JPH03292162A - Heating element drive method in thermal recorder - Google Patents

Heating element drive method in thermal recorder

Info

Publication number
JPH03292162A
JPH03292162A JP2094769A JP9476990A JPH03292162A JP H03292162 A JPH03292162 A JP H03292162A JP 2094769 A JP2094769 A JP 2094769A JP 9476990 A JP9476990 A JP 9476990A JP H03292162 A JPH03292162 A JP H03292162A
Authority
JP
Japan
Prior art keywords
temperature
heating resistor
resistor
time
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094769A
Other languages
Japanese (ja)
Inventor
Katsuaki Saida
齋田 克明
Norimitsu Sanhongi
法光 三本木
Yoshinori Sato
義則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2094769A priority Critical patent/JPH03292162A/en
Priority to EP91105594A priority patent/EP0451778B1/en
Priority to US07/682,917 priority patent/US5359352A/en
Priority to DE69110523T priority patent/DE69110523T2/en
Publication of JPH03292162A publication Critical patent/JPH03292162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To perform a uniform temperature control with high reproducibility by a method wherein a plurality of blocks are driven in a time sharing system at a timing in which an electric current demand state within a conduction pulse applying time to a heating element belonging to an arbitrary block has a different part from an electric current demand state within a conduction pulse applying time to a heating element belonging to another block to which a pulse is applied with a delay therefrom. CONSTITUTION:A plurality of heating elements are divided into a plurality of blocks. A shift time in a time sharing drive for applying a conduction pulse per block is (dt). A peak current part 44 of the N-th block is overlapped with a small current part 43 of the (N-1)-th block. A peak current part of the (N+1)-th block is also overlapped with small current parts of the other blocks. A time from (ton) to (tp) as a peak current part varies more or less in accordance with an initial temp. of a related heating element so as to extend with a lower initial temp.. Therefore, it is desirable for a power source efficiency to prevent even the momentary overlap of the times from (ton) to (tp) in the respective blocks. Thus, the time sharing drive of the blocks may be conducted at a timing in which a (dt) is set slightly longer than a (ton) - (tp) time at a minimum action guarantee temp. of a recorder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感熱記録、熱転写記録、通電感熱記録、通電
転写記録、サーマルインクジェット等の勲記t!装置に
おける発熱抵抗体の駆動方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to thermal recording, thermal transfer recording, electrically conductive thermosensitive recording, electrically conductive transfer recording, thermal inkjet, etc. The present invention relates to a method for driving a heating resistor in a device.

〔発明の概要〕[Summary of the invention]

本発明は、感熱記録のサーマルヘッドやサーマルインク
ジェットヘッド(いずれもサーマルへ・7ドと呼ぶ)の
発熱抵抗体あるいは通電記録紙の発熱抵抗層等の発熱抵
抗体く以下煩雑さを避けるため、前記発熱抵抗体および
前記通電発熱抵抗層をともに発熱抵抗体と呼ぶ)に通電
してこの発熱抵抗体を発熱させ、この発熱による発熱抵
抗体の温度上昇によって記録媒体に記録を行う感熱記録
、熱転写記録、サーマルインクシエンド記録、通電感熱
記録、1i通電転写記録等の熱記録方法において、前記
発熱抵抗体に、特定温度領域を境界にして、この温度領
域より低温部でより低い抵抗値、高温部でより高い抵抗
値にほぼ階段状に変化する特性を備えさせ、発熱抵抗体
の前記部分の電圧印加前の温度が前記特定温度領域以下
であるとき、前記発熱抵抗体に一電圧パルスを印加し通
電することによって、前記発熱抵抗体の電圧印加前の温
度から前記特定温度領域までは、より大きな電力消費に
よって前記発熱抵抗体の急峻な温度上昇を行わセ、前記
−電圧パルス内で前記特定温度領域に達した以降、電圧
印加を完了するまでの間はより小さい電力消費によって
前記発熱抵抗体の緩やかな温度上昇を行わせて記録を行
い、また、前記発熱抵抗体が前記電圧印加開始時点に前
記特定温度領域より高温にある場合は、前記パルス通電
のあいだ前記緩やかな昇温状態を維持することによって
、発熱抵抗体の電圧パルス印加前の温度に応して前記発
熱抵抗体の温度上昇の速さを変え、一定パルス幅の電圧
印加による前記発熱抵抗体の昇温ピーク温度が一定温度
に近づきまとまるように発熱を行わせるという一種の発
熱温度制御機能を発熱抵抗体自身が有する熱記録装置な
どにおける複数の前記発熱抵抗体を複数のブロックに分
割し、この各ブロックに含まれる前記発熱抵抗体ごとに
、発熱のための通電パルスを時分割に印加する駆動方法
において、 前記発熱抵抗体における前記通電パルス印加時間内の各
発熱抵抗体における消費電流値がより大きな前記急峻な
温度上昇に対応する第1の電流消費状態と、この第1の
電流消費状態と大きく異なるより小さい電流値を消費す
る前記緩やかな昇温状態に対応する第2の電流消費状態
との少なくとも2つの状態に関して、前記任意のブロッ
クに含まれる発熱抵抗体への通電パルス印加時間内の前
記第1の電流消費状態が、別の任意のブロックに含まれ
る発熱抵抗体への通電パルス印加時間内の前記第1の電
流消費状態と重ならないタイミングで、さらに、前記任
意のブロックに含まれる発熱抵抗体への通電パルス印加
時間内の前記第2の電流消費状態と、このブロックより
遅れて通電パルスを印加する別のブロックに含まれる発
熱抵抗体への通電パルス印加時間内の前記第1の電流消
費状態とが重なる部分をもつタイミングで、前記複数の
ブロックを時分割駆動することによって、熱記録装置に
おける駆動ピーク電流を低減するなどの優れた性能を実
現するものである。
The present invention provides the above-mentioned heat generating resistors such as thermal heads for heat-sensitive recording and thermal inkjet heads (both referred to as thermal inkjet heads) or heat generating resistive layers of current-carrying recording paper. Thermal recording or thermal transfer recording in which a heating resistor (both the heating resistor and the energized heating resistor layer are referred to as a heating resistor) is energized to cause the heating resistor to generate heat, and recording is performed on a recording medium by the temperature rise of the heating resistor due to the heat generation. , in thermal recording methods such as thermal ink transfer recording, electrically conductive thermosensitive recording, and 1i electrically conductive transfer recording, the heat-generating resistor has a resistance value that is lower in a lower temperature region than that in a specific temperature region, and a lower resistance value in a high temperature region, with a specific temperature region as a boundary. The heating resistor is provided with a characteristic of changing almost stepwise to a higher resistance value, and when the temperature of the portion of the heating resistor before voltage application is below the specific temperature range, one voltage pulse is applied to the heating resistor. By energizing, the temperature of the heating resistor is steeply increased from the temperature of the heating resistor before voltage application to the specific temperature range by greater power consumption. After reaching the area, until the voltage application is completed, the temperature of the heat generating resistor is gradually increased by lower power consumption, and recording is performed. If the temperature is higher than the specific temperature range, by maintaining the gradual temperature rise state during the pulse energization, the temperature rise of the heat generating resistor is reduced according to the temperature of the heat generating resistor before the voltage pulse is applied. A thermal recording device in which the heat generating resistor itself has a kind of heat generating temperature control function of changing the speed and generating heat so that the temperature rise peak temperature of the heat generating resistor approaches a constant temperature by applying a voltage with a constant pulse width. In a driving method of dividing a plurality of heat generating resistors into a plurality of blocks and applying an energizing pulse for generating heat to each of the heat generating resistors included in each block in a time division manner, A first current consumption state corresponding to the steep temperature rise in which the current consumption value in each heat generating resistor within the energization pulse application time is larger; and a smaller current consumption state that is significantly different from this first current consumption state. With respect to at least two states including the second current consumption state corresponding to the gradual temperature increase state, the first current consumption state within the time period of applying the energization pulse to the heating resistor included in the arbitrary block is , further applying an energizing pulse to the heating resistor included in the arbitrary block at a timing that does not overlap with the first current consumption state within the application time of the energizing pulse to the heating resistor included in another arbitrary block; A portion where the second current consumption state within the time period overlaps with the first current consumption state within the time period during which the energization pulse is applied to the heating resistor included in another block to which the energization pulse is applied later than this block. By time-divisionally driving the plurality of blocks at a timing with , excellent performance such as a reduction in drive peak current in the thermal recording device is achieved.

〔従来の技術〕[Conventional technology]

従来の熱記録方法においては、例えばサーマルヘッドの
発熱抵抗体による熱を直接感熱紙等に伝えて記録する感
熱記録方法や、サーマルヘッドの発熱抵抗体による熱で
液体インク内に気泡を発生させ、この気泡による圧力で
版体インクを飛ばすサーマルインクジェット方式では、
サーマルヘッドの発熱抵抗体として、酸化ルテニウム、
窒化タンタル等の金属化合物抵抗体や、タンタル等の高
融点金属に酸化シリコン等の絶縁物を分散したサーメッ
ト抵抗体等が用いられていた。
In conventional thermal recording methods, for example, there is a thermal recording method in which heat generated by a heating resistor of a thermal head is directly transmitted to thermal paper etc., and a method in which air bubbles are generated in liquid ink by heat generated by a heating resistor in a thermal head. The thermal inkjet method uses the pressure created by these bubbles to blow away the plate ink.
Ruthenium oxide,
Metal compound resistors such as tantalum nitride, and cermet resistors in which an insulator such as silicon oxide is dispersed in a high melting point metal such as tantalum, have been used.

上記従来のサーマルヘッドの発熱抵抗体に適当な電圧を
印加すると、発熱抵抗 体にiii流が流れジュール熱が発生し、この状態を一
定時間維持して記録に必要な熱エネルギーを感熱記録紙
等に与える。上記発熱抵抗体で発生するジュール熱エネ
ルギーは、発熱抵抗体の抵抗値、印加する電圧、この電
圧を印加する時間で決定され、−船釣な熱記録機器にお
いては、使用する感熱紙の熱感度特性や、発熱抵抗体か
ら感熱紙への熱伝達特性、発熱抵抗体周辺のバックグラ
ウンド温度、記録媒体自身の温度等によって、前記印加
電圧かまたは電圧印加時間を調整して最適な記録品質、
あるいは階調記録における目的の記録濃度となるように
、発熱抵抗体での発生熱エネルギーを最適値に合わせ込
むことが行われていた。
When an appropriate voltage is applied to the heat generating resistor of the conventional thermal head described above, a current flows through the heat generating resistor, generating Joule heat, and this state is maintained for a certain period of time to transfer the thermal energy necessary for recording to thermal recording paper, etc. give to The Joule thermal energy generated by the heating resistor is determined by the resistance value of the heating resistor, the applied voltage, and the time for which this voltage is applied. Optimal recording quality can be achieved by adjusting the applied voltage or voltage application time depending on the characteristics, heat transfer characteristics from the heating resistor to the thermal paper, the background temperature around the heating resistor, the temperature of the recording medium itself, etc.
Alternatively, the thermal energy generated by the heating resistor is adjusted to an optimum value so as to achieve the desired recording density in gradation recording.

また、例えば通電発熱抵抗層を有するインクドナーシー
ト等と通電ヘッドを用いた通電転写記録方法においては
、上記通電発熱抵抗層としてカーボン塗料などが用いら
れ、通電ヘッドによって上記通電発熱抵抗層に通電しイ
ンクドナーシート自身を発熱させ、インクを溶融または
昇華させ記録媒体にインクを転写するものであるが、上
述の感熱記録方法と同様に、通電発熱抵抗層のシート抵
抗、インクドナーシート自身の温度、通電ヘッドの電極
温度等の条件によって、印加電圧かまたは電圧印加時間
を調整して最適な記録品質、あるいは階調記録における
目的の記録濃度となるように、通電発熱抵抗層での発生
熱エネルギーを最適値に合わせ込むことが行われていた
For example, in a current transfer recording method using an ink donor sheet or the like having a current-carrying heat-generating resistive layer and a current-carrying head, carbon paint or the like is used as the current-carrying heat-generating resistive layer, and the current-carrying head conducts current to the current-carrying heat-generating resistive layer. In this method, the ink donor sheet itself generates heat to melt or sublimate the ink and transfer the ink to the recording medium.Similar to the above-mentioned thermal recording method, the sheet resistance of the energized heating resistance layer, the temperature of the ink donor sheet itself, Depending on the conditions such as the electrode temperature of the current-carrying head, the applied voltage or voltage application time is adjusted to achieve the optimum recording quality or the desired recording density in gradation recording by controlling the heat energy generated in the current-carrying heat-generating resistive layer. Adjustment was made to the optimum value.

[発明が解決しようとするi!!!I]従来の熱記録方
法においては、下記の理由により、発熱抵抗体への印力
at圧と電圧印加パルス幅の調整による記録に関わる熱
エネルギーの調整がきわめて煩雑で、かつ記録機器を大
きく高価なものとさせていた。
[The invention attempts to solve i! ! ! I] In the conventional thermal recording method, adjustment of the thermal energy involved in recording by adjusting the pressure applied to the heating resistor and the pulse width of the voltage application is extremely complicated, and the recording equipment is large and expensive due to the following reasons. I was making it a thing.

