス幅の長短
で階調制御することが一般的である。従来の熱記録方法
においては、パルス幅の長さと共に発熱抵抗体のピーク
温度が大きく変化してしまうため、階調制御が難しかっ
たが、本発明の熱記録方法では、少なくとも発熱昇温過
程の中間温度が一定値に自己制御されているため、パル
ス幅という時間のパラメータのみで、発熱ピーク温度と
インクなどに与える総熱エネルギーを再現性よく制御し
た階調制御が可能で、特に第3、第4の実施例において
はピーク温度がより均一な状態を実現でき、厳密な階調
を実現できる。従来例では、64階調程度の相対濃度制御
を行っていることもあるが、絶対濃度制御では、せいぜ
い16階調が限度である。しかし、本発明の熱記録方法に
おけるサーマルヘッドでは上述の説明によって明らかな
ように、絶対濃度制御が容易であり、128階調、256階調
も可能である。第15図は、階調制御に本発明の第1、第
2の実施例の熱記録方法における、発熱抵抗体への印加
パルス幅に対する、発熱抵抗体表面温度の温度波形を表
した図で、第16図は、第3、第4の実施例の同様な発熱
抵抗体表面温度の温度波形を表した図である。それぞれ
の図において、第1階調パルス19−1,21−1による発熱
抵抗体温度波形18−1,20−1が、昇温過程の途中で冷却
降下開始しているが、この様な階調パルス設定であって
も、第N階調までのほとんどのパルスの終端が、発熱抵
抗体の自己制御された中間温度Tc(またはTc2)に到達
する時刻以降にあれば、階調精度は高いものとなる。
For recording devices that perform gradation recording, the direct thermal method,
Regardless of the sublimation transfer method or the energization recording, it is general to control the gradation by the length of the applied pulse width. In the conventional thermal recording method, the gradation control was difficult because the peak temperature of the heating resistor greatly changed with the length of the pulse width. However, in the thermal recording method of the present invention, at least during the heating and heating process, Since the intermediate temperature is self-controlled to a constant value, it is possible to perform gradation control in which the heat generation peak temperature and the total heat energy applied to the ink and the like are controlled with good reproducibility by using only the time parameter called the pulse width. In the fourth embodiment, a state where the peak temperature is more uniform can be realized, and strict gradation can be realized. In the conventional example, the relative density control of about 64 gradations may be performed, but the absolute density control has a limit of 16 gradations at most. However, with the thermal head in the thermal recording method of the present invention, as is clear from the above description, the absolute density control is easy, and 128 gradations and 256 gradations are possible. FIG. 15 is a diagram showing a temperature waveform of a heating resistor surface temperature with respect to a pulse width applied to the heating resistor in the thermal recording method of the first and second embodiments of the present invention for gradation control. FIG. 16 is a diagram showing a similar temperature waveform of the surface temperature of the heating resistor of the third and fourth embodiments. In each figure, the heating resistor temperature waveforms 18-1 and 20-1 caused by the first gradation pulses 19-1 and 21-1 start cooling down in the middle of the heating process. Even if the adjustment pulse is set, if the end of most of the pulses up to the Nth gradation is after the time when the self-controlled intermediate temperature Tc (or Tc2) of the heating resistor is reached, the gradation accuracy is high. It will be.

第5の実施例 第3図、第4図、第5図に示した前述の第2の実施例
では、前記第1の抵抗体と、第2の抵抗体の平面形状が
同一であったが、第6図のように異なる平面形状で第1
の抵抗体10と第2の抵抗体11を並列させる場合もある。
第7図は、第6図における発熱抵抗体のC−C′断面図
である。この第1の抵抗体10の形状は、発熱抵抗体の外
形形状と一致し、第2の抵抗体11は、発熱抵抗体の中央
部にスリットbが開く形でa部に形成されている。前記
第2の抵抗体11には前記第1の抵抗体10が積層されてい
る。
Fifth Embodiment In the above-described second embodiment shown in FIGS. 3, 4, and 5, the first resistor and the second resistor have the same planar shape. , As shown in FIG.
The resistor 10 and the second resistor 11 may be arranged in parallel.
FIG. 7 is a cross-sectional view of the heating resistor taken along the line CC 'in FIG. The shape of the first resistor 10 matches the outer shape of the heating resistor, and the second resistor 11 is formed in the a portion with a slit b opened at the center of the heating resistor. The first resistor 10 is laminated on the second resistor 11.

この第5の実施例の発熱抵抗体に電圧パルスを印加し
発熱させると、第6図におけるC−C′断面図の発熱抵
抗体表面温度分布の昇温過程での変化は、第18図の発熱
体表面温度の分布曲線77ようになる。前記第1の抵抗体
と第2の抵抗体が積層されているa部は、温度Tcに達す
るまですばやい昇温をし、b部が温度の谷間となる。a
部が温度Tcを越えると発熱抵抗体体の全領域a、bで前
記第1の抵抗体による発熱のみとなり、緩やかな発熱を
一様にする。このTc以上の状態では前記温度の谷間とな
ったb部に周囲のa部の熱が拡散し、発熱抵抗体断面の
表面温度分布は台形形状に近づき、従来の発熱抵抗体で
の温度分布が発熱抵抗体の中央部が温度ピークとなるの
に対し、発熱抵抗体形状に忠実な発熱温度分布となる。
When a voltage pulse is applied to the heating resistor of the fifth embodiment to generate heat, the change in the temperature distribution of the heating resistor surface temperature distribution in the sectional view taken along the line CC ′ in FIG. A distribution curve 77 of the heating element surface temperature is obtained. The portion a where the first resistor and the second resistor are stacked rises quickly until the temperature reaches Tc, and the portion b becomes a valley of temperature. a
When the temperature exceeds the temperature Tc, only the heat generated by the first resistor is generated in all the regions a and b of the heat generating resistor, and the gentle heat is uniform. In the state above Tc, the heat of the surrounding part a is diffused into the part b which has become the above-mentioned valley, the surface temperature distribution of the cross section of the heating resistor approaches a trapezoidal shape, and the temperature distribution in the conventional heating resistor is reduced. While the center of the heating resistor has a temperature peak, the heating temperature distribution is faithful to the shape of the heating resistor.

第6の実施例 第8図に発熱抵抗体の平面図、第9図にこの発熱抵抗
体のD−D′断面図を示すように、第6図、第7図にお
ける第2の抵抗体11を、逆にb部に設けa部に設けない
ようにすると、第17図に示した発熱体表面温度の分布曲
線76のように、特に温度Tc近傍では、b部即ち発熱抵抗
体中央部の温度ピークは従来以上に鋭くなり、Tc以上の
高温ほど温度ピークの鋭さが従来の鋭さに近づいていく
いく傾向をもつので、感熱記録における印加エネルギ調
整による網点式階調方法でのこの実施例の利用は、従来
困難だった低濃度(小面積)の階調領域の再現性向上を
もたらす。またサーマルインクジェットのように瞬間的
な高温を局所的に必要とする液体インクの気泡発生にも
向いている。
Sixth Embodiment FIG. 8 is a plan view of a heating resistor, and FIG. 9 is a cross-sectional view of the heating resistor taken along the line DD ′. As shown in FIG. Conversely, if it is provided in the part b and not provided in the part a, as shown in the distribution curve 76 of the heating element surface temperature shown in FIG. 17, especially in the vicinity of the temperature Tc, the part b, that is, the central part of the heating resistor is formed. The temperature peak becomes sharper than before, and the temperature peak has a tendency to approach the conventional sharpness as the temperature becomes higher than Tc. The use of the method brings about improvement in reproducibility of a low-density (small-area) gradation region which has been difficult in the past. It is also suitable for the generation of bubbles of liquid ink that requires an instantaneous high temperature locally like thermal ink jet.

