JPH0199862A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH0199862A
JPH0199862A JP25676687A JP25676687A JPH0199862A JP H0199862 A JPH0199862 A JP H0199862A JP 25676687 A JP25676687 A JP 25676687A JP 25676687 A JP25676687 A JP 25676687A JP H0199862 A JPH0199862 A JP H0199862A
Authority
JP
Japan
Prior art keywords
resistor
heating
electrode
ink
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25676687A
Other languages
Japanese (ja)
Inventor
Hayami Sugiyama
早実 杉山
Takashi Kubota
隆志 久保田
Chiaki Hara
原 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP25676687A priority Critical patent/JPH0199862A/en
Publication of JPH0199862A publication Critical patent/JPH0199862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To control the size of a dot to be printed, by forming parallel boundary portions running from a first electrode to a second electrode on a heating resistor, removing part of the heating resistor in the boundary portions, and forming heating resistors with different widths. CONSTITUTION:Parts of a heating resistor in parallel boundary portions running from a first electrode 4a to a second electrode 4b are removed to form heating resistors 3a-3d with different widths. If conduction time of current to those heating resistors or its peak value is small, heat by the widest resistor 3d is larger than heats by the others and ink on an ink surface facing the widest resistor only is fused to print a small dot. If the conduction time or peak value is increased, heat by narrower resistors increase accordingly and ink on ink surfaces facing corresponding resistors are fused to enlarge a dot.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、サーマルプリンタに用いられるサーマルヘ
ッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal head used in a thermal printer.

[従来技術] 第5図は従来のサーマルヘッドの構成を示す断面図であ
る。この図において、lは酸化アルミニウム製の基板で
あり、同基板lの上面には熱絶縁のためのガラスゲレー
ス層2が積層されている。
[Prior Art] FIG. 5 is a sectional view showing the structure of a conventional thermal head. In this figure, l is a substrate made of aluminum oxide, and a glass gelase layer 2 for thermal insulation is laminated on the upper surface of the substrate l.

ガラスゲレース層2の上面には抵抗膜による発熱抵抗体
3が形成されており、発熱抵抗体3の上面には所定の距
離を隔てて電極4a、4bが形成されている。ここで、
発熱抵抗体3の電極4a、4bとの間に露出した・面が
発熱部3hとなる。また、電極4a、4bのうち一方が
共通電極に接続され、他方が図示しない給電制御部(発
熱抵抗体3に電流を流す機能を有する)の出力端に接続
されている。
A heating resistor 3 made of a resistive film is formed on the top surface of the glass gelatin layer 2, and electrodes 4a and 4b are formed on the top surface of the heating resistor 3 at a predetermined distance apart. here,
The surface of the heating resistor 3 exposed between the electrodes 4a and 4b becomes the heating portion 3h. Further, one of the electrodes 4a and 4b is connected to a common electrode, and the other is connected to an output end of a power supply control section (having a function of flowing current to the heating resistor 3), not shown.

5は耐酸化膜であり、電極4a、4bおよび発熱部3h
を覆うように形成されている。また、耐酸化膜5の上面
には耐摩耗膜6が形成されている。耐酸化膜5と耐摩耗
膜6は保護膜を構成する。
5 is an oxidation-resistant film, which covers the electrodes 4a, 4b and the heat generating part 3h.
It is formed to cover. Furthermore, a wear-resistant film 6 is formed on the upper surface of the oxidation-resistant film 5 . The oxidation-resistant film 5 and the wear-resistant film 6 constitute a protective film.

第6図は、上述したサーマルヘッドの細部を示す平面図
であり、この図に示すように発熱抵抗体3の発熱部3h
は方形状となっている。
FIG. 6 is a plan view showing details of the above-mentioned thermal head, and as shown in this figure, the heating portion 3h of the heating resistor 3
has a rectangular shape.