発熱抵抗体で電圧パルス印加によって発生する熱エネル
ギーは、前述のように前記印加パルスの1圧またはパル
ス幅で決定できるが、発熱抵抗体の温度は、上記パルス
の印加周期や、連続印加回数等のパルス印加履歴、注目
する発熱抵抗体周辺の発熱抵抗体のパルス印加履歴即ち
発熱履歴、サーマルヘッドの支持基板温度、インクドナ
ーシートや液体インク温度、環境温度等によって変動し
やすい。
The thermal energy generated by applying a voltage pulse to the heating resistor can be determined by the voltage or pulse width of the applied pulse as described above, but the temperature of the heating resistor depends on the application period of the pulse, the number of consecutive applications, etc. The pulse application history of the heating resistor in the vicinity of the heating resistor of interest, that is, the heating history of the heating resistor, the temperature of the support substrate of the thermal head, the temperature of the ink donor sheet and liquid ink, the environmental temperature, etc.

熱記録機構は、直接的には発熱抵抗体で発生する熱エネ
ルギーの大きさが問題となるのではなく感熱記録紙の発
色層の温度やインク層の温度、言い替えれば発熱抵抗体
の温度に依存する。従って、均一な記録熱記録を得るた
めに、発熱抵抗体の発熱時温度を均一にしようとするな
らば、上述のような発熱しようとしている瞬間の発熱抵
抗体の置かれている熱的環境情報や、熱的N層情報をあ
つめるか、予測することをして、発熱抵抗体の温度が特
定温度まで昇温するよう前記印加電圧または電圧印加パ
ルス幅を調整決定してから発熱抵抗体を発熱させなけれ
ばならない。
Thermal recording mechanism does not directly depend on the amount of thermal energy generated by the heating resistor, but rather depends on the temperature of the coloring layer of thermal recording paper and the temperature of the ink layer, in other words, the temperature of the heating resistor. do. Therefore, if you want to make the temperature of the heating resistor uniform when it generates heat in order to obtain a uniform thermal record, the information about the thermal environment where the heating resistor is placed at the moment when it is about to generate heat as described above is necessary. Collect or predict thermal N-layer information, adjust and determine the applied voltage or voltage application pulse width so that the temperature of the heating resistor rises to a specific temperature, and then heat the heating resistor. I have to let it happen.

上述のような情報収集手段、予測手段、記録条件決定手
段は、サーマルヘッド基板の温度や環境温度を検出する
各種温度センサ、記録履歴を把握するための過去の記録
データを記憶するメモリや、熱的状態を予測する熱等価
回路等のシミュレータ、演算処理するCPUやゲート回
路等ハードウェア上の負荷がきわめて大きい。またこれ
らのノ\−ドウエアをサポートするソフトウェアもきわ
めて複雑なものである。特に発熱抵抗体を多数有する大
型、高精細の熱記録機器や、階調記録を行う機器では、
処理情報も膨大となってしまい、装置の大型化、高価格
化が避けられなく、記録品質を犠牲にすることもある。
The information collection means, prediction means, and recording condition determination means described above include various temperature sensors that detect the temperature of the thermal head board and environmental temperature, a memory that stores past recorded data to understand the recording history, and a thermal The load on hardware such as a simulator such as a thermal equivalent circuit that predicts the physical state, and a CPU and gate circuit that performs arithmetic processing is extremely large. The software that supports these nodes is also extremely complex. Especially in large, high-definition thermal recording equipment that has many heating resistors, and equipment that performs gradation recording.
The amount of information to be processed becomes enormous, making it inevitable that the device becomes larger and more expensive, and recording quality may be sacrificed.

また、情報収集、予測、記録条件決定のための処理時間
もCPU等の制約を受け、高速記録の障害ともなってし
まっている。
Furthermore, the processing time for collecting information, predicting, and determining recording conditions is also limited by the CPU, etc., and this becomes an obstacle to high-speed recording.

さらに、サーマルヘッドでは一般に熱効率を高くするた
めに保温層としてのグレーズ層を設けているが、このグ
レーズ層は厚膜プロセスで作られているため、厚さのバ
ラツキが厚みの平均値の±20%以上に達し、個々のサ
ーマルヘッドでこのグレーズ層による保温効果がランダ
ムに大きくばらついてしまう。従って、前述のようにい
くら発熱抵抗体の熱的環境の情報を正確に捕らえ、処理
して、その都度記録条件を決定しても、サーマルヘッド
の熱的特性のバラツキによって精度の高い発熱温度制御
はできない。もし、より高い精度の発熱温度制御を行お
うとすれば、サーマルヘッド個々の熱特性のバラツキを
も制御パラメータとして盛り込まねばならず、記録機器
1台1台で調整するなど量産性に多大な犠牲を払わねば
ならない。
Furthermore, thermal heads generally have a glaze layer as a heat insulating layer to increase thermal efficiency, but since this glaze layer is made using a thick film process, the variation in thickness is ±20% of the average thickness. % or more, and the heat retention effect of this glaze layer varies widely randomly among individual thermal heads. Therefore, as mentioned above, no matter how accurately the information on the thermal environment of the heating resistor is captured and processed and the recording conditions are determined each time, it is difficult to control the heating temperature with high precision due to variations in the thermal characteristics of the thermal head. I can't. If we were to control the heat generation temperature with higher precision, it would be necessary to incorporate variations in the thermal characteristics of individual thermal heads as control parameters, which would require adjustment for each recording device one by one, resulting in a great sacrifice in mass productivity. have to pay.

また、サーマルヘッドの故障や寿命などで、記録機器内
のサーマルヘッドを交換する場合等を考えると、実質的
には、サーマルヘッド個々の特性に記録機器の設定を調
整するなどのことは、はとんど困難である。熱容量、熱
抵抗のバラツキは、通電熱記録における発熱抵抗層周辺
部にも存在し、上述のサーマルヘッドの場合と同様の問
題がある。
In addition, when considering the case where the thermal head in a recording device needs to be replaced due to a malfunction or end of life of the thermal head, it is virtually impossible to adjust the settings of the recording device to suit the characteristics of each thermal head. It's extremely difficult. Variations in heat capacity and thermal resistance also exist in the periphery of the heat generating resistor layer in electrical thermal recording, and there is a problem similar to that of the above-mentioned thermal head.

cramを解決するための手段〕 本発明は、上記発熱抵抗体温度均一化のための種々の問
題を解決するためになされたもので、発熱抵抗体の温度
を特定温度以上に昇温させない自己温度制御機能をもた
せることによって、従来の様な、発熱抵抗体の温度制御
の煩雑さを払拭するものであって、さらにその優れた性
能をより低いピーク電流で実現しようとするものである
Means for Solving CRAM] The present invention was made in order to solve the various problems mentioned above for uniformizing the temperature of the heat generating resistor. By providing a control function, the conventional method eliminates the complexity of controlling the temperature of the heating resistor, and furthermore aims to realize its excellent performance with a lower peak current.

本発明は、発熱抵抗体に、特定温度領域を境界にして、
この温度領域より低温部でより低い抵抗値、高温部でよ
り高い抵抗値にほぼ階段状に変化する特性を備えさせ、
発熱抵抗体の前記部分の電圧印加前の温度が前記特定温
度以上以下であるとき、前記発熱抵抗体に一電圧パルス
を印加し通電することによって、前記発熱抵抗体の電圧
印加前の温度から前記特定温度領域までは、より大きな
電力消費によって短時間で前記発熱抵抗体の急峻な温度
上昇を行わせ、前記−電圧パルス内で前記特定温度領域
に達した以降、電圧印加を完了するまでの間はより小さ
い電力消費によって前記発熱抵抗体の緩やかな温度上昇
を行わせて記録を行い、また、前記発熱抵抗体が前記電
圧印加開始時点に前記特定温度領域より高温にある場合
は、前記パルス通電のあいだ前記緩やかな昇温状態を維
持させて記録を行う熱記録装置における複数の前記発熱
抵抗体を複数のブロックに分割し、この各ブロックに含
まれる前記発熱抵抗体ごとに、発熱のための通電パルス
を時分割に印加するブロックの駆動のタイ稟ングにおい
て、 前記発熱抵抗体における前記通電パルス印加時間内の各
発熱抵抗体における消費電流値がより大きな前記急峻な
温度上昇に対応する第1の電流消費状態と、この第1の
電流消費状態と大きく異なるより小さい電流値を消費す
る前記緩やかな昇温状態に対応する第2の電流消費状態
との少なくとも2つの状態に関して、前記任意のブロッ
クに含まれる発熱抵抗体への通電パルス印加時間内の前
記第1の電流消費状態が、別の任意のブロックに含まれ
る発熱抵抗体への1liiパルス印加時間内の前記第1
の電流消費状態と重ならないタイ逅ングで、さらに、前
記任意のブロックに含まれる発熱抵抗体への通電パルス
印加時間内の前記第2の電流消費状態と、このブロック
より遅れて通電パルスを印加する別のブロックに含まれ
る発熱抵抗体への通電パルス印加時間内の前記第1の電
流消費状態とが重なる部分をもつタイ粂ングで、前記複
数のブロックを時分割駆動する。
The present invention provides a heating resistor with a specific temperature range as a boundary.
It has a characteristic that the resistance value changes in an almost step-like manner from this temperature range to a lower resistance value in the lower temperature part and a higher resistance value in the high temperature part.
When the temperature of the part of the heat generating resistor before voltage application is equal to or higher than the specific temperature, by applying one voltage pulse to the heat generating resistor and energizing it, the temperature of the heat generating resistor before voltage application is reduced to the above specified temperature. Up to a specific temperature range, the temperature of the heating resistor is steeply increased in a short time by larger power consumption, and after the specific temperature range is reached within the - voltage pulse until the voltage application is completed. Recording is performed by slowly raising the temperature of the heat generating resistor with smaller power consumption, and if the heat generating resistor is at a higher temperature than the specific temperature range at the time when the voltage application is started, the pulse energization is performed. A plurality of heat generating resistors in a thermal recording device that performs recording while maintaining the temperature rising state slowly during a period of time are divided into a plurality of blocks, and each of the heat generating resistors included in each block is divided into blocks for generating heat. In determining the timing of driving a block in which energizing pulses are applied in a time-division manner, the current consumption value in each heating resistor within the energizing pulse application time in the heating resistor is larger, and the first one corresponds to the steep temperature rise. and a second current consumption state corresponding to the gradual temperature increase state that consumes a smaller current value that is significantly different from the first current consumption state. The first current consumption state within the application time of the energization pulse to the heating resistor included in the block is the first current consumption state within the application time of the 1lii pulse to the heating resistor included in another arbitrary block.
In addition, with a tie that does not overlap with the current consumption state of the second current consumption state within the time period for applying the energization pulse to the heating resistor included in the arbitrary block, apply the energization pulse later than this block. The plurality of blocks are time-divisionally driven using a tie ring having a portion where the first current consumption state overlaps with the first current consumption state during the application time of the current pulse to the heating resistor included in another block.

〔作用〕[Effect]

発熱抵抗体が前記特定温度領域より高い温度にあるとき
の発熱抵抗体を、仮に第1のヒータとすると、前記特定
温度領域より低い温度にあるときは、前記第1のヒータ
に別の第2ヒータが前記発熱抵抗体の回路に並列に組ま
れていることになる。
If the heating resistor is used as a first heater when the heating resistor is at a temperature higher than the specific temperature range, then when the heating resistor is at a temperature lower than the specific temperature range, a second heater is connected to the first heater. A heater is assembled in parallel to the circuit of the heating resistor.

従って、発熱抵抗体の温度が前記特定温度領域より低い
ときに一定電圧を印加すると、前記第1のヒータへの通
電と前記第2のヒータへの通電が同時に行われ、発熱抵
抗体での消費電流は急峻に立ち上がる。前記特定温度領
域に達するか、より高い温度においては、前記第2のヒ
ータは抵抗値の上昇により通電を中止するか微電流の通
電状態になり、はとんど第1のヒータへの通電電流のみ
となる。すなわち、発熱抵抗体での消費電流は前記特定
温度領域を境により大電流の状態から、より低電流の状
態へと遷移する。
Therefore, when a constant voltage is applied when the temperature of the heating resistor is lower than the specific temperature range, the first heater and the second heater are simultaneously energized, and the consumption in the heating resistor is reduced. The current rises steeply. When the specific temperature range is reached or at a higher temperature, the second heater either stops energizing due to an increase in resistance value or becomes energized with a small amount of current, and the current flowing to the first heater almost always decreases. Only. That is, the current consumption in the heating resistor changes from a high current state to a lower current state across the specific temperature range.

従って、複数の発熱抵抗体を駆動しようとしたとき同じ
タイ逅ングでそれぞれの発熱抵抗体に通電を開始するε
、前記特定温度領域へ発熱抵抗体の温度が到達するまで
の時間の&8電流はきわめて大きな値となるが、前記複
数の発熱抵抗体を複数のブロックに分割すれば、この分
割の数に応してピーク電流は減ってい(。さらに、前記
第1の電流消費状態のみを前記各ブロックへの通電駆動
で重ならない状態にし、前記第2の電流消費状態は別の
ブロックの第1、第2の電流消費状態と璽なっても構わ
ないタイくングでi!!電すれば、総実効電流は増加す
るが、常時いずれかひとつのブロックの前記第2のヒー
タが通電され、かつ常時少なくともいずれかひとつの前
記第1のヒータが通電されている状態をつくりだすこと
ができ、その結果、任意の時刻の総電流値は階段状の大
きな変動をしなくなり、電源電流出力のムラがなくなる
Therefore, when trying to drive multiple heating resistors, each heating resistor starts to be energized with the same tie selection.
, the time required for the temperature of the heating resistor to reach the specific temperature range is extremely large, but if the plurality of heating resistors are divided into a plurality of blocks, the current will be In addition, only the first current consumption state is made non-overlapping by energizing each block, and the second current consumption state is set to the first and second current consumption states of another block. If you turn on the power in a manner that does not matter if it is in a current consumption state, the total effective current will increase, but the second heater of any one block is always energized, and at least one of the blocks is always energized. It is possible to create a state in which one of the first heaters is energized, and as a result, the total current value at any given time does not undergo large step-like fluctuations, and unevenness in power supply current output is eliminated.