第7の実施例 以上は、感熱記録紙などの記録媒体、または記録媒体
に転写されるインクドナーシート、液体インクに熱を印
加する発熱抵抗体の発熱温度を均一に制御する実施例で
あったが、発熱抵抗層を持つ感熱記録紙やインクドナー
シートに、通電電極を持つ通電ヘッドによって電圧パル
スを印加し、前記発熱抵抗層を持つ感熱記録紙やインク
ドナーシート自身が発熱し記録する通電熱記録方法にお
いて、前記発熱抵抗層にカーボン塗料などの通常発熱抵
抗材料からなる第1の抵抗層と、例えば温度Tc5で金属
非金属の相転移をする材料からなる第2の抵抗層の積層
発熱層を用いても発熱中間温度の均一自己制御によって
記録の均一化が図れる。この通電熱記録における本発明
の実施例を以下説明する。
Seventh Embodiment The above is an embodiment in which the heating temperature of the recording medium such as the thermosensitive recording paper, the ink donor sheet transferred to the recording medium, and the heating temperature of the heating resistor for applying heat to the liquid ink are uniformly controlled. However, a voltage pulse is applied to a thermal recording paper or an ink donor sheet having a heating resistance layer by a current-carrying head having a current-carrying electrode. In the recording method, a laminated heat generating layer including a first resistive layer made of a normal heat generating resistive material such as a carbon paint and a second resistive layer made of a material that undergoes a phase transition between a metal and a non-metal at a temperature Tc5 is formed. The recording can be made uniform by the uniform self-control of the intermediate heating temperature even if the method is used. An embodiment of the present invention in this energization heat recording will be described below.

第19図は、通電感熱記録装置の断面図であって、通電
感熱記録紙50は、発色記録層51、前記第2の相転移抵抗
層52、前記第1の通常抵抗層53から成り、この第2の抵
抗層52は電気伝導度が特定温度領域の低温側で金属的、
高温側で非金属的な変化をする素材を主成分とした材料
を均一塗布した層あるいは蒸着などによって形成された
層である。上記電気伝導度の変化を起こす特定温度領域
Tc5は、高速記録型、低消費電力型、階調記録型等記録
装置によっても違いを与えるべきであるが、例えば100
℃から150℃程度が好適である。上記通電感熱記録紙50
が、プラテン66と通電ヘッド60に挟まれた状態で、通電
電極61、帰路電極62間に電圧パルスを印加し、前記第
1、第2の抵抗層52,53を発熱させる。前記積層発熱層
が発前記温度Tc5に達すると前記第2の抵抗層53は抵抗
値が急激に上昇し発熱にはほとんど寄与しなくなり、前
記第1の抵抗層52による発熱に依って緩やかな発色層51
の昇温をもたらし発色が行われる。
FIG. 19 is a cross-sectional view of the energized thermosensitive recording apparatus. The energized thermosensitive recording paper 50 includes a color recording layer 51, the second phase change resistance layer 52, and the first normal resistance layer 53. The second resistance layer 52 has a metallic conductivity on the low temperature side of the specific temperature region,
This is a layer uniformly coated with a material mainly composed of a material that changes nonmetallicly on the high temperature side, or a layer formed by vapor deposition or the like. Specific temperature range causing the above-mentioned change in electric conductivity
Tc5 should give a difference depending on the recording device such as high-speed recording type, low power consumption type, gradation recording type, etc.
The temperature is preferably from about 150C to about 150C. Above thermal recording paper 50
However, while being sandwiched between the platen 66 and the current supply head 60, a voltage pulse is applied between the current supply electrode 61 and the return electrode 62 to cause the first and second resistance layers 52 and 53 to generate heat. When the laminated heating layer reaches the temperature Tc5, the resistance value of the second resistance layer 53 rises rapidly and hardly contributes to heat generation, and the second resistance layer 53 gradually develops color due to heat generation by the first resistance layer 52. Layer 51
And the color is developed.

第8の実施例 第20図は、熱溶融性インク層56と、導電層54と、電気
伝導度が特定温度Tc6の低温側で金属的、高温側で非金
属的な変化をする素材を主成分とした材料からなる第2
の抵抗粒子58と、カーボン粒子などの通常の抵抗特性を
持つ第1の抵抗粒子57を分散させた混合発熱抵抗層55を
設けた通電転写用インクドナーシートの断面図である。
第21図はこのインクドナーシートを用いた通電記録装置
の断面図であり、通電ヘッドの通電電極61と、この通電
ヘッドから幾分離れた箇所に設けられた帰路電極65間の
電流は、前記インクドナーシートの混合発熱抵抗層55に
おいて、この層の深さ方向に主に流れる。前記相転移す
る第2の抵抗粒子58と前記第1の抵抗粒子57は、前記通
電電極61と前記導電層54の間て並列回路を構成してお
り、前記特定温度Tc6以下では共に発熱に寄与し、Tc6以
上では第2の抵抗粒子はほとんど発熱に寄与しなくな
る。
Eighth Embodiment FIG. 20 mainly shows a heat-fusible ink layer 56, a conductive layer 54, and a material whose electric conductivity changes metallically on the low temperature side of the specific temperature Tc6 and non-metallicly on the high temperature side. The second made of the ingredient material
FIG. 5 is a cross-sectional view of an energization transfer ink donor sheet provided with a mixed heat generation resistance layer 55 in which resistance particles 58 having a normal resistance characteristic such as carbon particles are dispersed.
FIG. 21 is a cross-sectional view of an energization recording apparatus using this ink donor sheet.The current between the energization electrode 61 of the energization head and the return electrode 65 provided at a location separated from the energization head is the same as that described above. In the mixed heating resistance layer 55 of the ink donor sheet, the flow mainly flows in the depth direction of this layer. The second resistance particles 58 and the first resistance particles 57 that undergo the phase transition form a parallel circuit between the current-carrying electrode 61 and the conductive layer 54, and both contribute to heat generation at or below the specific temperature Tc6. However, above Tc6, the second resistance particles hardly contribute to heat generation.

前記混合発熱抵抗層55、導電層54は、インクドナーシ
ートに設けられていなくとも、発熱シートとしてインク
ドナーシートと別シートであっても構わない。
The mixed heating resistance layer 55 and the conductive layer 54 may not be provided on the ink donor sheet, and may be a separate sheet from the ink donor sheet as a heating sheet.

