JPH0199860A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH0199860A
JPH0199860A JP25676487A JP25676487A JPH0199860A JP H0199860 A JPH0199860 A JP H0199860A JP 25676487 A JP25676487 A JP 25676487A JP 25676487 A JP25676487 A JP 25676487A JP H0199860 A JPH0199860 A JP H0199860A
Authority
JP
Japan
Prior art keywords
electrode
ink
heating resistor
resistor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25676487A
Other languages
Japanese (ja)
Inventor
Hayami Sugiyama
早実 杉山
Takashi Kubota
隆志 久保田
Chiaki Hara
原 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP25676487A priority Critical patent/JPH0199860A/en
Publication of JPH0199860A publication Critical patent/JPH0199860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To control the size of a dot to be printed according to conduction time of a current passed to a heating resistor, by gradually increasing the width of the heating resistor from a first electrode toward a second electrode. CONSTITUTION:The smaller its width, the larger current density and heating quantity a heating resistor 3 has. When conduction time of current to the resistor 3 of which width increases as it approaches a second electrode 4b from a first electrode 4a or its peak value is small, the narrower portion of the resistor 3 only gives out heat enough to fuse ink and ink on an ink surface facing the upper heating portion only fuses to reduce the size of a dot to be printed. To increase the size, the conduction time of the current or peak value is increased and heat given off by a wider portion is increased accordingly to also fuse ink on an ink surface facing the portion.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、サーマルプリンタに用いられるサーマルヘ
ッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal head used in a thermal printer.

[従来技術] 第7図は従来のサーマルヘッドの構成を示す断面図であ
る。この図において、lは酸化アルミニウム製の基板で
あり、同基板lの上面には熱絶縁のためのガラスゲレー
ス層2が積層されている。
[Prior Art] FIG. 7 is a sectional view showing the structure of a conventional thermal head. In this figure, l is a substrate made of aluminum oxide, and a glass gelase layer 2 for thermal insulation is laminated on the upper surface of the substrate l.

ガラスゲレース層2の上面には抵抗膜による発熱抵抗体
3が形成されており、発熱抵抗体3の上面には所定の距
離を隔てて電極4a、4bが形成されている。ここで、
発熱抵抗体3の電極4a、4bとの間に露出した面が発
熱部3hとなる。また、電極4a、4bのうち一方が共
通電極に接続され、他方が図示しない給電制御部(発熱
抵抗体3に電流を流す機能を有する)の出力端に接続さ
れている。
A heating resistor 3 made of a resistive film is formed on the top surface of the glass gelatin layer 2, and electrodes 4a and 4b are formed on the top surface of the heating resistor 3 at a predetermined distance apart. here,
The surface of the heating resistor 3 exposed between the electrodes 4a and 4b becomes the heating portion 3h. Further, one of the electrodes 4a and 4b is connected to a common electrode, and the other is connected to an output end of a power supply control section (having a function of flowing current to the heating resistor 3), not shown.

5は耐酸化膜であり、電極4m、4bおよび発熱部3h
を覆うよう゛に形成されている。また、耐酸化膜5の上
面には耐摩耗膜6が形成されている。耐酸化膜5と耐摩
耗膜6は保護膜を構成する。そして、以上説明したサー
マルヘッドがプラテン10に対向して配置され、これら
のサーマルヘッドおよびプラテンlOの間に、インク8
の付着したインクフィルム7と被転写用紙9が配置され
る。
5 is an oxidation-resistant film, and electrodes 4m, 4b and heat generating part 3h
It is formed to cover the Furthermore, a wear-resistant film 6 is formed on the upper surface of the oxidation-resistant film 5 . The oxidation-resistant film 5 and the wear-resistant film 6 constitute a protective film. The thermal heads described above are arranged facing the platen 10, and the ink 8 is placed between these thermal heads and the platen 10.
The ink film 7 and the paper 9 to be transferred are arranged.