また、前記各ブロックの通電時間を部分的に重ね合わせ
ているので、全てのブロックを−通り通電し終える時間
は僅かで済む。
Furthermore, since the energization times of the blocks are partially overlapped, the time required to pass through and finish energizing all the blocks is short.

〔実施例〕〔Example〕

本発明の詳細を実施例をもって説明する。 The details of the present invention will be explained with reference to examples.

本発明に関わる第1の装置例 第1図は、本発明の駆動方法に関わる感熱記録等に用い
られるサーマルヘッドの平面図で、第2図は、このサー
マルヘッドの発熱抵抗体部の断面図である。グレージン
グ処理されたアルミナセラミック等の基板(6)上に、
約150℃を境に低温側で金属的、高温側で半導体的な
電気伝導度特性を持つ材料からなる薄膜の発熱抵抗体(
1)・を設け、この発熱抵抗体の一端を個別電極(2〉
と接続し、他端を第1の共通電極(3)と接続する。
First Example of Device Related to the Present Invention FIG. 1 is a plan view of a thermal head used for heat-sensitive recording, etc. related to the driving method of the present invention, and FIG. 2 is a cross-sectional view of the heating resistor portion of this thermal head. It is. On a glazed substrate (6) of alumina ceramic or the like,
A thin film heating resistor (
1) and one end of this heating resistor is connected to an individual electrode (2).
and the other end is connected to the first common electrode (3).

前記個別電極はトランジスタ等の電流のスイッチング素
子(4)と接続されている。 (5〉は上記スイッチン
グ素子(4〉と接続された第2の共通電極である。サー
マルヘッドとしては前記スイッチング素子(4)および
第2の共通電極(5)を設けず、記録機器として別個に
設けても構わない。
The individual electrodes are connected to a current switching element (4) such as a transistor. (5> is a second common electrode connected to the switching element (4>). The thermal head does not include the switching element (4) and the second common electrode (5), and is used separately as a recording device. You can set it up.

前記第1の共通電極にプラス電位、前記第2の共通電極
にマイナス電位を与えておき、前記スイッチング素子(
4)を開閉することによって、前記発熱抵抗体(1〉に
電圧パルスを印加する。発熱抵抗体(1)に電圧パルス
を印加すれば、印加電圧と発熱抵抗体(1)の抵抗値に
よって適当な電力消費がおきてジュール熱を発生し、発
熱抵抗体(1)の温度上昇が開始する。今の場合、前記
発熱抵抗体は前記金属半導体相転移の低温相すなわち金
属相にあるとすると、抵抗値はより低い値となって一定
電圧下ではより大きい電力消費の状態となって、急峻な
温度上昇がもたらされる。
A positive potential is applied to the first common electrode, a negative potential is applied to the second common electrode, and the switching element (
By opening and closing 4), a voltage pulse is applied to the heating resistor (1).If a voltage pulse is applied to the heating resistor (1), an appropriate voltage is applied depending on the applied voltage and the resistance value of the heating resistor (1). Power consumption occurs, generating Joule heat, and the temperature of the heating resistor (1) begins to rise.In this case, assuming that the heating resistor is in the low temperature phase of the metal-semiconductor phase transition, that is, the metal phase, The resistance value becomes lower, resulting in higher power consumption under a constant voltage, resulting in a steep temperature rise.

第1O図は、前記パルス印加に伴う前記発熱抵抗体(1
)の表面温度(71)の時間変化を表す図である。この
図で、Tcは前記発熱抵抗体の電気伝導度における金属
半導体相転移の温度を表し、tonは前記パルスの印加
開始時刻、tpは前記発熱抵抗体表面温度が前記相転移
温度(Tc)に達する時刻、toffは前記パルスの印
加終了時刻を表す、tpからtoffまでの間は前記発
熱抵抗体(4〉は金属半導体相転移によってより高い抵
抗値をもつ発熱抵抗体となっており、この発熱抵抗体の
表面温度は、はとんど前記相転移温度Tcの付近から緩
やかな上昇を行う。実際の発熱抵抗体温度は発熱抵抗体
自身と周辺の構造部材の熱容量や熱抵抗による熱的慣性
から上記Tcより若干高くなることもある。tonから
tpまでの発熱抵抗体の表面温度上昇は、発熱抵抗体(
1)の面積を8トンl−7mmの発熱抵抗体密度相当の
0.015mrrr、発熱抵抗体の低温側での抵抗値を
500Ω程度、高温側での抵抗値を2000Ω程度、印
加電圧を20Vとした場合、発熱抵抗体表面に感熱紙等
の熱吸収体を接触させなければ、室温状態のtonから
約0.2ミリ秒程度以下の時間で前記発熱抵抗体のベー
ス温度とも言うべき約150℃のTcに達し、さらに1
ξり秒程度で感熱記録十分な約300℃以上に達する。
FIG. 1O shows the heating resistor (1) accompanying the pulse application.
) is a diagram showing the change in surface temperature (71) over time. In this figure, Tc represents the temperature of the metal-semiconductor phase transition in the electrical conductivity of the heating resistor, ton is the time at which the pulse application starts, and tp is the time when the surface temperature of the heating resistor reaches the phase transition temperature (Tc). The time at which the pulse reaches, toff, represents the time at which the application of the pulse ends. During the period from tp to toff, the heating resistor (4) has become a heating resistor with a higher resistance value due to metal-semiconductor phase transition, and this heating The surface temperature of the resistor increases gradually from around the phase transition temperature Tc.The actual temperature of the heating resistor depends on the thermal inertia due to the heat capacity and thermal resistance of the heating resistor itself and surrounding structural members. may be slightly higher than the above Tc.The rise in surface temperature of the heating resistor from ton to tp is as follows:
The area of 1) is 0.015mrrr which corresponds to the heating resistor density of 8 tons l-7mm, the resistance value on the low temperature side of the heating resistor is approximately 500Ω, the resistance value on the high temperature side is approximately 2000Ω, and the applied voltage is 20V. In this case, unless a heat absorbing material such as thermal paper is brought into contact with the surface of the heating resistor, the base temperature of the heating resistor will rise to about 150°C, which can be called the base temperature, in about 0.2 milliseconds or less from ton at room temperature. reaches Tc of , and then 1
The temperature reaches about 300°C or more, which is sufficient for thermosensitive recording, in about ξ seconds.

この時間は、サーマルヘッドの前記グレージング基板の
グレーズ厚みや、発熱抵抗体表面にコートされている保
護層の厚み等によって発熱抵抗体周辺の熱抵抗や熱容量
の熱特性が変わるので、サーマルヘッドの構造に伴い個
々に違ってくる。しかし、発熱抵抗体の前記ヘース温度
は、この発熱抵抗体を構成する材料の持つ前記相転移温
度Tcで決まり、サーマルヘッドの上述のような熱特性
、サーマルヘッドの構造には依存せず、きわめて短時間
のうちに前記Tcの温度レベルまで発熱抵抗体温度を押
し上げる。
During this time, the thermal characteristics of the thermal resistance and heat capacity around the heating resistor change depending on the thickness of the glaze on the glazing substrate of the thermal head and the thickness of the protective layer coated on the surface of the heating resistor, so the structure of the thermal head It varies from person to person. However, the heath temperature of the heating resistor is determined by the phase transition temperature Tc of the material constituting the heating resistor, and does not depend on the above-mentioned thermal characteristics of the thermal head or the structure of the thermal head. The temperature of the heating resistor is raised to the temperature level of Tc in a short time.

サーマルヘッドには従来技術の問題点で説明したように
、発熱抵抗体にとっての熱放散特性等の熱特性のバラツ
キが存在するが、このバラツキは、前記Tc以上の即ち
前記tp以降の昇温冷却の時定数と、前記tonからt
pまでの昇温勾配のバラツキ即ちtpの時刻の多少のバ
ラツキに現れるが、前記TcO値自体をばらつかせるこ
とはない。
As explained in the problem of the prior art, thermal heads have variations in thermal characteristics such as heat dissipation properties for the heat generating resistor, but these variations occur when the temperature rises and cools beyond the above Tc, that is, after the above tp. and the time constant from ton to t
Although this appears as some variation in the temperature increase gradient up to p, ie, some variation in the time of tp, it does not cause any variation in the TcO value itself.

ところで、熱記録における発色機構は、直接感熱方式で
は発色剤の熱による化学反応であって反応速度は温度に
依存し、また熱転写方式やサーマルインクジェットでは
インクの物理的溶融、昇華、蒸発といった物理的相変化
の類でありインクの温度によって記録が支配される。従
って、昇温の中間点で一定の温度Tcに制御される本発
明に関わる熱記録装置においては、従来のような温度を
直接制御することの出来ない場合に較べ、サーマルヘッ
ド等の熱特性のバラツキの記録特性への影響は、はるか
に小さいものとなる。
By the way, the color development mechanism in thermal recording is a chemical reaction caused by the heat of the coloring agent in the direct thermal method, and the reaction rate depends on the temperature, and in the thermal transfer method and thermal inkjet, it is a physical reaction such as physical melting, sublimation, and evaporation of the ink. It is a type of phase change, and recording is controlled by the temperature of the ink. Therefore, in the thermal recording device according to the present invention, which is controlled to a constant temperature Tc at the midpoint of temperature rise, the thermal characteristics of the thermal head etc. The influence of variations on recording characteristics is much smaller.

また、発熱抵抗体の抵抗値バラツキが、抵抗膜厚等によ
り従来の熱記録におけるサーマルヘッド等、本発明の熱
記録に関わるサーマルヘッド等問わず存在しうるが、こ
のバラツキも、本発明に関わる熱記録装置では前記to
nの温度からTcまでに至る時間のバラツキとtpから
toffまでの温度上昇勾配に現れるが、前記Tcは物
質の固有のもので抵抗値そのものとは無関係で、前述の
熱特性バラツキの場合と同様に抵抗値バラツキの記録特
性への影響はきわめて小さい。
In addition, variations in the resistance value of the heating resistor may exist depending on the resistance film thickness, etc., regardless of whether the thermal head is used in conventional thermal recording or the thermal recording head related to the thermal recording of the present invention. In the thermal recording device, the to
This appears in the variation in the time from the temperature of n to Tc and the temperature increase gradient from tp to toff, but the Tc is inherent to the material and is unrelated to the resistance value itself, similar to the case of the variation in thermal characteristics described above. The influence of resistance value variations on recording characteristics is extremely small.

前記発熱抵抗体の抵抗値バラツキによる昇温勾配、時刻
tof fでのピーク温度バラツキをより小さく、均一
なものにしようとするなら、前記発熱抵抗体の高温側に
おける半導体的電気伝導度の相での発熱抵抗体抵抗値の
大小に合わせ、電力で均一になるように印加電圧または
電流を調整設定するか、tpからtoff  (現実的
にはtonからtoff)を調整設定してやればよい。
In order to make the temperature increase gradient due to the resistance value variation of the heat generating resistor and the peak temperature variation at time tof smaller and uniform, it is necessary to make the temperature rise gradient due to the resistance value variation of the heat generating resistor smaller and uniform. The applied voltage or current may be adjusted to make the power uniform according to the resistance value of the heating resistor, or the value from tp to toff (actually, from ton to toff) may be adjusted.

さらにより厳密な均一化が必要ならば、低温側における
金属的電気伝導度の相での発熱抵抗体抵抗値の大小に合
わせ、印加電圧を調整設定すればよい、この場合は、t
onからtpまでの、即ち前記Tcまでの温度勾配を均
一にしようとするもで、tonからtpまでの時間その
ものは直接調整できず、電圧調整あるいは電流調整のみ
である。
If even stricter uniformity is required, the applied voltage can be adjusted according to the resistance value of the heating resistor in the phase of metallic electrical conductivity on the low temperature side.
The purpose is to make the temperature gradient from on to tp uniform, that is, to the above-mentioned Tc, and the time itself from ton to tp cannot be directly adjusted, but only by voltage adjustment or current adjustment.

−船釣な本発明に関わる熱記録装置におけるtOnから
tpまでの時間は、tonからtof fまでの時間よ
りきわめて短く、またtonからtpまでは温度Tcに
よって自己制御されてしまっているので、記録特性への
調整効果は、電圧・電流を調整した場合、tpからto
ffまでの間の高温側でより強く発揮する。従って、前
述の発熱抵抗体の高温側における半導体的電気伝導度の
相での発熱抵抗体抵抗値の大小に合わせ、電力で均一に
なるように印加電圧または電流の調整設定の場合は、t
onからtpまでの前記調整設定の影響を無視してかま
わない。逆に、前述の低温側における金属的電気伝導度
の相での発熱抵抗体抵抗値の大小に合わせ、印加電圧・
電流を調整設定の場合は、この調整が及ぼすtpからt
of fまでの温度振舞いへの影響に注意する必要があ
る。
- The time from tOn to tp in the thermal recording device related to the present invention is much shorter than the time from ton to tof, and since the time from ton to tp is self-controlled by the temperature Tc, it is difficult to record. The adjustment effect on the characteristics is from tp to to when adjusting the voltage and current.
It exerts its strength more strongly on the high temperature side up to ff. Therefore, in the case of adjusting the applied voltage or current so that the power is uniform according to the magnitude of the resistance value of the heating resistor in the phase of semiconducting electrical conductivity on the high temperature side of the heating resistor described above, t
The influence of the adjustment settings from on to tp can be ignored. Conversely, the applied voltage and
If the current is adjusted, the effect of this adjustment is tp to t.
It is necessary to pay attention to the influence on temperature behavior up to off.