前記第19図、第21図の発熱抵抗層に金属非金属転移を
する材料層(あるいは粒子)と通常抵抗層(あるいは粒
子)を用いた実施例において、前述の第2の実施例にお
ける第1、第2の抵抗体を備えたサーマルヘッドを用い
た熱記録の場合と同様に、前記発熱抵抗層は、通電電
圧、通電時間、通電ヘッドの温度、発熱抵抗層を含む通
電感熱紙の通電前の温度、プラテンや環境温度等によら
ず、通電された場合の前記特定温度(Tc5あるいはTc6)
にすばやく昇温し、その後緩やかな昇温が行われる。従
って発熱ピーク温度は、前記特定温度(Tc5あるいはTc
6)をベースにして安定した温度を実現しやすく、従来
の様な熱制御をほとんど必要とせず、均一な熱記録を実
現できる。
In the embodiment using a material layer (or particles) and a normal resistance layer (or particles) that make a metal-to-metal transition in the heat-generating resistance layers in FIGS. 19 and 21, the first embodiment in the second embodiment described above is used. As in the case of thermal recording using a thermal head provided with a second resistor, the heating resistor layer is provided with an energizing voltage, an energizing time, a temperature of the energizing head, and an energizing thermal paper including the heating resistor layer before energization. Temperature (Tc5 or Tc6) when power is supplied, regardless of the temperature of the platen, the environmental temperature, etc.
The temperature rises quickly, followed by a gradual rise in temperature. Therefore, the exothermic peak temperature depends on the specific temperature (Tc5 or Tc5).
It is easy to realize stable temperature based on 6), and it is possible to realize uniform thermal recording with almost no need for conventional thermal control.

つぎに、上述の全ての実施例における発熱駆動の方法
の例を説明する。
Next, examples of the method of driving heat generation in all the above-described embodiments will be described.

第23図は、前述の各発熱抵抗体、発熱抵抗層に52のよ
うな電圧パルスを印加したときの、前記発熱抵抗体、発
熱抵抗層に流れる電流の波形41を示している。通電前の
発熱抵抗体温度がTc(あるいはTc2)以下の場合、例え
ば前述の第2の実施例における第2の抵抗体の抵抗値が
低く、発熱抵抗体としての抵抗値は、第1の抵抗体と第
2の低い状態での抵抗値の並列抵抗値となっており、よ
り多くの電流が流れる。この状態は、第2の抵抗体が高
温相に転移するTc2の温度領域に到達する時刻tpまで続
き、この時刻以降は、第2の抵抗体の抵抗値が高くなる
分、電流値が減少した状態となり、通電パルスの終端ま
でこの状態が持続する。一定電圧駆動なら、発熱体抵抗
値がtp以前で約500Ω、tp以降で2000Ωなら、電流値はt
p後に1/4に減少する。厳密には、前記第1の抵抗体の抵
抗値は若干の温度依存性があり、一般的なサーメット抵
抗体なら−数百ppm/℃の抵抗温度係数を持っていおり、
また、前記第2の抵抗体も、抵抗値が大きく変化する相
転移温度領域から離れた温度域でも若干の抵抗値の温度
依存性を持っているから、時刻tp以前のパルス印加時間
帯、tp以降のパルス印加時間帯においても電流値の若干
の変動がある。また、前記電流値は発熱抵抗体回路の
L、C成分の影響も受ける。しかし、これらの前記電流
値への影響は、前記時刻tp近傍での電流値変化に較べ、
ごく僅かである。
FIG. 23 shows a waveform 41 of a current flowing through the heating resistor and the heating resistor layer when a voltage pulse such as 52 is applied to the heating resistor and the heating resistor layer. When the temperature of the heating resistor before energization is equal to or lower than Tc (or Tc2), for example, the resistance value of the second resistor in the second embodiment is low, and the resistance value of the heating resistor is the first resistor. The resistance is the parallel resistance of the body and the resistance in the second low state, and more current flows. This state continues until time tp when the second resistor reaches the temperature region of Tc2 at which the second resistor transitions to the high-temperature phase. After this time, the current value decreases as the resistance value of the second resistor increases. State, and this state continues until the end of the energizing pulse. With constant voltage drive, if the heating element resistance is about 500Ω before tp and 2000Ω after tp, the current value is t
It decreases to 1/4 after p. Strictly speaking, the resistance value of the first resistor has some temperature dependence, and a general cermet resistor has a resistance temperature coefficient of −hundreds ppm / ° C.,
In addition, the second resistor also has a slight temperature dependence of the resistance value even in a temperature range away from the phase transition temperature range in which the resistance value greatly changes. Even in the subsequent pulse application time period, there is a slight change in the current value. The current value is also affected by the L and C components of the heating resistor circuit. However, these effects on the current value are compared with the current value change near the time tp,
Very little.

ところで、各方式の熱記録装置においては、一般に複
数のドットで記録画像を表現し、例えばサーマルヘッド
の場合には微少な発熱抵抗体を多数備え、各発熱抵抗体
が前記ドットを表現せしめる。前記記録装置に設けられ
る電源装置はむやみに大きくすることができないから、
一般的には、前記複数の発熱抵抗体を複数のブロックに
分割して、これらのブロックごとに通電パルスを印加す
る時分割駆動が行われ、記録における最大電力、即ち最
大電流を小さくしている。本発明の記録方法において
は、一ドットの通電パルス内で大きな電流変化が起きる
から、たとえ、第22図に示したような各ブロックの駆動
時刻を重ねない分割駆動を行っても、電流容量に無駄が
生じる。しかし、第24図に示したような、各ブロックの
駆動の時間シフト量を、第23図におけるtonからtpの時
間分だけとり、かつひとつのブロック内の発熱抵抗体数
を少なく設定すると、前記電源が供給する電流の変動は
少なくなり、総電流も抑えることができる。
By the way, in each type of thermal recording apparatus, a recorded image is generally expressed by a plurality of dots. For example, in the case of a thermal head, a large number of minute heating resistors are provided, and each heating resistor expresses the dots. Since the power supply device provided in the recording device cannot be unnecessarily increased,
Generally, the plurality of heating resistors are divided into a plurality of blocks, and a time-sharing drive of applying an energizing pulse to each of the blocks is performed to reduce the maximum power in recording, that is, the maximum current. . In the recording method of the present invention, since a large current change occurs within a one-dot energizing pulse, the current capacity is reduced even if the divided driving without overlapping the driving times of the respective blocks as shown in FIG. 22 is performed. Waste occurs. However, as shown in FIG. 24, when the time shift amount of the driving of each block is taken from the time of ton to tp in FIG. 23 and the number of heating resistors in one block is set to be small, Fluctuations in the current supplied by the power supply are reduced, and the total current can be suppressed.