このように構成されたサーマルヘッドにおいて、発熱抵
抗体3に電流が流れると、同抵抗体3の発熱部全面が均
一に発熱する。これにより、サーマルヘッドの上に置か
れたインクフィルムの前記発熱部に面した部分が加熱さ
れ、インクが溶融する。
In the thermal head configured in this manner, when a current flows through the heat generating resistor 3, the entire surface of the heat generating portion of the resistor 3 generates heat uniformly. As a result, the portion of the ink film placed on the thermal head facing the heat generating portion is heated, and the ink is melted.

この結果、被転写用紙には、第6図に破線りで示す形状
のドツト印刷が行なわれる。
As a result, dots having the shape shown by broken lines in FIG. 6 are printed on the transfer paper.

[発明が解決しようとする問題点コ ところで、サーマルプリンタにおける画像の濃度階調を
表現するためには、印刷されるドツトの大きさを制御す
ることが望ましいが、上述したように従来のサーマルヘ
ッドにあっては、発熱抵抗体の発熱部の形状に基づいた
形状でしかドツト印刷を行なうことができず、ドツトの
大きさを制御する事ができなかった。
[Problems to be Solved by the Invention] By the way, in order to express the density gradation of an image using a thermal printer, it is desirable to control the size of the printed dots, but as mentioned above, the conventional thermal head In this case, it was only possible to print dots in a shape based on the shape of the heat generating part of the heating resistor, and the size of the dots could not be controlled.

この発明は上述した事情に鑑みてなされたもので、印刷
されるドツトの大きさを制御することができるサーマル
ヘッドを提供することを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a thermal head that can control the size of printed dots.

[問題点を解決するための手段] 上記問題点を解決するためこの発明は、基板表面に熱絶
縁層が形成され、その上に抵抗膜による発熱抵抗体と、
この発熱抵抗体に電流を供給する第1ffl極、第2電
極と、表面を保護する保護層とが順次積層されてなるサ
ーマルヘッドにおいて、前記発熱抵抗体に前記第1電極
から前記第2電極に至る向きに平行して走る境界部を形
成し、この境界部の前記発熱抵抗体を除去し、各々幅の
異なる複数の発熱抵抗体を形成した事を特徴としている
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention includes a heat insulating layer formed on the surface of the substrate, a heat generating resistor formed of a resistive film on the heat insulating layer, and
In a thermal head in which a first ffl pole and a second electrode for supplying current to the heating resistor, and a protective layer for protecting the surface are sequentially laminated, the heating resistor is connected from the first electrode to the second electrode. The present invention is characterized in that a boundary portion running in parallel in all directions is formed, and the heat generating resistor at this boundary portion is removed to form a plurality of heat generating resistors each having a different width.

[作用] 上記構成によれば、各発熱抵抗体においてその幅が大き
い程、各々に面したインク面の受けろ単位面積当たりの
加熱量は大きくなる。従って、発熱抵抗体に流す電流の
通電時間またはその波高値を小とすれば、抵抗幅の大き
な抵抗体による加熱量が他に比較して大きくなり、その
抵抗体に面したインク面のインクのみが溶融され、発熱
抵抗体に流す電流の通電時間または波高値を大とすれば
、それに応じて抵抗幅の狭い抵抗体の加熱量ら大となり
、その抵抗体に面したインク面のインクも溶融される。
[Function] According to the above configuration, the larger the width of each heating resistor, the larger the amount of heating per unit area of the ink receiving area of the ink surface facing each heating resistor. Therefore, if the current flow time or peak value of the current flowing through the heating resistor is made small, the amount of heating by the resistor with a large resistance width will be large compared to other resistors, and only the ink on the ink surface facing that resistor will be heated. If you increase the current duration or peak value of the current flowing through the heating resistor, the amount of heating of the resistor with a narrow resistance width will increase accordingly, and the ink on the ink surface facing the resistor will also melt. be done.

従って、発熱抵抗体に流す電流の通電時間またはその波
高値を制御すれば、印刷されるドツトの大きさを制御す
ることができる。
Therefore, by controlling the duration of the current flowing through the heating resistor or its peak value, the size of the printed dots can be controlled.