上述したようにサーマルヘッドの熱特性バラツキ、抵抗
値バラツキによる記録特性への影響は、本発明に関わる
熱記録装置の場合極めて小さいのであるが、第10図に
示した前記相転移温度即ち中間制御温度Tcが高く、十
分な記録に必要なピーク温度Tpに近いほど、より均一
な記録が可能となる。また、Tcより低温側の電力消費
に較べ高温側の電力消費がより小さいほど、あるいは、
定電圧駆動を考えたとき抵抗値が高温側で低温側より高
く差が大きいほど、より均一な記録が可能となる。
As mentioned above, the influence on the recording characteristics due to variations in thermal characteristics and resistance values of the thermal head is extremely small in the case of the thermal recording device according to the present invention. The higher the temperature Tc is and the closer it is to the peak temperature Tp required for sufficient recording, the more uniform recording becomes possible. Also, the smaller the power consumption on the high temperature side is compared to the power consumption on the low temperature side of Tc, or
When considering constant voltage driving, the higher the resistance value is on the high temperature side than on the low temperature side and the larger the difference, the more uniform recording becomes possible.

特に、上述のより均一な記録を行うための条件を共に高
い充足度で満足させたとき、!!!、熱記録などにおけ
る濃度階調の制御は、tonからtoffのパルス印加
時間の制御で簡単に高精細な階調を実現できる。
Especially when the above-mentioned conditions for more uniform recording are both satisfied with a high degree of sufficiency! ! ! In controlling the density gradation in thermal recording, etc., high-definition gradation can be easily achieved by controlling the pulse application time from ton to toff.

前述の装置例では前記発熱抵抗体の金属半導体転移の温
度を約150℃と設定したが、より高いピーク温度をを
要求されるような、高速熱記録装置や、高温発色感熱紙
等を用いる車載の勲記s3機器、短いパルスで記録する
サーマルインクジェットでは、200℃あるいは250
℃等と高い相転移温度の発熱抵抗体にし、発熱抵抗体と
しての抵抗値を低く (あるいは印加電圧を高<)シて
電力を大きくすれば、急速昇温高ピーク温度で、感熱紙
の発色反応等が高温によって短時間で充分起き、前記t
pからtof fの時間の短かい印加パルス幅(tof
f−ton)でも発熱ピーク温度を確保でき、均一な記
録が可能となる。逆に低速低消費電力型のサーマルヘッ
ドなどでは、発熱抵抗体としての低温側の抵抗値、高温
側の抵抗値をより高<シ(あるいは印加電圧を低くシ)
ゆっくりTCまで昇温させ、さらにゆっくりピーク温度
まで到達させればよい。この場合、ピーク温度はあまり
高い必要がないから前記相転移温度Tcを120℃等に
下げてやるのがよい。
In the above-mentioned device example, the metal-semiconductor transition temperature of the heating resistor was set at approximately 150°C. The S3 equipment uses thermal inkjet that records with short pulses at temperatures of 200°C or 250°C.
If you use a heating resistor with a high phase transition temperature such as ℃, and increase the power by lowering the resistance value of the heating resistor (or increasing the applied voltage), you can rapidly increase the temperature to a high peak temperature, and color the thermal paper. Reactions etc. occur sufficiently in a short time due to high temperature, and the above t
A short applied pulse width (tof
f-ton), the exothermic peak temperature can be ensured, and uniform recording becomes possible. On the other hand, in low-speed, low-power-consumption thermal heads, etc., the resistance value on the low temperature side and the resistance value on the high temperature side of the heating resistor are set higher (or the applied voltage is lowered).
What is necessary is to slowly raise the temperature to TC and then slowly reach the peak temperature. In this case, since the peak temperature does not need to be very high, it is preferable to lower the phase transition temperature Tc to 120°C or the like.

本発明に関わる第2の装置例 第3図は、本発明の駆動方法に関わる第2の装置の例を
説明する図で、窒化タンタルやサーメット等の通常の発
熱抵抗体材料から成る第1の抵抗体(7〉と、特定温度
Tc2で金属非金属(絶縁体)相転移する膜パターンか
らなる第2抵抗体(8)を積層形威し、この第2の抵抗
体(8)を、前記抵抗体(7)と並列に個別電極(2)
と共通電極(3)の間に接続した構成の発熱抵抗体を備
えるサーマルヘッドの要部平面図である。第4図は、こ
の発熱抵抗体部のA−A’断面図で、第5図は、B−B
’断面図である。前記個別電極(2)と共i1を極(3
)との間に電圧印加した場合、その時の温度が前記第2
の抵抗体(8)の前記相転移温度Tc2より低いときは
、記録に寄与する発熱は第1の抵抗体(7)と第2の抵
抗体(8)で発生し、この発熱によって発熱抵抗体の温
度(即ち第2抵抗体の温度)が前記Tc2に達すると、
第2の抵抗体は非金属化(あるいは絶縁物化)して第1
の抵抗体での発熱に較べほとんど無視できる程度の発熱
しかしない。従ってこの状態においては、前記Tc2よ
り低い温度での発熱状態に較べ僅かにしか発熱せず、発
熱抵抗体表面の温度上昇は第10図の温度変化を表す図
と同様の変化をする。tonからtpまでの発熱抵抗体
の表面温度上昇は、発熱抵抗体(7,8)の面積を8ト
ン) / m mの発熱抵抗体密度相当の0.015m
rrf、第1の抵抗体の抵抗値を2200Ω、第2の抵
抗体の前記Tcより低温側での抵抗値を650Ω程度、
高温側での抵抗値を20にΩ程度とすると、発熱抵抗体
としての並列抵抗値は、前記Tc2の温度以下で約50
0Ω、Tc2以上で約2000Ωとなり、前述の第1の
装置例の場合と抵抗値特性は同等で、従って発熱特性も
ほぼ同等である。上述の抵抗値例では第2の抵抗体はT
c2を境に約30倍の抵抗値変化をしたが、材料の選択
によっては、2桁以上変化するものも可能である。
Second Example of Device Related to the Present Invention FIG. 3 is a diagram illustrating a second example of the device related to the driving method of the present invention. A resistor (7) and a second resistor (8) consisting of a film pattern that undergoes a metal-nonmetal (insulator) phase transition at a specific temperature Tc2 are laminated, and this second resistor (8) is Individual electrode (2) in parallel with resistor (7)
FIG. 2 is a plan view of a main part of a thermal head including a heat generating resistor connected between a common electrode (3) and a common electrode (3). FIG. 4 is a cross-sectional view taken along line AA' of this heating resistor section, and FIG. 5 is a cross-sectional view taken along line B-B.
'This is a cross-sectional view. Together with the individual electrode (2), i1 is connected to the pole (3).
), the temperature at that time is the second temperature.
When the temperature is lower than the phase transition temperature Tc2 of the resistor (8), heat that contributes to recording is generated in the first resistor (7) and the second resistor (8), and this heat causes the heating resistor to When the temperature (that is, the temperature of the second resistor) reaches the Tc2,
The second resistor is made non-metallic (or made into an insulator) and the first
It generates only a negligible amount of heat compared to the heat generated by the resistor. Therefore, in this state, only a small amount of heat is generated compared to the state where heat is generated at a temperature lower than Tc2, and the temperature rise on the surface of the heating resistor changes in the same manner as in the diagram showing temperature changes in FIG. 10. The surface temperature rise of the heating resistor from ton to tp is 0.015 m, which is equivalent to the heating resistor density of 8 tons)/mm.
rrf, the resistance value of the first resistor is 2200Ω, the resistance value of the second resistor at a temperature lower than the Tc is about 650Ω,
If the resistance value on the high temperature side is about 20Ω, the parallel resistance value as a heating resistor is about 50Ω below the temperature of Tc2.
0Ω, and about 2000Ω at Tc2 or more, and the resistance value characteristics are the same as those of the first device example described above, and therefore the heat generation characteristics are also almost the same. In the above resistance example, the second resistor is T
Although the resistance value changed approximately 30 times after c2, it is possible to change the resistance value by more than two orders of magnitude depending on the selection of materials.

第1の装置例では単一の抵抗材料で、Tc2の前後で2
通りの抵抗値を実現していたが、第2の装置例では並列
抵抗で実現しているため、必要抵抗値実現のための材料
選択の自由度が高い。
The first device example uses a single resistive material with 2 resistors before and after Tc2.
However, in the second device example, parallel resistance is used to realize the desired resistance value, so there is a high degree of freedom in selecting materials to achieve the required resistance value.

本発明に関わる第3の装置例 材料選択の自由度の高い前述の第2装置例の構造を利用
し、前記Tc2以上の温度で、面積当りの消費電力があ
る程度低くなるように抵抗値設計をすると、第11図に
示す発熱体表面温度の変化曲線(72)ように、たとえ
DC電圧を印加し定常的な電力消費が行われても、発熱
体表面温度は発熱抵抗体が焼損しない温度範囲で発熱と
放熱が等しくなる平衡温度Teに達し、電圧印加を終了
しない限りほぼ前記平衡温度Teを維持することができ
る。前記第1の抵抗体のような通常の抵抗体単独でも平
衡温度を維持する状態を形成することは可能だが、本発
明に関わる熱記録装置の場合、前記平衡温度Teより若
干低い温度である前記TC2でバイアス温度のような温
度制御がされているため、前記平衡温度Teが、周辺の
温度条件に振られにくく、また、Tc2までの昇温を前
記第2の抵抗体での発熱が支援するため、より短時間で
かつ僅かな時間バラツキで平衡温度Teに達するメリッ
トがある。この様な安定した平衡温度Teを実現すると
、toffのタイミング制御による階調記録制御の再現
性を高くでき、品質の優れた階調印字を提供できる。
Third device example related to the present invention Utilizing the structure of the second device example described above, which has a high degree of freedom in material selection, the resistance value is designed so that the power consumption per area is reduced to a certain extent at temperatures above Tc2. Then, as shown in the change curve (72) of the heating element surface temperature shown in Fig. 11, even if a DC voltage is applied and steady power consumption is performed, the heating element surface temperature will fall within the temperature range in which the heating resistor does not burn out. An equilibrium temperature Te is reached at which heat generation and heat radiation are equal, and the equilibrium temperature Te can be maintained approximately as long as the voltage application is not terminated. Although it is possible to maintain a state of equilibrium temperature using a normal resistor alone such as the first resistor, in the case of the thermal recording device according to the present invention, the temperature is slightly lower than the equilibrium temperature Te. Since temperature control such as bias temperature is performed at TC2, the equilibrium temperature Te is not easily affected by surrounding temperature conditions, and the heat generation in the second resistor supports the temperature rise to Tc2. Therefore, there is an advantage that the equilibrium temperature Te can be reached in a shorter time and with slight time variations. When such a stable equilibrium temperature Te is achieved, the reproducibility of gradation recording control by toff timing control can be increased, and gradation printing of excellent quality can be provided.

本発明に関わる第4の装置例 第2の装置例における前記第1の抵抗体(7)を、前記
第2の抵抗体の相転移温度Tc2と異なるTelで金属
非金属(絶縁体あるいは半導体)転移する材料で構成す
ることも可能である。
Fourth device example related to the present invention In the second device example, the first resistor (7) is made of a metal/nonmetal (insulator or semiconductor) with Tel different from the phase transition temperature Tc2 of the second resistor. It is also possible to construct it from a material that transfers.

例えば第1の抵抗体の相転移温度Telを200℃、第
2の抵抗体の相転移温度を150℃とし、この様な構成
の発熱抵抗体に一定電圧を印加すると、発熱抵抗体の表
面温度は第12図の発熱体表面温度の変化曲!II(7
3)様な振舞いを示す。電圧印加を開始するtonから
温度TC2までは急峻な温度上昇をし、次いでTelま
では緩やかな温度上昇をし、その後の温度はより緩やか
な上昇かまたはTe1以上によがらない安定した状態に
なる。この温度Te1以上に昇温しない条件は、前記T
e1以上の温度で前記第1および第2の抵抗体の並列抵
抗値が高く、Te1以上に昇温さ廿るのに不十分な発熱
程度しかさせないことであって、前記Telの近傍温度
で前記第2の抵抗体が電圧印加され続ける間、金属相か
ら非金属相、非金属相から金属相へと前記相転移が起こ
り続ける状態を実現することである。この様な状態を実
現すれば前述の平衡温度Teの実現の場合と同様に、階
調記録が容易に行え、温度の高い領域即ち、ゴC2から
Tclまでをやや緩やかな温度勾配にしているため、高
温部での発熱抵抗体周辺への熱衝撃をやわらげ、従って
信頼性の高い発熱構造となる。
For example, if the phase transition temperature Tel of the first resistor is 200°C and the phase transition temperature of the second resistor is 150°C, and a constant voltage is applied to the heating resistor with such a configuration, the surface temperature of the heating resistor will change. is the change song of the heating element surface temperature in Figure 12! II (7
3). There is a steep temperature rise from ton, when voltage application is started, to temperature TC2, then a gradual temperature rise until Tel, and thereafter the temperature rises more slowly or remains in a stable state that does not vary beyond Te1. The condition that the temperature does not rise above this temperature Te1 is the above-mentioned T
The parallel resistance value of the first and second resistors is high at a temperature of e1 or more, and generates only an insufficient amount of heat to raise the temperature to a temperature of Te1 or more; The purpose is to realize a state in which the phase transition continues to occur from the metal phase to the non-metal phase and from the non-metal phase to the metal phase while the voltage continues to be applied to the second resistor. If such a state is achieved, gradation recording can be easily performed as in the case of achieving the equilibrium temperature Te described above, and the temperature gradient in the high temperature region, that is, from GoC2 to Tcl, is somewhat gentle. This reduces the thermal shock to the vicinity of the heating resistor in the high-temperature area, resulting in a highly reliable heating structure.