第24図は、上述の考え方を元にしたブロック分割駆動
における、各ブロックへのパルス46−i印加タイミング
と、対応するブロックの電流波形45−iとを示したタイ
ミングチャートの例である。前記分割駆動のシフト時間
はdtである。第Nブロックのピーク電流部分(第23図の
44に対応する部分)は、第N−1ブロックの小電流部分
(第23図の43に対応する部分)と重なっており、第N+
1ブロックのピーク電流部分も他のブロックの小電流部
分と重なっている。すでに述べたことだが、前記ピーク
電流部分となるtonからtpの時間は、関わる発熱抵抗体
の初期温度に依って多少の変動をし、前記初期温度が低
温なほど長くなる。これは、発熱抵抗体が前記温度Tcま
で昇温するのに低温から昇温して行くほど時間がかかる
からである。瞬間的にも、前記各ブロック間で前記ton
からtpまでの時間が重ならないことが電源効率上は望ま
しいので、関わる記録装置の最低動作保証温度でのton
からtpまでの時間より、dtを若干長めに設定したタイミ
ングでブロックの分割駆動を行えばよいわけである。ま
た発熱抵抗体あるいは発熱抵抗層周辺の温度を感知し
て、dtをこの温度に応じて変化させることもある。第24
図のように駆動すると、同じ電源容量の電源を用いた場
合、第22図のようなタイミングで駆動した場合に較べ、
短時間で全てのブロックの駆動を完了することができ、
記録の高速化に役立つ。
FIG. 24 is an example of a timing chart showing the application timing of the pulse 46-i to each block and the current waveform 45-i of the corresponding block in the block division drive based on the above concept. The shift time of the division drive is dt. The peak current portion of the Nth block (see FIG. 23)
The portion corresponding to 44) overlaps the small current portion of the (N-1) th block (the portion corresponding to 43 in FIG. 23),
The peak current portion of one block also overlaps with the small current portion of another block. As described above, the time from ton, which is the peak current portion, to tp slightly varies depending on the initial temperature of the heating resistor concerned, and becomes longer as the initial temperature becomes lower. This is because it takes time for the heating resistor to rise to the temperature Tc as the temperature rises from a low temperature. Momentarily, the ton between the blocks
It is desirable from the viewpoint of power efficiency that the time from to tp does not overlap.
That is, the divided drive of the block may be performed at a timing when dt is set slightly longer than the time from to tp. Further, the temperature around the heating resistor or the heating resistor layer may be sensed, and the dt may be changed according to this temperature. 24th
Driving as shown in the figure, when using a power supply of the same power supply capacity, compared to driving at the timing as shown in FIG. 22,
Driving of all blocks can be completed in a short time,
Useful for faster recording.

上述のような、印加パルス幅(tonからtoffまでの時
間)に較べ、十分短い時間であるdtの時間シフトで分割
駆動を行った場合には、電源の効率化の他に、以下に述
べるような記録の忠実性の上での利点がある。
As described above, when the division driving is performed by the time shift of dt which is sufficiently shorter than the applied pulse width (time from ton to toff), besides the efficiency of the power supply, as described below, There is an advantage in the fidelity of the record.

サーマルヘッドを例にすると、複数の発熱抵抗体が直
線状に配列し、この発熱抵抗体列と直角な方向に感熱記
録紙を連続相対移動させて記録を行うが、例えば前記発
熱抵抗体列方向の1ドット分の線幅の直線を記録しよう
とした場合、ブロック分割のシフト時間dtが、前記1ド
ット分の線幅の距離を感熱記録紙が相対移動する時間に
較べ無視できないほど長いと、前記直線が前記ブロック
位置に対応した階段状の線となってしまう。ところが、
dtを短くし分割数を増やした前記の駆動方法では階段状
の段差がdtの短さに対応して僅かなものとなって、前記
段差の目だたない直線として表現できる。従って、図面
のプロッタとしての用途などでは非常に有用な方法であ
る。
Taking a thermal head as an example, a plurality of heating resistors are arranged in a straight line, and recording is performed by continuously moving the thermosensitive recording paper in a direction perpendicular to the heating resistor array. In the case of recording a straight line having a line width of one dot, if the shift time dt of the block division is not so long that the distance of the line width of one dot is not negligible compared to the relative movement time of the thermal recording paper, The straight line becomes a step-like line corresponding to the block position. However,
In the above-described driving method in which dt is shortened and the number of divisions is increased, the step-like step becomes small corresponding to the short dt, and can be expressed as a straight line with no noticeable step. Therefore, this is a very useful method for use as a plotter in drawings.

ところで前記の一連の金属非金属(あるいは絶縁体、
半導体)転移をする物質としては、酸化バナジウム系化
合物がある。酸化バナジウムに微量のCrをドープするこ
とによって室温より高い温度の領域で金属非金属的(あ
るいは絶縁体、半導体的)な電気伝導度の変化を起こ
す。より高温側で非金属的(あるいは絶縁体、半導体
的)、より低温側で金属的な電気伝導度をもつ。バナジ
ウム、酸化バナジウムとも高融点物質であって発熱抵抗
体として使用可能である。発熱抵抗膜としてスパッタリ
ング等に薄膜プロセスによる成膜が可能であり、パウダ
化してバインダを混ぜるなどしてペースト化して、ある
いは有機金属化して塗布等厚膜プロセスによる製造等も
可能である。前記第8の実施例(通電熱記録における実
施例)では、発熱抵抗層の厚さ程度の均一に粒径がそろ
った粒子を用いる。いずれの場合も、成膜、整粒された
酸化バナジウム成分は、少なくとも多結晶構造を必要と
する。スパッタリングの場合、金属バナジウムとクロム
の合金ターゲット、あるいはクロムを埋め込んだ金属バ
ナジウムターゲットをアルゴンと酸素ガスを用いてスパ
ッタする方法、酸化バナジウム粉体と酸化クロム粉体を
焼結したターゲットを、アルゴンガスまたはアルゴンガ
スに酸素を微量混合して高周波スパッタする方法等があ
る。いずれのスパッタリングにおいても、より結晶状態
を確実にするため着膜部の温度は数百℃以上であること
が望ましいが、成膜後レーザ照射や真空アニール熱処理
して結晶性を上げる方法もある。
By the way, the above series of non-metals (or insulators,
(Semiconductor) As a substance that undergoes a transition, there is a vanadium oxide-based compound. By doping a small amount of Cr into vanadium oxide, a nonmetallic (or insulator, semiconducting) change in electrical conductivity occurs in a region above room temperature. It has non-metallic (or insulating, semiconducting) conductivity at higher temperatures and metallic conductivity at lower temperatures. Both vanadium and vanadium oxide are high-melting substances and can be used as heating resistors. The heat-generating resistive film can be formed by a thin film process such as sputtering or the like, and can be formed into a paste by forming a powder and mixing a binder or the like, or can be formed by a thick film process such as coating by forming an organic metal. In the eighth embodiment (embodiment in energization thermal recording), particles having a uniform particle size approximately equal to the thickness of the heat generating resistance layer are used. In any case, the vanadium oxide component formed and sized must have at least a polycrystalline structure. In the case of sputtering, an alloy target of metal vanadium and chromium, or a metal vanadium target in which chromium is embedded is sputtered using argon and oxygen gas, and a target obtained by sintering vanadium oxide powder and chromium oxide powder is treated with argon gas. Alternatively, there is a method in which a small amount of oxygen is mixed with argon gas to perform high-frequency sputtering. In any of the sputtering methods, the temperature of the deposited portion is preferably several hundred degrees Celsius or more to ensure a more crystalline state. However, there is a method of increasing the crystallinity by laser irradiation or vacuum annealing heat treatment after film formation.