第8図は、上述したサーマルヘッドの平面図であり、こ
の図に示すように発熱抵抗体3の発熱部3hは方形状と
なっている。
FIG. 8 is a plan view of the above-mentioned thermal head, and as shown in this figure, the heat generating portion 3h of the heat generating resistor 3 has a rectangular shape.

このように構成されたサーマルヘッドにおいて、発熱抵
抗体3に電流が流れると、同抵抗体3の全熱部全面が均
一に発熱する。これにより、サーマルヘッドの上に置か
れたインクフィルムの前記発熱部に面した部分が加熱さ
れ、インクが溶融する。
In the thermal head configured in this manner, when a current flows through the heating resistor 3, the entire heated portion of the resistor 3 uniformly generates heat. As a result, the portion of the ink film placed on the thermal head facing the heat generating portion is heated, and the ink is melted.

この結果、被転写用紙には、第8図に破線りで示す形状
のドツト印刷が行なわれる。
As a result, dots having the shape shown by broken lines in FIG. 8 are printed on the transfer paper.

[発明が解決しようとする問題点] ところで、サーマルプリンタにおける画像の濃度階調を
表現するためには、印刷されるドツトの大きさを制御す
ることが、望ましいが、上述したように従来のサーマル
ヘッドにあっては、発熱抵抗体の発熱部の形状に基づい
た形状でしかドツト印刷を行なうことができず、ドツト
の大きさを制御する事ができなかった。
[Problems to be Solved by the Invention] Incidentally, in order to express the density gradation of an image using a thermal printer, it is desirable to control the size of printed dots. With the head, it was only possible to print dots in a shape based on the shape of the heat generating part of the heat generating resistor, and the size of the dots could not be controlled.

この発明は上述した事情に鑑みてなされたもので、印刷
されるドツトの大きさを制御することができるサーマル
ヘッドを提供することを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a thermal head that can control the size of printed dots.

[問題点を解決するための手段] 上記問題点を解決するためこの発明は、基板表面に熱絶
縁層が形成され、その上に抵抗膜による発熱抵抗体と、
この発熱抵抗体に電流を供給する第1Tti極、第2電
極と、表面を保護する保護層とが順次積層されてなるサ
ーマルヘッドにおいて、前記発熱抵抗体の幅を前記第1
電極から前記第2電極に近寄るに従い徐々に広くした事
を特徴としている。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention includes a heat insulating layer formed on the surface of the substrate, a heat generating resistor formed of a resistive film on the heat insulating layer, and
In a thermal head in which a first Tti electrode, a second electrode that supplies current to the heating resistor, and a protective layer that protects the surface are sequentially laminated, the width of the heating resistor is set to the first Tti electrode.
It is characterized in that it gradually widens as it approaches the second electrode from the electrode.

[作用] 上記構成によれば、発熱抵抗体においてその幅が狭い部
公租、電流密度が大きく、発熱量が大きい。従って、発
熱抵抗体に流す電流の通電時間またはその波高値が小の
場合は、発熱抵抗体の中の幅の狭い部分のみがインクを
溶融するのに充分な発熱量となるため、上方に置かれた
その部分に面したインク面のインクのみが溶融され、発
熱抵抗体に流す電流の通電時間または波高値を大とすれ
ば、それに応じて抵抗幅の広い部分の発熱量も大となり
、その部分に面したインク面のインクも溶融される。従
って、発熱抵抗体に流す電流の通電時間またはその波高
値を制御すれば、印刷されるドツトの大きさを制御する
ことができる。
[Function] According to the above configuration, the width of the heating resistor is narrow, the current density is large, and the amount of heat generated is large. Therefore, if the current flow time or the peak value of the current flowing through the heating resistor is small, only the narrow part of the heating resistor will generate enough heat to melt the ink, so it should be placed above the heating resistor. Only the ink on the ink surface facing that area is melted, and if the current flow time or peak value of the current flowing through the heating resistor is increased, the amount of heat generated in the area with a wide resistance will increase accordingly. The ink on the ink side facing the section is also melted. Therefore, by controlling the duration of the current flowing through the heating resistor or its peak value, the size of the printed dots can be controlled.