第1図、第3図に示した第1および第2の装置例の発熱
抵抗体構造を、連続パルスで駆動した場合の、発熱抵抗
体表面の温度変化の様子を第13図に、また第3および
第4の装置例の発熱抵抗体構造を、連続パルスで駆動し
た場合の、発熱抵抗体表面の温度変化の様子を第14図
に示した。第1のパルスから第nのパルスまで、急勾配
で立ち上がり到達する中間温度Tcは一定であり、第1
のパルスによるTcまでの昇温時間が、発熱抵抗体の初
期のバックグラウンド温度が低い分長めとなるが、第2
のパルス以降はほとんど発熱カーブが同じとなる。この
ように−切駆動上の制御を行うことなく一定発熱温度に
自己制御することができる。上記第1のパルスでの発熱
昇温時間が長いことは、たとえ昇華型階調プリンタなど
においても特に問題とならないが、厳密な記録濃度管理
を必要とする場合は、第1のパルス即ちバンクグラウン
ド温度が低い場合のみ昇温時間の長い分印加パルス幅を
延ばして、ピーク温度保持時間を均一に制御してやって
も良い。
FIG. 13 shows how the temperature changes on the surface of the heating resistor when the heating resistor structures of the first and second device examples shown in FIGS. 1 and 3 are driven with continuous pulses. FIG. 14 shows how the temperature changes on the surface of the heating resistor when the heating resistor structures of the third and fourth device examples are driven by continuous pulses. From the first pulse to the nth pulse, the intermediate temperature Tc that rises steeply and reaches is constant;
The time taken to raise the temperature to Tc by the pulse is longer because the initial background temperature of the heating resistor is low, but
After the pulse, the heat generation curve is almost the same. In this way, the heat generation temperature can be self-controlled to a constant level without any control over the -cut drive. The long heat generation time in the first pulse is not a particular problem, even in sublimation type gradation printers, but if strict recording density management is required, the first pulse, i.e., the bank ground Only when the temperature is low, the applied pulse width may be extended by the length of the heating time to uniformly control the peak temperature holding time.

階調記録を行う記録機器においては、直接感熱方式、昇
華転写方式、通電記録を問わず、印加パルス幅の長短で
階調制御することが一般的である。
In a recording device that performs gradation recording, regardless of whether it is a direct thermal method, a sublimation transfer method, or an energized recording method, it is common to control the gradation by changing the length of the applied pulse width.

従来の熱記録方法においては、パルス幅の長さと共に発
熱抵抗体のピーク温度が大きく変化してしまうため、階
調制御が難しかったが、本発明に関わる熱記録装置では
、少なくとも発熱昇温過程の中間温度が一定値に自己制
御されているため、パルス幅という時間のパラメータの
みで、発熱ピーク温度とインクなどに与える総熱エネル
ギーを再現性よく制御した階調制御が可能で、特に第3
、第4の装置例においてはピーク温度がより均一な状態
を実現でき、厳密な階調を実現できる。従来例では、6
4階調程度の相対濃度制御を行っていることもあるが、
絶対濃度制御では、せいぜい16階調が原皮である。し
かし、本発明に関わる熱記録装置におけるサーマルヘッ
ドでは上述の説明によって明らかなように、絶対濃度制
御が容易であり、128階調、256階調も可能である
。第15図は、階調制御に本発明に関わる第1、第2の
装置例の熱記録方法における、発熱抵抗体への印加パル
ス幅に対する、発熱抵抗体表面温度の温度波形を表した
図で、第16図は、第3、第4の装置例の同様な発熱抵
抗体表面温度の温度波形を表した図である。それぞれの
図において、第1階調パルス(19−1,2l−1)に
よる発熱抵抗体温度波形(18−1,2O−1)が、昇
温過程の途中で冷却降下開始しているが、この様な階調
パルス設定であっても、第N階調までのほとんどのパル
スのP:端が、発熱抵抗体の自己制御された中間温度T
c(またはTc2)に到達する時刻以降にあれば、階調
精度は高いものとなる。
In conventional thermal recording methods, gradation control was difficult because the peak temperature of the heating resistor changes greatly with the length of the pulse width, but with the thermal recording device according to the present invention, at least Since the intermediate temperature of the ink is self-controlled to a constant value, it is possible to perform gradation control with good reproducibility of the exothermic peak temperature and the total thermal energy given to the ink, etc., using only the time parameter of the pulse width.
In the fourth example of the apparatus, it is possible to achieve a more uniform peak temperature and to achieve precise gradations. In the conventional example, 6
Relative density control of about 4 gradations is sometimes performed,
In absolute density control, at most 16 gradations are the original skin. However, as is clear from the above explanation, absolute density control is easy with the thermal head in the thermal recording apparatus according to the present invention, and 128 gradations and 256 gradations are also possible. FIG. 15 is a diagram showing the temperature waveform of the heating resistor surface temperature with respect to the pulse width applied to the heating resistor in the thermal recording method of the first and second apparatus examples related to the present invention for gradation control. , FIG. 16 is a diagram showing the temperature waveform of the surface temperature of the heating resistor in the third and fourth device examples. In each figure, the heating resistor temperature waveform (18-1, 2O-1) due to the first gradation pulse (19-1, 2l-1) begins to cool down in the middle of the temperature rising process. Even with such gradation pulse settings, the P: end of most pulses up to the Nth gradation is the self-controlled intermediate temperature T of the heating resistor.
If it is after the time when c (or Tc2) is reached, the gradation accuracy will be high.

第5の装置例 第3図、第4図、第5図に示した前述の第2の装置例で
は、前記第1の抵抗体と、第2の抵抗体の平面形状が同
一であったが、第6図のように異なる平面形状で第1の
抵抗体(10)と第2の抵抗体〈11)を並列させる場
合もある。第7図は、第6図における発熱抵抗体のc−
c’断面図である。この第1の抵抗体(10)の形状は
、発熱抵抗体の外形形状と一致し、第2の抵抗体(11
)は、発熱抵抗体の中央部にスリットbが開く形でa部
に形成されている。前記第2の抵抗体(11)には前記
第1の抵抗体(10)が積層されている。
Fifth Device Example In the second device example shown in FIGS. 3, 4, and 5, the first resistor and the second resistor have the same planar shape. , the first resistor (10) and the second resistor (11) may be arranged in parallel with different planar shapes as shown in FIG. Figure 7 shows the heating resistor c- in Figure 6.
It is a c' sectional view. The shape of this first resistor (10) matches the external shape of the heating resistor, and the shape of the second resistor (11
) is formed in part a with a slit b opening in the center of the heating resistor. The first resistor (10) is laminated on the second resistor (11).

この第5の装置例の発熱抵抗体に電圧パルスを印加し発
熱させると、第6図におけるc−c’断面の発熱抵抗体
表面温度分布の昇温過程での変化は、第18図の発熱体
表面温度の分布的m(77)ようになる。前記第1の抵
抗体と第2の抵抗体が積層されているa部は、温度Tc
に達するまですばやい昇温をし、b部が温度の谷間とな
る。
When a voltage pulse is applied to the heating resistor of this fifth device example to generate heat, the change in the temperature distribution on the surface of the heating resistor in the cross section cc' in FIG. The distribution of body surface temperature is m(77). The part a where the first resistor and the second resistor are laminated has a temperature Tc.
The temperature rises rapidly until it reaches , and the temperature reaches a valley at part b.

a部が温度Tcを越えると発熱抵抗体体の全領域a、b
で前記第1の抵抗体による発熱のみとなり、緩やかな発
熱を一様にする。このTc以上の状態では前記温度の谷
間となったb部に周囲のa部の熱が拡散し、発熱抵抗体
断面の表面温度分布は台形形状に近づき、従来の発熱抵
抗体での温度分布が発熱抵抗体の中央部が温度ピークと
なるのに対し、発熱抵抗体形状に忠実な発熱温度分布と
なる。
When part a exceeds the temperature Tc, the entire area a, b of the heating resistor body
Then, only the heat generated by the first resistor is generated, and the gradual heat generation is made uniform. When the temperature is higher than Tc, the heat from the surrounding part a diffuses into part b, which is the temperature valley, and the surface temperature distribution of the cross section of the heating resistor approaches a trapezoidal shape, which is different from that of the conventional heating resistor. While the temperature peaks at the center of the heating resistor, the heat generation temperature distribution is faithful to the shape of the heating resistor.

第6の装置例 第8図に発熱抵抗体の平面図、第9図にこの発熱抵抗体
のD−D’断面図を示すように、第6図、第7図におけ
る第2の抵抗体(11)を、逆にb部に設けa部に設け
ないようにすると、第17図に示した発熱体表面温度の
分布曲線(76)のように、特に温度Tc近傍では、b
部即ち発熱抵抗体中央部の温度ピークは従来以上に鋭く
なり、70以上の高温はど温度ピークの鋭さが従来の鋭
さに近づいていく傾向をもつので、感熱記録における印
加エネルギ調整による網点式階調方法でのこの装置例の
利用は、従来困難だった低濃度(小面積)の階!II域
の再現性向上をもたらす。またサーマルインクジェット
のように瞬間的な高温を局所的に必要とする液体インク
の気泡発生にも向いている。
6th Device Example As shown in FIG. 8 is a plan view of the heat generating resistor, and FIG. 9 is a sectional view taken along line DD' of this heat generating resistor, the second resistor ( 11) is provided in part b and not in part a, as shown in the distribution curve (76) of the heating element surface temperature shown in FIG. 17, especially near the temperature Tc, b
In other words, the temperature peak at the center of the heating resistor becomes sharper than before, and at high temperatures of 70 or above, the sharpness of the temperature peak tends to approach the conventional sharpness. The use of this example device in the gradation method is possible with low density (small area) floors, which was previously difficult! Improves reproducibility in region II. It is also suitable for generating bubbles in liquid ink, such as thermal inkjet, which requires instantaneous high temperatures locally.

第7の装置例 以上は、感熱記録紙などの記録媒体、または記録媒体に
転写されるインクドナーシート、液体インクに熱を印加
する発熱抵抗体の発熱温度を均一に制御する装置例であ
ったが、発熱抵抗層を持つ感熱記録紙やインクドナーシ
ートに、通電電極を持つ通電ヘッドによって電圧パルス
を印加し、前記発熱抵抗層を持つ感熱記録紙やインクド
ナーシート自身が発熱し記録する通電熱記録方法におい
て、前記発熱抵抗層にカーボン塗料などの通常発熱抵抗
材料からなる第1の抵抗層と、例えば温度Tc5で金属
非金属の相転移をする材料からなる第2の抵抗層の積層
発熱層を用いても発熱中間温度の均一自己制御によって
記録の均一化が図れる。
Seventh Device Example The above examples are devices for uniformly controlling the heating temperature of a heating resistor that applies heat to a recording medium such as thermal recording paper, an ink donor sheet transferred to the recording medium, or a heating resistor that applies heat to liquid ink. However, when a voltage pulse is applied to a thermal recording paper or an ink donor sheet having a heating resistance layer by a current-carrying head having a current-carrying electrode, the thermal recording paper or ink donor sheet having a heating resistance layer itself generates and records the energized heat. In the recording method, the heating resistor layer is a laminated heat generating layer including a first resistive layer made of a normal heat generating resistive material such as carbon paint, and a second resistive layer made of a material that undergoes a metal-nonmetal phase transition at a temperature Tc5, for example. Even when using this method, uniform recording can be achieved by uniform self-control of the intermediate temperature of heat generation.

この通電熱記録における本発明の装置例を以下説明する
An example of the apparatus of the present invention for this electrical thermal recording will be described below.

第19図は、通電感熱記録装置の断面図であって、通電
感熱記録紙(50)は、発色記録層(51)、前記第2
の相転移抵抗層(52)、前記第1の通常抵抗層(53
)から威り、この第2の抵抗層(52)は電気伝導度が
特定温度領域の低温側で金属的、高温側で非金属的な変
化をする素材を主成分とした材料を均一塗布した層ある
いは蒸着などによって形成された層である。上記電気伝
導度の変化を起こす特定温度領域Tc5は、高速記録型
、低消費電力型、階調記録型等記録装置によっても違い
を与えるべきであるが、例えば100℃から150℃程
度が好適である。上記通電感熱記録紙(50)が、プラ
テン(66)と通電ヘッド(60)に挟まれた状態で、
通i通電極(61)、帰路電極(62)間に電圧パルス
を印加し、前記第1、第2の抵抗層(52,53)を発
熱させる。前記積層発熱層が発熱前記温度Tc5に達す
ると前記第2の抵抗層(53)は抵抗値が急激に上昇し
発熱にほとんど寄与しなくなり、前記第1の抵抗層(5
2)による発熱に依って緩やかな発色層(51)の昇温
をもたらし発色が行われる。
FIG. 19 is a sectional view of the current-carrying heat-sensitive recording device, in which the current-carrying heat-sensitive recording paper (50) includes a coloring recording layer (51), the second
phase change resistance layer (52), the first normal resistance layer (53)
), this second resistance layer (52) is made by uniformly coating a material whose main component is a material whose electrical conductivity changes from metallic at the low temperature side to non-metallic at the high temperature side of a specific temperature range. It is a layer or a layer formed by vapor deposition. The specific temperature range Tc5 that causes the change in electrical conductivity should be different depending on the recording device, such as high-speed recording type, low power consumption type, gradation recording type, etc., but for example, about 100°C to 150°C is preferable. be. With the electrically conductive thermal recording paper (50) sandwiched between the platen (66) and the electrically conductive head (60),
A voltage pulse is applied between the pass electrode (61) and the return electrode (62) to generate heat in the first and second resistance layers (52, 53). When the laminated heat generating layer reaches the heat generating temperature Tc5, the resistance value of the second resistive layer (53) increases rapidly and hardly contributes to heat generation, and the second resistive layer (53) hardly contributes to heat generation.
The heat generated by 2) causes a gradual temperature rise in the coloring layer (51), and coloring is performed.