Crを適量ドープした場合、電気伝導度は上記転移温度
において2〜3桁変化するので、発熱抵抗体や通電感熱
紙の発熱抵抗層として利用すると、一定電圧印加状態に
おいて、上記転移温度の上下で消費電力値として2〜3
桁変化し、熱記録という観点からは実質的に発熱非発熱
の変化を伴う。従って窒化タンタルやサーメット等の通
常抵抗体を並列に組み込めば、前述の一連の実施例の発
熱抵抗体を実現できる。前記酸化バナジウムにドープす
るCrの割合を変えると、前記転移温度を変化させること
が可能であって、前記一連の中間温度Tcの温度の設定が
可能となる。Crをドープしない酸化バナジウムでは抵抗
値変化の割合は小さく、かつ温度に対して緩やかな変化
であるが、約400℃を境に低温側から高温側に向かって
1桁近いの抵抗値上昇があり、本発明の第1の実施例の
様な単独材料構成の発熱抵抗体に利用できるし、通常抵
抗体材料と組み合わせた発熱抵抗体材料としても可能で
ある。例えば、前述の第2の実施例では、抵抗膜として
第1の抵抗体と第2の抵抗体を別の層として設けたが、
酸化バナジウムなどの相転移材料が、他の金属(例えば
タンタル)との混合構造の膜においてもその相転移特性
を保てるなら、混合膜として発熱抵抗体を形成すること
もできる。この場合前述の第1の実施例と同様の単一発
熱抵抗体膜となり、発熱抵抗体の成膜、パターニングと
いった加工上の簡略化が図れる。
When doped with a suitable amount of Cr, the electrical conductivity changes by two to three orders of magnitude at the above transition temperature. Therefore, when used as a heating resistor or a heating resistor layer of a current-carrying thermosensitive paper, when a constant voltage is applied, the electrical conductivity changes above and below the transition temperature. 2-3 power consumption values
It changes by an order of magnitude and is accompanied by a substantial change in heat generation and non-heat generation from the viewpoint of thermal recording. Therefore, if ordinary resistors such as tantalum nitride and cermet are incorporated in parallel, the heating resistors of the above-described series of embodiments can be realized. By changing the proportion of Cr doped in the vanadium oxide, the transition temperature can be changed, and the temperature of the series of intermediate temperatures Tc can be set. In the case of vanadium oxide not doped with Cr, the rate of change in the resistance value is small and changes gradually with temperature, but the resistance value increases by almost one digit from the low temperature side to the high temperature side at about 400 ° C. It can be used for a heating resistor having a single material configuration as in the first embodiment of the present invention, or can be used as a heating resistor material combined with a normal resistor material. For example, in the above-described second embodiment, the first resistor and the second resistor are provided as separate layers as the resistive film.
If a phase change material such as vanadium oxide can maintain the phase change characteristics even in a film having a mixed structure with another metal (for example, tantalum), a heating resistor can be formed as a mixed film. In this case, a single heating resistor film similar to that of the above-described first embodiment is obtained, and processing simplification such as film formation and patterning of the heating resistor can be achieved.

第25図は、前述の第1の実施例における金属非金属転
移をする発熱抵抗体の線抵抗の温度変化を表す図であ
る。線抵抗自体は、膜厚、線幅によって変化するので参
考値ではあるが、前記Crをバナジウムに対し0.5%程度
ドープした酸化バナジウムでは、線抵抗特性カーブ31の
ように約150℃で3桁ほどの抵抗値変化がある。Crのド
ープ量によって抵抗値変化を起こす温度領域は変化し、
Crのドープ量を増やしていくと前記抵抗値変化の温度領
域は徐々に低温側へシフトしてくる。Crのバナジウムに
対するドープ量が数%を超えると、低温側から高温側に
向かう抵抗値増大の変化が消失してしまうため本発明の
目的を達しにくくなる。上述のように、Crのドープ量が
抵抗変化の温度特性を変化させるため、酸化バナジウム
に対するCrのドープ量の試料内のミクロ的な不均一度に
よって、上記線抵抗の変化は、例えば第25図32のカーブ
のようにある温度幅を持つなだらかなものとなることも
ある。この様ななだらかな変化であっても本発明の目的
は達せられる。また、例えば一辺0.数mmの発熱抵抗体に
通電して昇温させようとしたとき、発熱抵抗体内では空
間的に均一に温度上昇が起こらないので、例えばサーマ
ルヘッドの発熱抵抗体に上述の物質を用いた場合、発熱
抵抗体としての抵抗値の変化は、見かけ上第25図32のよ
うななだらかなものとなるが、この場合においてもミク
ロ的には前記中間温度Tcまではすばやい昇温とTc以上の
温度ではゆるやかな昇温の状態が起こっている。従っ
て、昇温の遅い部分はよりすばやい昇温を続け、速い昇
温部分は速やかにおだやかな昇温状態に移行するため、
発熱抵抗体内の温度分布をより均一な方向に補正するよ
うな機能をもち、従来の感熱記録方法等と比較して、よ
り記録ドットの忠実度が高い記録を実現できる利点も持
ち合わせる。
FIG. 25 is a diagram showing the temperature change of the line resistance of the heating resistor having the metal-to-metal transition in the first embodiment. The line resistance itself is a reference value because it changes depending on the film thickness and the line width. However, in the case of vanadium oxide doped with about 0.5% of Cr with respect to vanadium, as shown in the line resistance characteristic curve 31, about three digits at about 150 ° C. There is a change in the resistance value. The temperature range where the resistance value changes depending on the doping amount of Cr changes,
As the Cr doping amount is increased, the temperature range of the change in the resistance value gradually shifts to a lower temperature side. If the doping amount of Cr with respect to vanadium exceeds several percent, the change in the increase in the resistance value from the low-temperature side to the high-temperature side disappears, so that the object of the present invention is hardly achieved. As described above, since the doping amount of Cr changes the temperature characteristic of the resistance change, the change in the line resistance is caused by, for example, FIG. 25 due to the microscopic nonuniformity of the doping amount of Cr with respect to vanadium oxide in the sample. It can be gentle with a certain temperature range, like the curve of 32. The object of the present invention can be achieved even with such a gentle change. In addition, for example, when trying to raise the temperature by energizing a heating resistor having a side of 0.1 mm, since the temperature does not uniformly increase in the heating resistor, the above-described heating resistor of the thermal head may be used. When a substance is used, the change in the resistance value as the heating resistor is apparently gentle as shown in FIG. 25, but in this case, the temperature rises quickly up to the intermediate temperature Tc in microscopic terms. At temperatures above Tc, a gradual temperature rise occurs. Therefore, the slow-rising portion continues to heat more quickly, and the fast-heating portion quickly transitions to a gentle heating state,
It has a function of correcting the temperature distribution in the heating resistor in a more uniform direction, and has an advantage of realizing recording with higher recording dot fidelity as compared with a conventional thermal recording method or the like.

上述のすべての実施例において、発熱抵抗体の発熱昇
温過程の昇温速度の変化する中間温度(Tc)は、たとえ
発熱抵抗体上の吸熱源である感熱紙等の記録媒体が接触
していても、あるいは接触していなくとも変化せず、前
記中間温度以上ではより緩やかな温度変化をするから、
従来の熱記録におけるサーマルヘッドにおける発熱抵抗
体の無給紙状態での発熱ピーク温度の異常上昇による発
熱抵抗体の劣化、破壊が、本発明の記録方法における発
熱抵抗体では起こりにくいまた、ノイズ等による駆動制
御回路やCPUの誤動作、暴走などの事態に対しても高い
信頼性を発揮する。
In all the above-described embodiments, the intermediate temperature (Tc) at which the heating rate changes during the heating and heating process of the heating resistor is such that the recording medium such as thermal paper, which is a heat absorbing source, is in contact with the heating resistor. It does not change even if it is not in contact, or because it changes more slowly above the intermediate temperature,
Deterioration and destruction of the heating resistor due to an abnormal rise in the peak heating temperature of the heating resistor in the thermal head in the conventional thermal recording in the non-feeding state are unlikely to occur in the heating resistor in the recording method of the present invention. It demonstrates high reliability against malfunctions and runaway of the drive control circuit and CPU.