[実施例] 以下図面を参照してこの発明の実施例ζこついて説明す
る。
[Embodiments] Embodiments ζ of the present invention will be described in detail below with reference to the drawings.

第1図はこの発明の一実施例の構成を示す平面図、第2
図は第1図の■−■線断面図である。
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a sectional view taken along the line ■-■ in FIG.

なお、ここでは、前述した第5図と異なる部分のみを説
明し、同一の部分については第5図と対応する部分に同
一の符号を付してその説明を省略する。
Here, only the parts that are different from the above-mentioned FIG. 5 will be explained, and the same parts as in FIG. 5 will be given the same reference numerals and the explanation thereof will be omitted.

第1図および第2図において、3 a、 3 b、 3
 c、 3dは各々電流路の長さが等しく幅Qa−Qd
が異なる方形状の抵抗体であり、幅はQaが最小でQa
−(lb→Qc→12dの順に大きくなっている。抵抗
体3a〜3dの両端には電極4a、4bか取り付けられ
ており、これを介して各抵抗体3a〜3dに電流が供給
される。なお、第2図における7はインクフィルム、8
はインクフィルム7に付着されたインク、9は被転写用
紙である。
In Figures 1 and 2, 3 a, 3 b, 3
c and 3d have the same current path length and width Qa-Qd.
It is a rectangular resistor with different widths, Qa is the minimum, and Qa is the minimum width.
-(It increases in the order of lb→Qc→12d. Electrodes 4a and 4b are attached to both ends of the resistors 3a to 3d, and current is supplied to each of the resistors 3a to 3d via these. In addition, 7 in FIG. 2 is an ink film, and 8
9 is the ink adhered to the ink film 7, and 9 is the transfer paper.

このような構成において、各発熱抵抗体3a〜3dに流
れる電流の電流密度は各々等しいので、各発熱抵抗体3
a〜3dにおける単位面積当たりの発熱量も等しい。従
って、各発熱抵抗体38〜3dで発生した熱Qa=Qd
がすべてサーマルヘッドの上に置かれたインク面8の加
熱に使われる場合は、インク面8のどの抵抗体に面した
m1分も一様に熱されインクが溶融する。
In such a configuration, since the current density of the current flowing through each heating resistor 3a to 3d is equal, each heating resistor 3
The calorific value per unit area in a to 3d is also the same. Therefore, the heat generated in each heating resistor 38 to 3d is Qa=Qd
If all of the ink surface 8 is used to heat the ink surface 8 placed on the thermal head, the m1 portion of the ink surface 8 facing any resistor is uniformly heated and the ink melts.

しかし実際は、熱Qa=Qdは、インク面8の加熱に有
効に使イつれる熱Qal=Qdlと周囲に逃げる熱Qa
2〜Qd2に分かれ、インク面8の加熱に有効に使われ
る熱量Qal=Qdlの発熱量Qa〜Qdに対する割合
は抵抗体の幅が広い程大きくなる。言い換えれば、発熱
抵抗体3a〜3dの幅が狭い程無駄になる熱量の割合が
大きくなる。
However, in reality, the heat Qa = Qd is the heat Qal = Qdl that is effectively used to heat the ink surface 8, and the heat Qa that escapes to the surroundings.
The ratio of the amount of heat Qal=Qdl effectively used for heating the ink surface 8 to the amount of heat generation Qa to Qd increases as the width of the resistor increases. In other words, the narrower the width of the heating resistors 3a to 3d, the greater the proportion of wasted heat.

従って、第1電極4aから発熱抵抗体3a〜3dを介し
て第2電極4bに電流を流した場合、インク面8の加熱
mは、最も幅の広い抵抗体3dに面した部分が最大とな
り、以下、3c→3b→3aに各4面した部分の順に小
さくなる。
Therefore, when a current is passed from the first electrode 4a to the second electrode 4b via the heating resistors 3a to 3d, the heating m of the ink surface 8 is maximum at the part facing the widest resistor 3d. Thereafter, the four-sided portions become smaller in the order of 3c → 3b → 3a.