第8の装置例 第20図は、熱溶融性インク層(56〉と、導電層(5
4〉と、電気伝導度が特定温度Tc6の低温側で金属的
、高温側で非金属的な変化をする素材を主成分とした材
料からなる第2の抵抗粒子(58)と、カーボン粒子な
どの通常の抵抗特性を持つ第1の抵抗粒子(57)を分
散させた混合発熱抵抗層(55)を設けた通電転写用イ
ンクドナーシートの断面図である。第21図はこのイン
クドナーシートを用いた通電記録装置の断面図であり、
通電ヘッドの通電電極(61〉と、この通電ヘッドから
幾分離れた箇所に設けられた帰路電極(65)間の電流
は、前記インクドナーシートの混合発熱抵抗層(55)
において、この層の深さ方向に主に流れる。前記相転移
する第2の抵抗粒子(58)と前記第1の抵抗粒子(5
7)は、前記通電電極(61)と前記導電層(54)の
間で並列回路を構成しており、前記特定温度Tc6以下
では共に発熱に寄与し、Tc6以上では第2の抵抗粒子
はほとんど発熱に寄与しなくなる。
The eighth device example, FIG. 20, shows a heat-melting ink layer (56) and a conductive layer (56).
4>, second resistive particles (58) made of a material whose electrical conductivity changes from metallic at the low temperature side to non-metallic at the high temperature side of a specific temperature Tc6, and carbon particles, etc. FIG. 2 is a cross-sectional view of an ink donor sheet for electrical transfer provided with a mixed heating resistance layer (55) in which first resistance particles (57) having a normal resistance characteristic of 1 are dispersed. FIG. 21 is a cross-sectional view of a current recording device using this ink donor sheet,
The current between the current-carrying electrode (61) of the current-carrying head and the return path electrode (65) provided at a location some distance from the current-carrying head flows through the mixed heating resistance layer (55) of the ink donor sheet.
, it mainly flows in the depth direction of this layer. The second resistive particle (58) undergoing a phase transition and the first resistive particle (58)
7) constitutes a parallel circuit between the current-carrying electrode (61) and the conductive layer (54), and below the specific temperature Tc6, both contribute to heat generation, and above Tc6, the second resistive particles hardly It no longer contributes to heat generation.

前記混合発熱抵抗層(55)、導電層(54)は、イン
クドナーシートに設けられていなくとも、発熱シートと
してインクドナーシートと別シートであっても構わない
The mixed heating resistance layer (55) and the conductive layer (54) do not have to be provided on the ink donor sheet, but may be a separate sheet from the ink donor sheet as a heating sheet.

前記第19図、第21図の発熱抵抗層に金属非金属転移
をする材料層(あるいは粒子)と通常抵抗層(あるいは
粒子)を用いた装置例において、前述の第2の装置例に
おける第1、第2の抵抗体を備えたサーマルヘッドを用
いた熱記録の場合と同様に、前記発熱抵抗層は、通を電
圧、通電時間、通電ヘッドの温度、発熱抵抗層を含む通
電感熱紙の通電前の温度、プラテンや環境温度等によら
ず、通電された場合の前記特定温度(Tc5あるいはT
c6)にすばやく昇温し、その後援やかな昇温か行われ
る。従って発熱ピーク温度は、前記特定温度(Tc5あ
るいはTc6)をヘースにして安定した温度を実現しや
すく、従来の様な熱制御をほとんど必要とせず、均一な
熱記録を実現できる。
In the device examples using the material layer (or particles) that undergoes metal-nonmetal transition and the normal resistance layer (or particles) in the heating resistance layer shown in FIGS. 19 and 21, the first , as in the case of thermal recording using a thermal head equipped with a second resistor, the heat-generating resistive layer is controlled by the voltage, the current-carrying time, the temperature of the current-carrying head, and the current-carrying thermal paper including the heat-generating resistor layer. Regardless of the previous temperature, platen or environmental temperature, etc., the specified temperature (Tc5 or Tc5) when energized is
The temperature is quickly raised to c6), and the temperature is gradually raised. Therefore, the exothermic peak temperature can be easily maintained at a stable temperature based on the specific temperature (Tc5 or Tc6), and uniform thermal recording can be achieved without the need for conventional heat control.

本発明の実施例 つぎに、上述の全ての装置例における本発明の発熱駆動
の方法を実施例で説明する。
Embodiments of the Invention Next, the heat generation driving method of the present invention in all of the above-mentioned apparatus examples will be explained by way of embodiments.

第23図は、前述の各発熱抵抗体、発熱抵抗層に(42
)のような電圧パルスを印加したときの、前記発熱抵抗
体、発熱抵抗層に流れる電流の波形(41)を示してい
る。通電前の発熱抵抗体温度がTc(あるいはTc2)
以下の場合、例えば前述の第2の装置例における第2の
抵抗体の抵抗値が低く、発熱抵抗体としての抵抗値は、
第1の抵抗体と第2の低い状態での抵抗値の並列抵抗値
となっており、より多くの電流が流れる。この状態は、
第2の抵抗体が高温相に転移するTc2の温度領域に到
達する時刻tpまで続き、この時刻以降は、第2の抵抗
体の抵抗値が高くなる分、電流値が減少した状態となり
、通電パルスの終端までこの状態が持続する。一定電圧
駆動なら、発熱体抵抗値がtp以前で約500Ω、tp
以降で2000Ωなら、電流値はtp後に1/4番こ減
少する。
FIG. 23 shows each heat generating resistor and heat generating resistor layer (42
) shows the waveform (41) of the current flowing through the heat generating resistor and the heat generating resistor layer when a voltage pulse as shown in FIG. The heating resistor temperature before energization is Tc (or Tc2)
In the following case, for example, the resistance value of the second resistor in the above-mentioned second device example is low, and the resistance value as a heating resistor is
The resistance value of the first resistor and the resistance value in the second low state are parallel, and more current flows. This state is
This continues until time tp when the second resistor reaches the temperature range Tc2 where it transitions to a high temperature phase, and after this time, the current value decreases as the resistance value of the second resistor increases, and the current is turned on. This state persists until the end of the pulse. If driven at a constant voltage, the heating element resistance value is approximately 500Ω before tp, tp
If it is 2000Ω thereafter, the current value will decrease by 1/4 after tp.

厳密には、前記第1の抵抗体の抵抗値は若干の温度依存
性があり、−船釣なサーメント抵抗体なら一数百ppm
/℃の抵抗温度係数を持っていおり、また、前記第2の
抵抗体も、抵抗値が大きく変化する相転移温度領域から
離れた温度域でも若干の抵抗値の温度依存性を持ってい
るから、時刻tp以前のパルス印加時間帯、tp以降の
パルス印加時間帯においても電流値の若干の変動がある
。また、前記電流値は発熱抵抗体回路のり、C酸分の影
響も受ける。しかし、これらの前記を流値への影響は、
前記時刻tp近傍での電流値変化に較べ、ごく僅かであ
る。
Strictly speaking, the resistance value of the first resistor has a slight temperature dependence.
/°C, and the second resistor also has a slight temperature dependence of its resistance value even in a temperature range far from the phase transition temperature region where the resistance value changes greatly. , the current value slightly fluctuates in the pulse application time period before time tp and in the pulse application time period after tp. Further, the current value is also influenced by the heat generating resistor circuit and C acid content. However, the influence of these on the flow value is
The change in current value is very small compared to the change in the current value near the time tp.

ところで、各方式の熱記録装置においては、般に複数の
ドツトで記録画像を表現し、例えばサーマルヘッドの場
合には微少な発熱抵抗体を多数備え、各発熱抵抗体が前
記ドツトを表現せしめる。
Incidentally, in each type of thermal recording device, a recorded image is generally expressed by a plurality of dots, and for example, in the case of a thermal head, a large number of minute heat generating resistors are provided, and each heat generating resistor expresses the dot.

前記記録装置に設けられるtal装置はむやみに大きく
することができないから、−a的には、前記複数の発熱
抵抗体を複数のブロックに分割して、これらのブロック
ごとに通電パルスを印加する時分割駆動が行われ、記録
における最大電力、即ち最大電流を小さくしている。本
発明に関わる記録装置においては、−ドツトのil’l
パルス内で大きな電流変化が起きるから、たとえ、第2
2図に示したような各ブロックの駆動時刻を重ねない分
割駆動を行っても、電流容量に無駄が生じる。しかし、
第24図に示したような、各ブロックの駆動の時間シフ
ト量を、第23図におけるtonからtpの時間分だけ
とり、かつひとつのブロック内の発熱抵抗体数を少なく
設定すると、前記電源が供給する通電流の変動は少なく
なり、&を電流も抑えることができる。
Since the tal device provided in the recording device cannot be made unnecessarily large, -a, when the plurality of heating resistors are divided into a plurality of blocks and an energizing pulse is applied to each of these blocks. Divided driving is performed to reduce the maximum power in recording, that is, the maximum current. In the recording apparatus according to the present invention, - dot il'l
Since a large current change occurs within the pulse, even if the second
Even if divided driving is performed in which the driving times of each block do not overlap as shown in FIG. 2, the current capacity is wasted. but,
As shown in FIG. 24, if the time shift amount for driving each block is set by the time from ton to tp in FIG. 23, and the number of heating resistors in one block is set to a small number, the power source Fluctuations in the supplied current are reduced, and the current can also be suppressed.

第24図は、上述の考え方を元にしたブロック分割駆動
における、各ブロックへのパルス(461)印加タイミ
ングと、対応するブロックの電流波形(45−i)とを
示したタイくングチャートの例である。前記分割駆動の
シフト時間はdtである。第Nブロックのピーク電流部
分く第23図の(44)に対応する部分)は、第N−1
ブロツクの小電流部分〈第23図の(43〉に対応する
部分〉と重なっており、第N+1ブロツクのピーク電流
部分も他のブロックの小電流部分と重なっている。すで
に述べたことだが、前記ピーク電流部分となるtonか
らtpの時間は、関わる発熱抵抗体の初期温度に依って
多少の変動をし、前記初期温度が低温なほど長くなる。
FIG. 24 is an example of a timing chart showing the pulse (461) application timing to each block and the current waveform (45-i) of the corresponding block in block division drive based on the above-mentioned concept. It is. The shift time of the divided drive is dt. The peak current part of the Nth block (the part corresponding to (44) in Fig. 23) is the N-1th block.
It overlaps with the small current portion of the block (the portion corresponding to (43) in Fig. 23), and the peak current portion of the N+1 block also overlaps with the small current portion of the other blocks. The time from ton to tp, which is the peak current portion, varies somewhat depending on the initial temperature of the heat generating resistor involved, and the lower the initial temperature, the longer it becomes.

これは、発熱抵抗体が前記温度Tcまで昇温するのに低
温から昇温して行くほど時間がかかるからである。瞬間
的にも、前記各ブロック間で前記tonからtpまでの
時間が重ならないことが電源効率上は望ましいので、関
わる記録装置の最低動作保証温度でのtonからtpま
での時間より、diを若干長めに設定したタイミングで
ブロックの分割駆動を行えばよいわけである。また発熱
抵抗体あるいは発熱抵抗層周辺の温度を感知して、dt
をこの温度に応して変化させることもある。第24図の
ように駆動すると、同し1!源容量の電源を用いた場合
、第22図のようなタイミングで駆動した場合に較べ、
短時間で全てのブロックの駆動を完了することができ、
記録の高速化に役立つ。
This is because it takes longer for the heating resistor to heat up to the temperature Tc as the temperature rises from a lower temperature. In terms of power efficiency, it is desirable that the time from ton to tp does not overlap between the blocks even momentarily. The blocks can be divided and driven at longer timings. It also senses the temperature around the heating resistor or heating resistor layer, and
may be changed depending on this temperature. When driven as shown in Fig. 24, the result is 1! When using a power source with a high capacity, compared to driving at the timing shown in Figure 22,
All blocks can be driven in a short time,
Helps speed up recording.

上述のような、印加パルス幅(tonからt。The applied pulse width (ton to t.

ffまでの時間)に較べ、十分短い時間であるdtの時
間シフトで分割駆動を行った場合には、電源の効率化の
他に、以下に述べるような記録の忠実性の上での利点が
ある。
When split driving is performed with a time shift of dt, which is a sufficiently short time compared to be.