上述のことは通電熱記録においても、回路暴走などに
よる通電感熱記録紙の異常発熱、発火、プラテン等の機
器部品の破壊等を起こす危険が少なく機器の信頼性、安
全性を高めることで共通する効果である。
The above is common to energization heat recording, because there is little danger of abnormal heat generation, ignition, or destruction of equipment parts such as a platen due to circuit runaway, etc., and the reliability and safety of the equipment are increased. The effect is.

なお、上述の全ての実施例において、発熱抵抗体、発
熱抵抗層等の抵抗特性は、特に特定温度において不連続
に電気伝導度が変化することが必要なわけではなく、特
定の幅を持った温度領域で連続的に温度変化ものであっ
ても構わない。本発明の効果は、前記発熱抵抗体として
の抵抗値変化として、1.5倍から10倍程度の変化が有れ
ば十分な効果を発揮する。この変化量は、一定電圧の印
加条件下で、発熱による昇温が記録に必要な温度まで到
達することのできる電力消費(エネルギー)をもたらす
抵抗値と、記録にかかわる温度レベルにおいて電力消費
(エネルギー))が少なくとも発熱抵抗体や発熱抵抗層
の温度を維持する大きさ程度の抵抗値の現実的な比率を
意味している。
In all the above-described embodiments, the resistance characteristics of the heating resistor, the heating resistor layer, and the like do not necessarily require that the electrical conductivity change discontinuously at a particular temperature, and have a particular width. The temperature may be changed continuously in the temperature range. The effect of the present invention is sufficient if the change in the resistance value of the heating resistor is about 1.5 to 10 times. The amount of change is determined by a resistance value at which a temperature rise due to heat generation reaches a temperature required for recording under the condition of applying a constant voltage, and a power consumption (energy) at a temperature level related to recording. )) Means a realistic ratio of resistance values of at least a magnitude that maintains the temperature of the heating resistor or the heating resistor layer.

〔発明の効果〕〔The invention's effect〕

以上述べてきたように、本発明によれば、 発熱抵抗体等が置かれているあわゆる温度環境に対
しても、従来より均一な、再現性のよい温度制御が可能
で、均一かつ再現性の高い高品質な記録が可能 記録素子の熱特性バラツキに対しても、記録特性の
バラツキを抑えることが可能 発熱抵抗体抵抗値、発熱抵抗層のシート抵抗値のバ
ラツキに対しても、記録特性のバラツキを抑えることが
可能 高精度の濃度階調制御や網点階調制御が容易 記録機器における温度検出等の温度情報収集回路や
記録濃度補正回路が簡単で済み、機器を小型、安価に提
供することが可能 発熱抵抗体の耐暴走等に関して高信頼性かつより安
全 発熱温度分布が発熱体形状に忠実で記録品質に優れ
る 発熱抵抗体列による直線の記録が忠実に行える 等の優れた効果を発揮する。
As described above, according to the present invention, it is possible to control the temperature more uniformly and with higher reproducibility than before, and to achieve uniform High-quality recording with high recording performance Variations in recording characteristics can be suppressed even with variations in the thermal characteristics of the recording elements. Recording characteristics can also be achieved with variations in the resistance of the heating resistor and the sheet resistance of the heating resistor layer. High-precision density gradation control and halftone gradation control are easy. Temperature information collection circuit such as temperature detection in recording equipment and recording density correction circuit are simple, and equipment is provided in small size and low cost. Highly reliable and safer with respect to runaway resistance of the heating resistor, etc.Excellent effects such as the fact that the heating temperature distribution is faithful to the shape of the heating element and the recording quality is excellent. Demonstrate .

【図面の簡単な説明】 第1図は、本発明の第1の実施例におけるサーマルヘッ
ドの平面図、第2図は、第1図のサーマルヘッドの発熱
抵抗体の断面図、第3図は、本発明の第2の実施例にお
ける発熱抵抗体の平面図、第4図、第5図は、それぞれ
第3図の発熱抵抗体のA−A′およびB−B′の断面
図、第6図は、本発明の第5の実施例における発熱抵抗
体の平面図、第7図は、第6図の発熱抵抗体のC−C′
断面図、第8図は、本発明の第6の実施例における発熱
抵抗体の平面図、第9図は、第8図の発熱抵抗体のD−
D′断面図、第10図、第11図、第12図は、本発明の実施
例における発熱抵抗体の表面温度変化を表す図、第13
図、第14図は、本発明の実施例における発熱抵抗体の表
面温度の連続発熱での変化を表す図、第15図、第16図
は、本発明の実施例における発熱抵抗体の表面温度の階
調制御での温度変化を表す図、第17図、第18図は、本発
明の実施例における発熱抵抗体の表面温度の分布を表す
図、第19図は、本発明の第7の実施例における通電感熱
記録装置の要部断面図、第20図は、本発明の第8の実施
例における通電熱転写用インクドナーシートの断面図、
第21図は、本発明の第8の実施例における通電熱転写記
録装置の要部断面図、第22図、第24図は、本発明の実施
例における発熱抵抗体の駆動タイミングと電流波形を表
すタイミングチャート、第23図は、本発明の実施例にお
ける発熱抵抗体の駆動電流波形を表す図、第25図は、本
発明の実施例における発熱抵抗体を構成する抵抗体の抵
抗値特性を表す図である。 1……発熱抵抗体 7,10……第1の抵抗体 8,11……第2の抵抗体 2……個別電極 3,5……共通電極 4……スイッチング素子 18−N,20−N……発熱抵抗体表面温度 19−N,21−N……階調通電パルス 31,32……抵抗体の抵抗値特性 41,45,47……電流波形 42,46,48……通電パルス 50……通電感熱紙 51……発色記録層 52……第1の抵抗層 53……第2の抵抗層 54……導電層 55……混合発熱抵抗層 56……インク層 57……第1の抵抗粒子 58……第2の抵抗粒子 60……通電ヘッド 61……通電電極 Tc,Tc1,Tc2……抵抗体の相転移温度 Te……発熱抵抗体の平衡温度 ton……通電パルス印加時刻 toff……通電パルス印加終了時刻 tp……Tc到達時刻 dt……駆動シフト時間
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a thermal head according to a first embodiment of the present invention, FIG. 2 is a sectional view of a heating resistor of the thermal head of FIG. 1, and FIG. FIG. 4 is a plan view of a heating resistor according to a second embodiment of the present invention, and FIGS. 4 and 5 are sectional views taken along lines AA 'and BB' of FIG. FIG. 7 is a plan view of a heating resistor according to a fifth embodiment of the present invention, and FIG. 7 is a cross-sectional view of the heating resistor CC 'of FIG.
FIG. 8 is a plan view of a heating resistor according to a sixth embodiment of the present invention, and FIG.
FIG. 10 is a sectional view showing a change in the surface temperature of the heating resistor according to the embodiment of the present invention.
FIG. 14 is a diagram showing a change in the surface temperature of the heating resistor in the embodiment of the present invention with continuous heat generation. FIGS. 15 and 16 are diagrams showing the surface temperature of the heating resistor in the embodiment of the present invention. FIG. 17 and FIG. 18 are diagrams showing the distribution of the surface temperature of the heating resistor according to the embodiment of the present invention, and FIG. 19 is a diagram showing the seventh embodiment of the present invention. FIG. 20 is a cross-sectional view of an ink donor sheet for energized thermal transfer according to an eighth embodiment of the present invention.
FIG. 21 is a sectional view of a main part of an energization thermal transfer recording apparatus according to an eighth embodiment of the present invention, and FIGS. 22 and 24 show drive timings and current waveforms of the heating resistors in the embodiment of the present invention. FIG. 23 is a timing chart showing a driving current waveform of the heating resistor according to the embodiment of the present invention, and FIG. 25 shows a resistance value characteristic of the resistor constituting the heating resistor according to the embodiment of the present invention. FIG. 1. Heating resistor 7,10 First resistor 8,11 Second resistor 2. Individual electrode 3,5 Common electrode 4. Switching element 18-N, 20-N ...... Heating resistor surface temperature 19-N, 21-N ... gradation energizing pulse 31, 32 ... resistor resistance value characteristic 41, 45, 47 ... current waveform 42, 46, 48 ... energizing pulse 50 ... energized thermal paper 51 ... color recording layer 52 ... first resistance layer 53 ... second resistance layer 54 ... conductive layer 55 ... mixed heating resistance layer 56 ... ink layer 57 ... first Resistive particles 58… Second resistive particles 60… Current-carrying head 61… Current-carrying electrodes Tc, Tc1, Tc2… Phase transition temperature of resistor Te… Equilibrium temperature of heat-generating resistor ton… Time of current pulse application toff …… Electrification pulse application end time tp …… Tc arrival time dt …… Drive shift time