[実施例] 以下図面を参照してこの発明の実施例について説明する
[Examples] Examples of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例の構成を示す平面図、第2
図は第1図の■−■線断面図である。
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a sectional view taken along the line ■-■ in FIG.

なお、ここでは、前述した第7図と異なる部分のみを説
明し、同一の部分については第7図と対応する部分に同
一の符号を付してその説明を省略する。
Here, only the parts that are different from the above-mentioned FIG. 7 will be explained, and the same parts as in FIG. 7 will be given the same reference numerals and the explanation thereof will be omitted.

第1図および第2図において、3は発熱抵抗体であり、
抵抗幅は第1電極4a側が最小でLa、第2電極4bに
近寄るに従い抵抗幅は直線的に単調増加し、第2電極4
b側では幅がLbとなっている。
In FIG. 1 and FIG. 2, 3 is a heating resistor;
The resistance width is minimum La on the first electrode 4a side, and the resistance width monotonically increases linearly as it approaches the second electrode 4b.
On the b side, the width is Lb.

ここで、LaはLbの半分以下の寸法になっている。Here, La is less than half the size of Lb.

このような構成において、第1電極4aから発熱抵抗体
3を介して第2電極4bに電流を流した場合、第1電極
4a側が抵抗幅が最小のため、その近傍の発熱抵抗体3
の電流密度が最大となり、発熱量も最大となる。そして
、第2電極4b側に近寄る程、抵抗幅が大きくなるため
、電流密度が小さくなり、発熱量も小さくなる。
In such a configuration, when a current is passed from the first electrode 4a to the second electrode 4b via the heat generating resistor 3, the resistance width is smallest on the first electrode 4a side, so that the heat generating resistor 3 in the vicinity
The current density becomes the maximum, and the amount of heat generated also becomes the maximum. The closer the electrode is to the second electrode 4b, the larger the resistance width becomes, so the current density becomes smaller and the amount of heat generated becomes smaller.

ところで、インクが溶融するのには一定の熱エネルギー
を必要とする。従って、発熱抵抗体3に流す電流の通電
時間あるいは波高値が小の場合は、発熱抵抗体3の幅の
狭い部分の発熱量のみがインクを溶融せしめる熱エネル
ギーに達し、この部分に而したインク面のインクのみが
溶融され、発熱抵抗体3に流す電流の通電時間あるいは
波高値を大にすると、発熱抵抗体3の幅の広い部分の発
熱量もインクを溶融せしめる熱エネルギーに達し、広範
囲のインクが溶融される。
By the way, a certain amount of thermal energy is required to melt ink. Therefore, when the current flow time or peak value of the current flowing through the heating resistor 3 is small, only the heat generated in the narrow part of the heating resistor 3 reaches the thermal energy that melts the ink, and the ink in this part Only the ink on the surface is melted, and when the current flow time or peak value of the current flowing through the heating resistor 3 is increased, the amount of heat generated in the wide part of the heating resistor 3 also reaches the thermal energy that melts the ink, and a wide area is melted. The ink is melted.

すなわち、発熱抵抗体3に流す電流の通電時間あるいは
波高値を変える事により、インク面の溶融する範囲を制
御する事ができ、第3図に示すように被転写用紙に転写
されるドツトの大きさを(a)、 (b) 、 (c)
 、 (a)のように変える事ができる。
In other words, by changing the duration or peak value of the current flowing through the heating resistor 3, the melting range of the ink surface can be controlled, and the size of the dots transferred to the transfer paper can be controlled as shown in Figure 3. Sao (a), (b), (c)
, can be changed as shown in (a).