サーマルヘッドを例にすると、複数の発熱抵抗体が直線
状に配列し、この発熱抵抗体列と直角な方向に感熱記録
紙を連続相対移動させて記録を行うが、例えば前記発熱
抵抗体列方向の1ドア)分の線幅の直線を記録しようと
した場合、ブロック分割のシフト時間dtが、前記1ド
ツト分の線幅の距離を感熱記録紙が相対移動する時間に
較べ無視できないほど長いと、前記直線が前記ブロック
位置に対応した階段状の線となってしまう。ところが、
dtを短くし分割数を増やした前記の駆動方法では階段
状の断差がdtの短さに対応して僅かなものとなって、
前記断差の目だたない直線として表現できる。従って、
図面のプロフタとしての用途などでは非常に有用な方法
である。
Taking a thermal head as an example, a plurality of heating resistors are arranged in a straight line, and recording is performed by continuously moving a thermal recording paper relative to the heating resistor row in a direction perpendicular to the heating resistor row. When trying to record a straight line with a line width of 1 door), the shift time dt for block division is so long that it cannot be ignored compared to the time it takes for the thermal recording paper to move the distance of the line width of 1 dot. , the straight line becomes a stepped line corresponding to the block position. However,
In the above-mentioned driving method in which dt is shortened and the number of divisions is increased, the step-like difference becomes small corresponding to the shortness of dt.
It can be expressed as a straight line with no noticeable difference. Therefore,
This is a very useful method when used as a drawing profiler.

ところで前記の一連の金属非金[(あるいは絶縁体、半
導体)転移をする物質としては、酸化バナジウム系化合
物がある。酸化バナジウムに微量のCrをドープするこ
とによって室温より高い温度の領域で金属非金属的(あ
るいは絶縁体、半導体的)な電気伝導度の変化を起こす
。より高温側で非金属的(あるいは絶縁体、半導体的)
、より低温側で金属的な電気伝導度をもつ、バナジウム
、酸化バナジウムとも高融点物質であって発熱抵抗体と
して使用可能である。発熱抵抗膜としてスパッタリング
等に薄膜プロセスによる底膜が可能であり、パウダ化し
てバインダを混ぜるなどしてペースト化して、あるいは
有機金属化して塗布等厚膜プロセスによる製造等も可能
である。前記第8の装置例(通電熱記録における装置例
)では、発熱抵抗層の厚さ程度の均一に粒径がそろった
粒子を用いる。いずれの場合も、Ifi、M、整粒され
た酸化バナジウム成分は、少なくとも多結晶構造を必要
とする。スパックリングの場合、金属バナジウムとクロ
ムの合金ターゲット、あるいはクロムを埋め込んだ金属
ハナジウムターゲントをアルゴンと酸素ガスを用いてス
パッタする方法、酸化バナジウム粉体と酸化クロム粉体
を焼結したターゲットを、アルゴンガスまたはアルゴン
ガスに酸素を微量混合して高周波スパッタする方法等が
ある。
By the way, vanadium oxide compounds are examples of the above-mentioned substances that undergo metal-non-gold (or insulator, semiconductor) transitions. By doping vanadium oxide with a small amount of Cr, the electrical conductivity changes like a metal/nonmetal (or an insulator or a semiconductor) in a temperature range higher than room temperature. Nonmetallic (or insulating, semiconducting) at higher temperatures
Both vanadium and vanadium oxide are high melting point substances that have metallic electrical conductivity at lower temperatures and can be used as heating resistors. As a heat-generating resistive film, a bottom film can be formed by a thin film process such as sputtering, or it can be made into a powder and mixed with a binder to form a paste, or it can be made into an organic metal and manufactured by a thick film process such as coating. In the eighth device example (device example for energization thermal recording), particles are used that have uniform particle diameters that are approximately the same thickness as the heat generating resistor layer. In either case, Ifi, M, and the sized vanadium oxide component require at least a polycrystalline structure. In the case of spackling, sputtering is performed using an alloy target of metal vanadium and chromium, or a metal hanadium target embedded with chromium using argon and oxygen gas, or a target made of sintered vanadium oxide powder and chromium oxide powder is used. There are methods such as argon gas or a method of mixing a small amount of oxygen with argon gas and performing high frequency sputtering.

いずれのスパックリングにおいても、より結晶状態を確
実にするため着膜部の温度は数百℃以上であることが望
ましいが、酸膜後レーザ照射や真空7アニール熱処理し
て結晶性を上げる方法もある。
In any spackling, it is desirable that the temperature of the deposited film is several hundred degrees Celsius or higher to ensure a more crystalline state, but it is also possible to increase the crystallinity by performing laser irradiation or vacuum 7 annealing heat treatment after the acid film. be.

Crを適量ドープした場合、電気伝導度は上記転移温度
において2〜3桁変化するので、発熱抵抗体や通電感熱
紙の発熱抵抗層として利用すると、一定電圧印加状態に
おいて、上記転移温度の上下で消費電力値として2〜3
桁変化し、熱記録という観点からは実質的に発熱非発熱
の変化を伴う。
When an appropriate amount of Cr is doped, the electrical conductivity changes by 2 to 3 orders of magnitude at the above transition temperature, so when used as a heating resistor layer of a heating resistor or current-carrying thermal paper, the electrical conductivity changes above and below the above transition temperature under a constant voltage application state. 2-3 as power consumption value
This is accompanied by a substantial exothermic and non-exothermic change from the thermal recording point of view.

従って窒化タンタルやサーメット等の通常抵抗体を並列
に組み込めば、前述の一連の装置例の発熱抵抗体を実現
できる。前記酸化バナジウムにドープするCrの割合を
変えると、前記転移温度を変化させることが可能であっ
て、前記一連の中間温度Tcの温度の設定が可能となる
。Crをドープしない酸化バナジウムでは抵抗値変化の
割合は小さく、かつ温度に対して緩やかな変化であるが
、約400℃を境に低温側から高温側に向かって1桁近
いの抵抗値上昇があり、本発明に関わる第1の装置例の
様な単独材料構成の発熱抵抗体に利用できるし、通常抵
抗体材料と組み合わせた発熱抵抗体材料としても可能で
ある。例えば、前述の第2の装置例では、抵抗膜として
第1の抵抗体と第2の抵抗体を別の層として設けたが、
酸化バナジウムなどの相転移材料が、他の金属(例えば
タンタル)との混合構造の膜においてもその相転移特性
を保てるなら、混合膜として発熱抵抗体を形成すること
もできる。この場合前述の第1の装置例と同様の単一発
熱抵抗体膜となり、発熱抵抗体の底膜、バターニングと
いった加工上の簡略化が図れる。
Therefore, by incorporating ordinary resistors such as tantalum nitride or cermet in parallel, the heat generating resistor of the series of device examples described above can be realized. By changing the proportion of Cr doped into the vanadium oxide, it is possible to change the transition temperature, and it is possible to set the series of intermediate temperatures Tc. With vanadium oxide that is not doped with Cr, the rate of resistance change is small and changes gradually with temperature, but there is a nearly one-digit increase in resistance from the low temperature side to the high temperature side after about 400 degrees Celsius. It can be used for a heating resistor composed of a single material like the first example of the device related to the present invention, or it can be used as a heating resistor material in combination with a normal resistor material. For example, in the second device example described above, the first resistor and the second resistor were provided as separate layers as the resistive film, but
If a phase change material such as vanadium oxide can maintain its phase change characteristics even in a film having a mixed structure with another metal (for example, tantalum), a heating resistor can be formed as a mixed film. In this case, a single heating resistor film similar to the first example of the device described above is obtained, and processing such as the bottom film and patterning of the heating resistor can be simplified.

第25図は、前述の第1の装置例における金属非金属転
移をする発熱抵抗体の線抵抗の温度変化を表す図である
。線抵抗自体は、膜厚、線幅によって変化するので参考
値ではあるが、前記Crをバナジウムに対し0.5%程
度ドープした酸化バナジウムでは、線抵抗特性カーブ(
31)のように約150℃で3桁はどの抵抗値変化があ
る。Crのドープ量によって抵抗値変化を起こす温度領
域は変化し、Crのドープ量を増やしていくと前記抵抗
値変化の温度領域は徐々に低温側ヘシフトしてくる。C
rのバナジウムに対するドープ量が数%を超えると、低
温側から高温側に向かう抵抗値増大の変化が消失してし
まうため本発明に関わる装置機能の目的を達しにくくな
る。上述のように、Crのドープ量が抵抗変化の温度特
性を変化させるため、酸化バナジウムに対するCrのド
ープ量の試料内のミクロ的な不均一度によって、上記線
抵抗の変化は、例えば第25図(32)のカーブのよう
にある温度幅を持つなだらかなものとなることもある。
FIG. 25 is a diagram showing a temperature change in the linear resistance of the heating resistor that undergoes metal-nonmetal transition in the first device example described above. The line resistance itself changes depending on the film thickness and line width, so it is a reference value, but for vanadium oxide doped with about 0.5% Cr to vanadium, the line resistance characteristic curve (
31), there is a three-digit change in resistance value at about 150°C. The temperature range in which the resistance value changes changes depending on the amount of Cr doped, and as the Cr doping amount increases, the temperature range in which the resistance value changes gradually shifts to the lower temperature side. C
If the amount of doping r with respect to vanadium exceeds several percent, the change in resistance value increase from the low temperature side to the high temperature side disappears, making it difficult to achieve the purpose of the device function related to the present invention. As mentioned above, since the amount of Cr doped changes the temperature characteristics of the resistance change, the change in the linear resistance is affected by the microscopic non-uniformity within the sample of the amount of Cr doped with respect to vanadium oxide, for example, as shown in FIG. It may also be a gentle curve with a certain temperature range, such as the curve (32).

この様ななだらかな変化であっても本発明に関わる装置
機能の目的は達せられる。
Even with such a gradual change, the purpose of the device function related to the present invention can be achieved.

また、例えば−辺0.数mmの発熱抵抗体に通電して昇
温させようとしたとき、発熱抵抗体内では空間的に均一
に温度上昇が起こらないので、例えばサーマルヘッドの
発熱抵抗体に上述の物質を用いた場合、発熱抵抗体とし
ての抵抗値の変化は、見かけ上第25図(32)のよう
ななだらかなものとなるが、この場合においてもミクロ
的には前記中間温度Tcまではすばやい昇温とTc以上
の温度ではゆるやかな昇温の状態が起こっている。
Also, for example - side 0. When an attempt is made to raise the temperature of a heating resistor several millimeters in length by applying current, the temperature does not rise spatially uniformly within the heating resistor. The change in resistance value as a heating resistor appears to be gradual as shown in FIG. A gradual increase in temperature is occurring.

従って、昇温の遅い部分はよりすばやい昇温を続け、速
い昇温部分は速やかにおだやかな昇温状態に移行するた
め、発熱抵抗体内の温度分布をより均一な方向に補正す
るような機能をもち、従来の感熱記録方法等と比較して
、より記録ドツトの忠実度が高い記録を実現できる利点
も持ち合わせる。
Therefore, in order to keep the temperature rising slowly in areas where the temperature rises more quickly, and in order to quickly transition to a more gradual temperature rise in the areas where the temperature rises quickly, a function is required to correct the temperature distribution within the heating resistor to make it more uniform. It also has the advantage of being able to realize recording with higher fidelity of recording dots than conventional thermal recording methods.

上述のすべての装置例において、発熱抵抗体の発熱昇温
過程の昇温速度の変化する中間温度(TC)は、たとえ
発熱抵抗体上に吸熱源である感熱紙等の記録媒体が接触
していても、あるいは接触していなくとも変化せず、前
記中間温度以上ではより緩やかな温度変化をするから、
従来の熱記録におけるサーマルヘッドにおける発熱抵抗
体の無給紙状態での発熱ピーク温度の異常上昇による発
熱抵抗体の劣化、破壊が、本発明に関わる記録装置にお
ける発熱抵抗体では起こりにくいまた、ノイズ等による
駆動制御回路やCPLJの誤動作、暴走などの事態に対
しても高い信頼性を発揮する。
In all of the above-mentioned device examples, the intermediate temperature (TC) at which the heating rate of the heat generating resistor changes during the heating process of the heat generating resistor is determined even if a recording medium such as thermal paper, which is a heat absorption source, is in contact with the heat generating resistor. The temperature does not change even when the temperature changes or even when there is no contact, and the temperature changes more slowly above the intermediate temperature.
Deterioration and destruction of the heating resistor in the thermal head in conventional thermal recording due to an abnormal rise in the heat generation peak temperature in a non-sheet feeding state are less likely to occur in the heating resistor in the recording apparatus according to the present invention, and noise etc. It exhibits high reliability even in situations such as malfunctions and runaways of the drive control circuit and CPLJ.

上述のことは通電熱記録においても、回路暴走などによ
る通電感熱記録紙の異常発熱、発火、プラテン等の機器
部品の破壊等を起こす危険が少なく機器の信頼性、安全
性を高めることで共通する効果である。
The above is also common in energized thermal recording, as there is less risk of abnormal heating of the energized thermal recording paper due to circuit runaway, ignition, destruction of equipment parts such as platens, etc., and increases the reliability and safety of the equipment. It is an effect.