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−117854(JP,A) 特開 平2−34361(JP,A) 特開 昭59−167278(JP,A) 特開 昭62−105645(JP,A) 特開 平3−130162(JP,A) 特開 平3−218857(JP,A) (58)調査した分野(Int.Cl.6,DB名) B41J 2/355 B41J 2/335 B41J 2/345 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-117854 (JP, A) JP-A-2-34361 (JP, A) JP-A-59-167278 (JP, A) JP-A-62- 105645 (JP, A) JP-A-3-130162 (JP, A) JP-A-3-218857 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B41J 2/355 B41J 2 / 335 B41J 2/345

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発熱抵抗体(1)に電圧パルスを印加し発
熱させ、この発熱による発熱抵抗体の温度上昇を直接ま
たは間接的に利用して記録媒体に記録を行う熱記録方法
において、 前記発熱抵抗体は、窒化タンタルやサーメット等の通常
の発熱抵抗材料から成る第1の抵抗体(7)と、特定温
度(Tc2)で金属非金属相転移する膜パターンから成る
第2の抵抗体(8)を積層形成し、この第2の抵抗体
(8)を、第1の抵抗体(7)と並列に個別電極(2)
と共通電極(3)の間に接続した構成とし、この発熱抵
抗体に、特定温度領域(Tc)を境界にして、この温度領
域より低温部でより低い抵抗値、高温部でよりたかい抵
抗値にほぼ階段状に変化する特性を有する部分を備えさ
せることによって、 発熱抵抗体の前記部分の電圧印加前の温度が前記特定温
度領域(Tc)以下であるとき、前記発熱抵抗体に一電圧
パルスを印可し通電することによって、前記発熱抵抗体
の電圧印加前の温度から前記特定温度領域(Tc)まで
は、より大きな電力消費によって発熱抵抗体の前記部分
の急峻な温度上昇を行わせ、前記一電圧パルス内で前記
特定温度領域(Tc)に達した以降、電圧印加を完了する
までの間はより小さい電力消費によって発熱抵抗体の前
記部分の緩やかな温度上昇か温度維持を行わせて記録を
行うことを特徴とする熱記録方法。
1. A thermal recording method in which a voltage pulse is applied to a heating resistor (1) to generate heat, and recording is performed on a recording medium by directly or indirectly utilizing a temperature rise of the heating resistor due to the heat generation. The heating resistor includes a first resistor (7) made of a normal heating resistor material such as tantalum nitride or cermet, and a second resistor (7) made of a film pattern that undergoes a metal-metal phase transition at a specific temperature (Tc2). 8), and the second resistor (8) is connected to the individual electrode (2) in parallel with the first resistor (7).
And a common electrode (3), and the heating resistor has a lower resistance value in a lower temperature region than the temperature region and a higher resistance value in a high temperature region with a specific temperature region (Tc) as a boundary. A portion having a characteristic that changes substantially in a stepwise manner, when the temperature of the portion of the heating resistor before voltage application is equal to or lower than the specific temperature region (Tc), a one-voltage pulse is applied to the heating resistor. By applying a current and applying a current, the temperature of the portion of the heating resistor is sharply increased by a larger power consumption from the temperature of the heating resistor before voltage application to the specific temperature region (Tc), After the temperature reaches the specific temperature region (Tc) within one voltage pulse, until the voltage application is completed, the temperature of the portion of the heating resistor is gradually increased or maintained by lower power consumption, and recording is performed. Row Thermal recording method characterized by.
【請求項2】発熱抵抗体(1)に電圧パルスを印加し発
熱させ、この発熱による発熱抵抗体の温度上昇を直接ま
たは間接的に利用して記録媒体に記録を行う熱記録方法
において、 前記発熱抵抗体は、窒化タンタルやサーメット等の通常
の発熱抵抗体材料から成る第1の抵抗体(10)と、特定
温度(Tc2)で金属非金属相転移する膜パターンから成
る第2の抵抗体(11)から成り、第1の抵抗体(10)の
平面形状が、発熱抵抗体(1)の外形形状と一致し、第
2の抵抗体(11)は、発熱抵抗体(1)の中央部にスリ
ット(b)が開く形で両端部(a)に形成し第1の抵抗
体(10)に積層して構成し、この第2の抵抗体(11)
を、第1の抵抗体(10)と並列に個別電極(2)と共通
電極(3)の間に接続した構成とし、この発熱抵抗体
に、特定温度領域(Tc)を境界にして、この温度領域よ
り低温部でより低い抵抗値、高温部でよりたかい抵抗値
にほぼ階段状に変化する特性を有する部分を備えさせる
ことによって、 発熱抵抗体の前記部分の電圧印加前の温度が前記特定温
度領域(Tc)以下であるとき、前記発熱抵抗体に一電圧
パルスを印可し通電することによって、前記発熱抵抗体
の電圧印加前の温度から前記特定温度領域(Tc)まで
は、より大きな電力消費によって発熱抵抗体の前記部分
の急峻な温度上昇を行わせ、前記一電圧パルス内で前記
特定温度領域(Tc)に達した以降、電圧印加を完了する
までの間はより小さい電力消費によって発熱抵抗体の前
記部分の緩やかな温度上昇か温度維持を行わせて記録を
行うことを特徴とする熱記録方法。
2. A thermal recording method in which a voltage pulse is applied to a heating resistor (1) to generate heat, and recording is performed on a recording medium by directly or indirectly utilizing a temperature rise of the heating resistor due to the heat generation. The heating resistor is composed of a first resistor (10) made of a normal heating resistor material such as tantalum nitride or cermet, and a second resistor made of a film pattern that undergoes a metal-metal phase transition at a specific temperature (Tc2). (11), the planar shape of the first resistor (10) matches the outer shape of the heating resistor (1), and the second resistor (11) is located at the center of the heating resistor (1). The second resistor (11) is formed at both ends (a) in such a manner that a slit (b) is opened in the portion and laminated on the first resistor (10).
Is connected between the individual electrode (2) and the common electrode (3) in parallel with the first resistor (10), and this heating resistor is connected to a specific temperature region (Tc). By providing a portion having a characteristic that changes in a step-like manner to a lower resistance value in a lower temperature region than a temperature region and a higher resistance value in a high temperature region, the temperature of the portion of the heating resistor before voltage application is specified. When the temperature is equal to or lower than the temperature range (Tc), one voltage pulse is applied to the heating resistor to energize the heating resistor, so that a larger power is applied from the temperature of the heating resistor before voltage application to the specific temperature range (Tc). The consumption causes the temperature of the portion of the heating resistor to rise steeply. After the temperature reaches the specific temperature range (Tc) within the one voltage pulse, heat is generated by lower power consumption until the voltage application is completed. Of said part of the resistor Thermal recording method and performing recording by Ya Kana temperature increase or to perform the temperature maintained.
【請求項3】発熱抵抗体(1)に電圧パルスを印加し発
熱させ、この発熱による発熱抵抗体の温度上昇を直接ま
たは間接的に利用して記録媒体に記録を行う熱記録方法
において、 前記発熱抵抗体は、窒化タンタルやサーメット等の通常
の発熱抵抗体材料から成る第1の抵抗体(10)と、特定
温度(Tc2)で金属非金属相転移する膜パターンから成
る第2の抵抗体(11)から成り、第1の抵抗体(10)の
平面形状が、発熱抵抗体(1)の外形形状と一致し、第
2の抵抗体(11)は、発熱抵抗体(1)の中央部(b)
に形成し第1の抵抗体(10)に積層して構成し、 この第2の抵抗体(11)を、第1の抵抗体(10)と並列
に個別電極(2)と共通電極(3)の間に接続した構成
とし、この発熱抵抗体に、特定温度領域(Tc)を境界に
して、この温度領域より低温部でより低い抵抗値、高温
部でよりたかい抵抗値にほぼ階段状に変化する特性を有
する部分を備えさせることによって、 発熱抵抗体の前記部分の電圧印加前の温度が前記特定温
度領域(Tc)以下であるとき、前記発熱抵抗体に一電圧
パルスを印可し通電することによって、前記発熱抵抗体
の電圧印加前の温度から前記特定温度領域(Tc)まで
は、より大きな電力消費によって発熱抵抗体の前記部分
の急峻な温度上昇を行わせ、前記一電圧パルス内で前記
特定温度領域(Tc)に達した以降、電圧印加を完了する
までの間はより小さい電力消費によって発熱抵抗体の前
記部分の緩やかな温度上昇か温度維持を行わせて記録を
行うことを特徴とする熱記録方法。
3. A thermal recording method in which a voltage pulse is applied to a heating resistor (1) to generate heat, and recording is performed on a recording medium by directly or indirectly utilizing a temperature rise of the heating resistor due to the heat generation. The heating resistor is composed of a first resistor (10) made of a normal heating resistor material such as tantalum nitride or cermet, and a second resistor made of a film pattern that undergoes a metal-metal phase transition at a specific temperature (Tc2). (11), the planar shape of the first resistor (10) matches the outer shape of the heating resistor (1), and the second resistor (11) is located at the center of the heating resistor (1). Part (b)
The second resistor (11) is formed in parallel with the first resistor (10) in parallel with the individual electrode (2) and the common electrode (3). ), And the heating resistor has a specific temperature region (Tc) as a boundary, and has a lower resistance value in a lower temperature region and a higher resistance value in a high temperature region in a stepwise manner. By providing a portion having a changing characteristic, when the temperature of the portion of the heating resistor before voltage application is equal to or lower than the specific temperature region (Tc), one voltage pulse is applied to the heating resistor to energize. Thereby, from the temperature before the voltage application of the heating resistor to the specific temperature region (Tc), the temperature of the portion of the heating resistor is sharply increased by larger power consumption, and the temperature is increased within the one voltage pulse. After the temperature reaches the specific temperature range (Tc), voltage application is completed. A thermal recording method characterized in that the recording is performed by gradually increasing or maintaining the temperature of the portion of the heating resistor with less power consumption until the recording is completed.
JP9476890A 1990-04-09 1990-04-09 Thermal recording method Expired - Lifetime JP2934748B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9476890A JP2934748B2 (en) 1990-04-09 1990-04-09 Thermal recording method
DE69110523T DE69110523T2 (en) 1990-04-09 1991-04-09 Control method for a thermal pressure element.
EP91105594A EP0451778B1 (en) 1990-04-09 1991-04-09 Driving method for thermal printer element
US07/682,917 US5359352A (en) 1990-04-09 1991-04-09 Driving method of heat generating resistor in heat recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9476890A JP2934748B2 (en) 1990-04-09 1990-04-09 Thermal recording method