ところで、インクが溶融するのには一定の熱エネルギー
を必要とする。従って、発熱抵抗体3a〜3dに流す電
流のa電時間あるいは波高値がある範囲内の場合は、幅
の大きな発熱抵抗体3dに面したインク面の加熱量のみ
がインクを溶融せしめろ熱エネルギーに達し、インクが
溶融され、発熱抵抗体3a〜3dに流す電流の通電時間
あるいは波高値を上記の範囲より大にすると、発熱抵抗
体3dよりら幅の小さな発熱抵抗体に而したインク面の
加熱量もインクを溶融せしめる熱エネルギーに達し、イ
ンクが溶融される。
By the way, a certain amount of thermal energy is required to melt ink. Therefore, if the electric time or peak value of the current flowing through the heating resistors 3a to 3d is within a certain range, only the heating amount of the ink surface facing the wide heating resistor 3d melts the ink, and the thermal energy is When the current flow time or peak value of the current flowing through the heating resistors 3a to 3d is made larger than the above range, the ink surface becomes smaller than that of the heating resistor 3d. The amount of heating also reaches a thermal energy that melts the ink, and the ink is melted.

すなわち、発熱抵抗体に流す電流の通電時間あるいは波
高値を変える事により、インク面の溶融する範囲を制御
する事ができ、第3図に示すように被転写用紙に転写さ
れるドツトの大きさを(a)。
In other words, by changing the duration or peak value of the current flowing through the heating resistor, the melting range of the ink surface can be controlled, and the size of the dots transferred to the transfer paper can be controlled as shown in Figure 3. (a).

(b) 、 (c、) 、 (d)の4通りに変える事
ができる。
It can be changed in four ways: (b), (c,), and (d).

また、第4図はこの発明の第2の実施例であり、第1図
のように発熱抵抗体を完全に分割するのでなく、発熱抵
抗体に電極まで到達しない切り込みを入れている。この
場合も、電流を切り込みを境に分流させる事ができ、第
1の実施例と同様の効果かある。
Further, FIG. 4 shows a second embodiment of the present invention, in which the heating resistor is not completely divided as in FIG. 1, but a cut is made in the heating resistor that does not reach the electrode. In this case as well, the current can be divided across the notch, and the same effect as in the first embodiment can be obtained.

[発明の効果] 以上説明したようにこの発明によれば、発熱抵抗体に第
1電極から第2電極に至る向きに平行して走る境界部を
形成し、この境界部の発熱抵抗体を除去し、各々幅の異
なる複数の発熱抵抗体を形成したので、発熱抵抗体へ流
す電流の通電時間またはその波高値を制御することによ
りインクの溶融範囲を制御でき、印刷されるドツトの大
きさを制御することができる。
[Effects of the Invention] As explained above, according to the present invention, a boundary portion running in parallel from the first electrode to the second electrode is formed in the heating resistor, and the heating resistor at this boundary portion is removed. However, by forming a plurality of heating resistors each having a different width, the melting range of the ink can be controlled by controlling the duration or peak value of the current flowing through the heating resistors, and the size of the printed dots can be controlled. can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示す平面図、第2
図は第1図の■−■線断面図、第3図はこの発明のサー
マルヘッドにおいて熱転写されるドツトの形状を示す図
、第4図はこの発明の第2の実施例を示す平面図、第5
図は従来のサーマルヘッドを示す断面図、第6図は同サ
ーマルヘッドの平面図である。 l・・・・・・基板、2・・・・・・ガラスゲレース層
(熱絶縁層)、3 a、3 b、3 c、3 d・・・
・・・発熱抵抗体、4a・・・・・・第1電極、4b・
・・・・・第2電極、5・・・・・・耐酸化膜、6・・
・・・・耐摩耗膜(5,6は保護層を構成する)。
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a sectional view taken along the line ■-■ in FIG. 1, FIG. 3 is a diagram showing the shape of the dots thermally transferred in the thermal head of the present invention, and FIG. 4 is a plan view showing a second embodiment of the present invention. Fifth
The figure is a sectional view showing a conventional thermal head, and FIG. 6 is a plan view of the same thermal head. 1... Substrate, 2... Glass gelase layer (thermal insulation layer), 3 a, 3 b, 3 c, 3 d...
...Heating resistor, 4a...First electrode, 4b.
...Second electrode, 5...Oxidation-resistant film, 6...
...Wear-resistant film (5 and 6 constitute a protective layer).