なお、上述の全ての装置例において、発熱抵抗体、発熱
抵抗層等の抵抗特性は、特に特定温度において不連続に
電気伝導度が変化する・ことが必要なわけではなく、特
定の幅を持った温度領域で連続的に温度変化ものであっ
ても構わない。前記発熱抵抗体としての抵抗値変化とし
て、1.5倍から10倍程度の変化が有れば十分な効果
を発揮する。この変化量は、一定電圧の印加条件下で、
発熱による昇温が記録に必要な温度まで到達することの
できる電力消費(エネルギ)をもたらす抵抗値と、記録
にかかわる温度レベルにおいて電力消費(エネルギ)が
少なくとも発熱抵抗体や発熱抵抗層の温度を維持する大
きさ程度の抵抗値の現実的な比率を意味している。
In addition, in all of the above device examples, the resistance characteristics of the heating resistor, heating resistance layer, etc. do not necessarily require that the electrical conductivity changes discontinuously at a specific temperature, but rather that they have a specific range. The temperature may change continuously within a temperature range. A sufficient effect can be achieved if the resistance value of the heating resistor changes by about 1.5 to 10 times. This amount of change is under the condition of constant voltage application.
A resistance value that provides power consumption (energy) that allows temperature rise due to heat generation to reach the temperature required for recording, and a resistance value that provides power consumption (energy) that at least exceeds the temperature of the heating resistor or heating resistor layer at the temperature level involved in recording. This means a realistic ratio of resistance values that is about the size that should be maintained.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、発熱抵抗体等
が置かれているあらゆる温度環境に対しても、従来より
均一な、再現性のよい温度制御が可能で、均一かつ再現
性の高い高品質な記録が可能。記録素子の熱特性バラツ
キに対しても、記録特性のバラツキを抑えることが可能
。発熱抵抗体抵抗値、発熱抵抗層のシート抵抗値のバラ
ツキに対しても、記録特性のバラツキを抑えることが可
能。高精度の濃度階調制御や網点階調制御が容易。記録
機器における温度検出等の温度情報収集回路や記録濃度
補正回路が簡単で済み、機器を小型、安価に提供するこ
とが可能0発熱抵抗体の耐暴走等に関して高信頼性かつ
より安全。発熱温度分布が発熱体形状に忠実で記録品質
に優れる。
As described above, according to the present invention, it is possible to perform temperature control more uniformly and reproducibly than conventionally in any temperature environment in which a heating resistor, etc. is placed. High quality recording is possible. It is possible to suppress variations in recording characteristics even with variations in thermal properties of recording elements. It is also possible to suppress variations in recording characteristics due to variations in the resistance value of the heating resistor and the sheet resistance value of the heating resistor layer. Highly accurate density gradation control and halftone gradation control are easy. Temperature information collection circuits such as temperature detection in recording equipment and recording density correction circuits are simple, making it possible to provide equipment that is small and inexpensive.Highly reliable and safer with respect to runaway resistance of heating resistors, etc. The heat generation temperature distribution is faithful to the shape of the heating element, resulting in excellent recording quality.

等の優れた性能を備える熱記録装置などにおいて、■ 
電源容量を小型にできる。
In thermal recording devices with excellent performance such as ■
The power supply capacity can be made smaller.

■ 高速記録が可能。■ High-speed recording is possible.

■ 発熱抵抗体列、あるいは通電電極列による直線の記
録が忠実に行える。
■ Straight lines can be recorded faithfully using heating resistor arrays or current-carrying electrode arrays.

等の優れた効果を発揮するものである。It exhibits excellent effects such as.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に関わるサーマルヘッドの平面図、第
2図は、第1図のサーマルヘッドの発熱抵抗体の断面図
、第3図は、本発明に関わる発熱抵抗体の平面図、第4
図、第5図は、第3図の発熱抵抗体の断面図、第6図は
、本発明に関わる発熱抵抗体の平面図、第7図は、第6
図の発熱抵抗体の断面図、第8図は、本発明に関わる発
熱抵抗体の平面図、第9図は、第8図の発熱抵抗体の断
面図、第10図、第11図、第12図は、本発明に関わ
る装置例における発熱抵抗体の表面温度変化を表す図、
第13図、第14図は、本発明に関わる装置例における
発熱抵抗体の表面塩度の連続発熱での変化を表す図、第
15図、第16図は、本発明に関わる装置例における発
熱抵抗体の表面温度の階調制御での温度変化を表す図、
第17図、第18図は、本発明に関わる装置例における
発熱抵抗体の表面温度の分布を表す図、第19図は、本
発明に関わる通電感熱記録装置の要部断面図、第20図
は、本発明に関わる通電熱転写用インクドナーシートの
断面図、第21図は、本発明に関わる通電熱転写記録装
置の要部断面図、第22図、第24図は、本発明の実施
例における発熱抵抗体の駆動タイミングとii電流波形
表すタイミングチャート、第23図は、本発明の実施例
における発熱抵抗体の駆動電流波形を表す図、第25図
は、本発明に関わる発熱抵抗体を構成する抵抗体の抵抗
値特性を表す図である。 l・・・発熱抵抗体 7.10・・・第1の抵抗体 8.11・・・第2の抵抗体 2・・・個別電極 3.5・・・共通電極 4・・・スイッチング素子 1B−N、20−N・・・発熱抵抗体表面温度19−N
、21−N・・・階調通電パルス31.32・・・抵抗
体の抵抗値特性 41.45.47・・・電流波形 42.46.48・・・通電パノPス ε0・・・通電感熱紙 51・・・発色記録層 52・・・第1の抵抗層 53・・・第2の抵抗層 54・・・導電層 55・・・混合発熱抵抗層 56・・・インク層 57・・・第1の抵抗粒子 58 ・ ・ 60 ・ ・ 61 ・ ・ Tc   T Te  ・ ・ t On ・ off tp  ・ ・ dt  ・ ・ 第4図 ・第2の抵抗粒子 ・通電ヘッド ・通電電極 cl、Tc2・・抵抗体の相転移温度 ・発熱抵抗体の平衡温度 ・・通電パルス印加時刻 ・・・i!電パルス印加終了時刻 ・Tc到達時刻 ・駆動シフト時間 以上
FIG. 1 is a plan view of a thermal head according to the present invention, FIG. 2 is a cross-sectional view of a heating resistor of the thermal head of FIG. 1, and FIG. 3 is a plan view of a heating resistor according to the present invention. Fourth
5 is a sectional view of the heating resistor of FIG. 3, FIG. 6 is a plan view of the heating resistor according to the present invention, and FIG. 7 is a sectional view of the heating resistor of FIG.
8 is a plan view of the heating resistor according to the present invention; FIG. 9 is a sectional view of the heating resistor shown in FIG. 8; FIGS. FIG. 12 is a diagram showing a change in surface temperature of a heating resistor in an example of a device related to the present invention;
Figures 13 and 14 are diagrams showing changes in surface salinity of the heating resistor due to continuous heat generation in an example of the device related to the present invention, and Figures 15 and 16 are diagrams showing heat generation in the example of the device related to the present invention. A diagram showing the temperature change in gradation control of the surface temperature of the resistor.
17 and 18 are diagrams showing the surface temperature distribution of the heating resistor in an example of a device related to the present invention, FIG. 19 is a cross-sectional view of a main part of the current-carrying thermosensitive recording device related to the present invention, and FIG. 20 21 is a cross-sectional view of an ink donor sheet for electric thermal transfer according to the present invention, FIG. 21 is a cross-sectional view of a main part of an electric thermal transfer recording apparatus according to the present invention, and FIGS. 22 and 24 are cross-sectional views of an ink donor sheet for electric thermal transfer according to the present invention. 23 is a diagram showing the drive current waveform of the heat generating resistor in an embodiment of the present invention; FIG. 25 is a timing chart showing the drive timing of the heat generating resistor and the current waveform of the heat generating resistor according to the embodiment of the present invention; FIG. FIG. 2 is a diagram showing resistance value characteristics of a resistor. l...Heating resistor 7.10...First resistor 8.11...Second resistor 2...Individual electrode 3.5...Common electrode 4...Switching element 1B -N, 20-N...Heating resistor surface temperature 19-N
, 21-N... Gradation energization pulse 31.32... Resistance value characteristic of resistor 41.45.47... Current waveform 42.46.48... Energization pano Ps ε0... Energization Thermal paper 51...color recording layer 52...first resistance layer 53...second resistance layer 54...conductive layer 55...mixed heating resistance layer 56...ink layer 57...・First resistance particle 58 ・ ・ 60 ・ ・ 61 ・ ・ Tc T Te ・ t On ・ off tp ・ ・ dt ・ ・ FIG. 4 ・ Second resistance particle ・ Current-carrying head ・ Current-carrying electrode cl, Tc2 ・・Phase transition temperature of resistor, equilibrium temperature of heating resistor, energization pulse application time...i! Electric pulse application end time, Tc arrival time, drive shift time or more

Claims (2)

【特許請求の範囲】[Claims] (1)複数の発熱抵抗体を複数のブロックに分割し、こ
の各ブロックに含まれる前記発熱抵抗体ごとに、発熱の
ための通電パルスを時分割に印加する方法であって、 前記発熱抵抗体における前記通電パルス印加時間内の各
発熱抵抗体における消費電流値がより大きな第1の電流
消費状態と、この第1の電流消費状態と大きく異なるよ
り小さい電流値を消費する第2の電流消費状態との少な
くとも2つの状態間を、前記第1の電流消費状態から前
記第2の電流消費状態に遷移する消費電流特性を備え、 前記任意のブロックに含まれる発熱抵抗体への通電パル
ス印加時間内の前記第1の電流消費状態が、別の任意の
ブロックに含まれる発熱抵抗体への通電パルス印加時間
内の前記第1の電流消費状態と重ならないタイミングで
、前記複数のブロックを時分割駆動することを特徴とす
る熱記録装置における発熱抵抗体の駆動方法。
(1) A method of dividing a plurality of heating resistors into a plurality of blocks, and applying an energization pulse for generating heat to each of the heating resistors included in each block in a time-sharing manner, the method comprising: a first current consumption state in which each heating resistor consumes a larger current value during the energization pulse application time; and a second current consumption state in which a smaller current value is consumed which is significantly different from the first current consumption state. and a current consumption characteristic that transitions between at least two states from the first current consumption state to the second current consumption state, and within the time of applying a current pulse to the heating resistor included in the arbitrary block. drive the plurality of blocks in a time-division manner at a timing when the first current consumption state of the first current consumption state does not overlap with the first current consumption state within the application time of the energization pulse to the heating resistor included in another arbitrary block. A method for driving a heating resistor in a thermal recording device, characterized in that:
(2)前記任意のブロックに含まれる発熱抵抗体への通
電パルス印加時間内の前記第2の電流消費状態と、この
ブロックより遅れて通電パルスを印加する別のブロック
に含まれる発熱抵抗体への通電パルス印加時間内の、前
記第1の電流消費状態とが重なる部分をもつタイミング
で、前記複数のブロックを時分割駆動することを特徴と
する第1項記載の熱記録装置における発熱抵抗体の駆動
方法。
(2) The second current consumption state during the application time of the energization pulse to the heat generating resistor included in the arbitrary block and the heat generating resistor included in another block to which the energization pulse is applied later than this block. 2. The heating resistor in the thermal recording device according to claim 1, wherein the plurality of blocks are time-divisionally driven at a timing in which the first current consumption state overlaps with the current consumption state within the energization pulse application time. driving method.
JP2094769A 1990-04-09 1990-04-09 Heating element drive method in thermal recorder Pending JPH03292162A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2094769A JPH03292162A (en) 1990-04-09 1990-04-09 Heating element drive method in thermal recorder
EP91105594A EP0451778B1 (en) 1990-04-09 1991-04-09 Driving method for thermal printer element
US07/682,917 US5359352A (en) 1990-04-09 1991-04-09 Driving method of heat generating resistor in heat recording device
DE69110523T DE69110523T2 (en) 1990-04-09 1991-04-09 Control method for a thermal pressure element.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094769A JPH03292162A (en) 1990-04-09 1990-04-09 Heating element drive method in thermal recorder

Publications (1)

Publication Number Publication Date
JPH03292162A true JPH03292162A (en) 1991-12-24

Family

ID=14119307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094769A Pending JPH03292162A (en) 1990-04-09 1990-04-09 Heating element drive method in thermal recorder

Country Status (1)

Country Link
JP (1) JPH03292162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306222A3 (en) * 2001-10-26 2003-10-01 Seiko Epson Corporation Printing apparatus and method of controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306222A3 (en) * 2001-10-26 2003-10-01 Seiko Epson Corporation Printing apparatus and method of controlling the same

Similar Documents

Publication Publication Date Title
EP0451778B1 (en) Driving method for thermal printer element
US5220349A (en) Method and apparatus for thermally recording data utilizing metallic/non-metallic phase transition in a recording medium
JPH03292162A (en) Heating element drive method in thermal recorder
JPH03292161A (en) Thermal recording method
JP2893345B2 (en) Thermal recording method
JP2958374B2 (en) Thermal head
JP2811209B2 (en) How to adjust heat generation of thermal head
JP2811012B2 (en) Gradation control method in thermal recording
EP0423708B1 (en) Method and apparatus for thermally recording data in a recording medium
JP2932661B2 (en) Manufacturing method of thermal head
JPH03218853A (en) Thermal head
JP3029650B2 (en) Thermal printer
JPS59207270A (en) Thermal head
JPS60225771A (en) Thermal recording head
JPH01216861A (en) Thermosensitive recording head
JPS60244563A (en) Thermal head
JPS62112302A (en) Heating unit for thermal head
JPH0199860A (en) Thermal head
JPH05246060A (en) Line thermal head
JP2000025260A (en) Thermal head
JPH05229152A (en) Thermal head
JPS61139457A (en) Heat sensitive recording head
JPH0199861A (en) Thermal head
JPH0428566A (en) Thermal recording head
JPH08197766A (en) Thermal head and printer