Publications (2)

Publication Number Publication Date
JPH03292161A JPH03292161A (en) 1991-12-24
JP2934748B2 true JP2934748B2 (en) 1999-08-16

Family

ID=14119278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9476890A Expired - Lifetime JP2934748B2 (en) 1990-04-09 1990-04-09 Thermal recording method

Country Status (1)

Country Link
JP (1) JP2934748B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937973B2 (en) * 2013-01-15 2016-06-22 株式会社神戸製鋼所 Si-killed steel wire rod having excellent fatigue characteristics and spring using the same
CN112644183B (en) * 2020-11-30 2021-09-14 山东华菱电子股份有限公司 Multi-pulse heating control method based on segmented multipoint resistance measurement and printing head

Also Published As

Publication number Publication date
JPH03292161A (en) 1991-12-24

Similar Documents

Publication Publication Date Title
US5359352A (en) Driving method of heat generating resistor in heat recording device
CA1059208A (en) Thin film thermal print head
JP2934748B2 (en) Thermal recording method
KR0162899B1 (en) Method and apparatus for thermally recording data in a recording medium
US4126824A (en) Progressively shorted tapered resistance device
JP3421255B2 (en) Thermal recording system
JP2958374B2 (en) Thermal head
JP2811012B2 (en) Gradation control method in thermal recording
JP2893345B2 (en) Thermal recording method
JPH03292162A (en) Heating element drive method in thermal recorder
JP2961160B2 (en) Driving method of thermal head
JP2811209B2 (en) How to adjust heat generation of thermal head
JP2932661B2 (en) Manufacturing method of thermal head
JP3809380B2 (en) Thermal printer head and manufacturing method thereof
JP3538447B2 (en) Thermal print head with optimal thickness of heat-insulating underlayer and design method thereof
EP0423708B1 (en) Method and apparatus for thermally recording data in a recording medium
JPS62181162A (en) Thermal head
JP2951016B2 (en) Thermal head
JPH03218853A (en) Thermal head
JPS62112302A (en) Heating unit for thermal head
JP3233694B2 (en) Thermal head
JPS6169471A (en) Thermal printing head
JPH05229152A (en) Thermal head
JPH0234361A (en) Thermal printing head
JP2574351B2 (en) Thermal transfer recording device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 11

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

EXPY Cancellation because of completion of term