Claims (1)

【特許請求の範囲】[Claims] 基板表面に熱絶縁層が形成され、その上に抵抗膜による
発熱抵抗体と、この発熱抵抗体に電流を供給する第1電
極、第2電極と、表面を保護する保護層とが順次積層さ
れてなるサーマルヘッドにおいて、前記発熱抵抗体に前
記第1電極から前記第2電極に至る向きに平行して走る
境界部を形成し、この境界部の前記発熱抵抗体を除去し
、各々幅の異なる複数の発熱抵抗体を形成した事を特徴
とするサーマルヘッド。
A heat insulating layer is formed on the surface of the substrate, and a heat generating resistor made of a resistive film, a first electrode and a second electrode that supply current to the heat generating resistor, and a protective layer that protects the surface are sequentially laminated on the heat insulating layer. In the thermal head, a boundary portion running parallel to the first electrode to the second electrode is formed on the heating resistor, and the heating resistor at this boundary portion is removed, and each of the heating resistors has a different width. A thermal head characterized by forming multiple heating resistors.
JP25676687A 1987-10-12 1987-10-12 Thermal head Pending JPH0199862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25676687A JPH0199862A (en) 1987-10-12 1987-10-12 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25676687A JPH0199862A (en) 1987-10-12 1987-10-12 Thermal head

Publications (1)

Publication Number Publication Date
JPH0199862A true JPH0199862A (en) 1989-04-18

Family

ID=17297148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25676687A Pending JPH0199862A (en) 1987-10-12 1987-10-12 Thermal head

Country Status (1)

Country Link
JP (1) JPH0199862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375745A (en) * 1991-09-05 1994-12-27 Ing. Erich Pfeiffer Gmbh & Co. Kg Media dispenser with initial pressure-relief state
JP2002370397A (en) * 2001-06-13 2002-12-24 Sii P & S Inc Thermal head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375745A (en) * 1991-09-05 1994-12-27 Ing. Erich Pfeiffer Gmbh & Co. Kg Media dispenser with initial pressure-relief state
JP2002370397A (en) * 2001-06-13 2002-12-24 Sii P & S Inc Thermal head

Similar Documents

Publication Publication Date Title
JPH0199862A (en) Thermal head
JPH0199860A (en) Thermal head
JPS6213367A (en) Thermal head
JPH0199861A (en) Thermal head
JPS61211058A (en) Thermal printing head
JPH0661950B2 (en) Thermal head
JP2590974B2 (en) Electrode structure of thermal head
JP3099431B2 (en) Thermal head
JP3017550B2 (en) Thermal head
JP2007105993A (en) Heating head and method for driving it
JPS6135265A (en) Thermal head
JPS59133079A (en) Heat-sensitive head
JP2943216B2 (en) Thermal head
JPS61192566A (en) Thermal printing head for gradation recording
JPS61233564A (en) Thermal head
KR920010636B1 (en) Thermal head
JPH01232069A (en) Thermal head
JPS59133078A (en) Heat-sensitive head
JPH01150555A (en) Thermal head
JPH08112925A (en) Thermal head
JPH02137945A (en) Thermal head
JPH08112924A (en) Thermal head
JPH02217261A (en) Thermal head
JPH0632935B2 (en) Thermal head
JPH02270570A (en) Thermally sensitive recording head