第4図は複数の発熱抵抗体3を一列に配置したところを
示す図である。この図に示すように実際のサーマルヘッ
ドにおいては、発熱抵抗体3の方向を交互に変える事が
望ましい。こうすることにより、熱転写されるドツトが
小さい時に、ドツトが上下どちらか一方に偏る事なく一
様に転写され、文字が歪むのを防止できる。
FIG. 4 is a diagram showing a plurality of heating resistors 3 arranged in a row. As shown in this figure, in an actual thermal head, it is desirable to alternately change the direction of the heating resistor 3. By doing this, when the dots to be thermally transferred are small, the dots are uniformly transferred without being biased upward or downward, and distortion of the characters can be prevented.

第5図はこの発明の第2の実施例であり、発熱抵抗体3
において第1電極4aとの接触部から僅かに第2N極4
b側に寄った所の抵抗幅が最小となっており、そこから
第2電極4b側に近寄るに従い抵抗幅が広くなっている
。さらに、第6図はこの発明の第3の実施例であり、発
熱抵抗体3において第1電極4aとの接触部の抵抗幅が
最小となっており、そこから第27[極4b側に近寄る
に従い抵抗幅が曲線的に単調増加している。これら第2
、第3の実施例においても、発熱抵抗体における電流密
度を各部、の抵抗幅に応じて変える事ができ、第1の実
施例と同様の効果がある。
FIG. 5 shows a second embodiment of the invention, in which the heating resistor 3
, the second N-pole 4 is slightly away from the contact part with the first electrode 4a.
The resistance width is the smallest near the b side, and the resistance width becomes wider as it approaches the second electrode 4b side. Furthermore, FIG. 6 shows a third embodiment of the present invention, in which the resistance width of the heating resistor 3 at the contact portion with the first electrode 4a is the minimum, and from there the resistance width approaches the 27th [pole 4b side]. The resistance width increases monotonically in a curved manner. These second
Also in the third embodiment, the current density in the heating resistor can be changed according to the resistance width of each part, and the same effect as in the first embodiment can be obtained.

[発明の効果] 以上説明したようにこの発明によれば、発熱抵抗体の幅
を第1電極から第2電極に近寄るに従い徐々に広くした
ので、発熱抵抗体へ流す電流の通電時間またはその波高
値を制御することによりインクの溶融範囲を制御でき、
従って、印刷されるドツトの大きさを制御することがで
きる。
[Effects of the Invention] As explained above, according to the present invention, the width of the heating resistor is gradually increased from the first electrode to the second electrode, so that the current flow time or the waveform of the current flowing through the heating resistor is By controlling the high value, the melting range of the ink can be controlled,
Therefore, the size of the printed dots can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示す平面図、第2
図は第1図の■−■線断面図、第3図はこの発明のサー
マルヘッドにおいて熱転写されるドツトの形状を示す図
、第4図はこの発明のサーマルヘッドにおける第1電極
、発熱抵抗体、第2電極の配列方法を示す平面図、第5
図はこの発明の第2の実施例の構成を示す平面図、第6
図はこの発明の第3の実施例の構成を示す平面図、第7
図は従来のサーマルヘッドの構成を示す断面図、第8図
は同サーマルヘッドの平面図である。 l・・・・・・基板、2・・・・・・ガラスゲレース層
(熱絶縁層)、3・・・・・・発熱抵抗体、4a・・・
・・・第1電極、4b・・・・・・第2電極、5・・・
・・・耐酸化膜、6・・・・・・耐摩耗膜(5,6は保
護層を構成する)。 第1図 第2rR 第3図 To)       Tbl ・鼻  晶 2−−−\      、−−一−へ (C)       (d) 第4図 第5図
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a sectional view taken along the line ■-■ in Figure 1, Figure 3 is a diagram showing the shape of the dots thermally transferred in the thermal head of the present invention, and Figure 4 is the first electrode and heating resistor in the thermal head of the present invention. , a plan view showing the arrangement method of the second electrode, the fifth
The figure is a plan view showing the configuration of the second embodiment of the present invention.
The figure is a plan view showing the configuration of the third embodiment of the present invention.
The figure is a sectional view showing the structure of a conventional thermal head, and FIG. 8 is a plan view of the same thermal head. 1...Substrate, 2...Glass gelase layer (thermal insulation layer), 3...Heating resistor, 4a...
...First electrode, 4b... Second electrode, 5...
... Oxidation-resistant film, 6... Wear-resistant film (5 and 6 constitute a protective layer). Fig. 1 Fig. 2rR Fig. 3 To) Tbl ・Nose Crystal 2---\ , --1- (C) (d) Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 基板表面に熱絶縁層が形成され、その上に抵抗膜による
発熱抵抗体と、この発熱抵抗体に電流を供給する第1電
極、第2電極と、表面を保護する保護層とが順次積層さ
れてなるサーマルヘッドにおいて、前記発熱抵抗体の幅
を前記第1電極から前記第2電極に近寄るに従い徐々に
広くした事を特徴とするサーマルヘッド。
A heat insulating layer is formed on the surface of the substrate, and a heat generating resistor made of a resistive film, a first electrode and a second electrode that supply current to the heat generating resistor, and a protective layer that protects the surface are sequentially laminated on the heat insulating layer. 1. A thermal head characterized in that the width of the heating resistor is gradually increased from the first electrode to the second electrode.
JP25676487A 1987-10-12 1987-10-12 Thermal head Pending JPH0199860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25676487A JPH0199860A (en) 1987-10-12 1987-10-12 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25676487A JPH0199860A (en) 1987-10-12 1987-10-12 Thermal head

Publications (1)

Publication Number Publication Date
JPH0199860A true JPH0199860A (en) 1989-04-18

Family

ID=17297120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25676487A Pending JPH0199860A (en) 1987-10-12 1987-10-12 Thermal head

Country Status (1)

Country Link
JP (1) JPH0199860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6276775B1 (en) 1999-04-29 2001-08-21 Hewlett-Packard Company Variable drop mass inkjet drop generator
US6711806B2 (en) 2001-05-14 2004-03-30 Hewlett-Packard Development Company, L.P. Method of manufacturing a thermal fluid jetting apparatus
JP2008238668A (en) * 2007-03-28 2008-10-09 Kyocera Corp Recording head and recording device with the recording head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6276775B1 (en) 1999-04-29 2001-08-21 Hewlett-Packard Company Variable drop mass inkjet drop generator
US6402283B2 (en) 1999-04-29 2002-06-11 Hewlett-Packard Company Variable drop mass inkjet drop generator
US6711806B2 (en) 2001-05-14 2004-03-30 Hewlett-Packard Development Company, L.P. Method of manufacturing a thermal fluid jetting apparatus
JP2008238668A (en) * 2007-03-28 2008-10-09 Kyocera Corp Recording head and recording device with the recording head

Similar Documents

Publication Publication Date Title
US7352381B2 (en) Thermal print head
JPH0199860A (en) Thermal head
JPH0199861A (en) Thermal head
JPH0199862A (en) Thermal head
JP2590974B2 (en) Electrode structure of thermal head
JPS59133078A (en) Heat-sensitive head
JP3029650B2 (en) Thermal printer
JP2001162849A (en) Thermal head
JPH0661950B2 (en) Thermal head
JP3099431B2 (en) Thermal head
JP3233694B2 (en) Thermal head
JP2005225053A (en) Thermal head
JP2512770Y2 (en) Thermal head
JPS59133079A (en) Heat-sensitive head
JPH08112924A (en) Thermal head
KR920010636B1 (en) Thermal head
JPS60174662A (en) Recording head
JP2005225054A (en) Thermal head and its wiring method, and drive unit for thermal head
JPH05201047A (en) Thermal head
JPH08112925A (en) Thermal head
JPH01150555A (en) Thermal head
JPH05318796A (en) Thermal head
JPH02137945A (en) Thermal head
JP2006142497A (en) Thermal head
JPH08197766A (en) Thermal head and printer