JP2006142497A - Thermal head - Google Patents

Thermal head Download PDF

Info

Publication number
JP2006142497A
JP2006142497A JP2004331566A JP2004331566A JP2006142497A JP 2006142497 A JP2006142497 A JP 2006142497A JP 2004331566 A JP2004331566 A JP 2004331566A JP 2004331566 A JP2004331566 A JP 2004331566A JP 2006142497 A JP2006142497 A JP 2006142497A
Authority
JP
Japan
Prior art keywords
thermal head
heating resistor
metal film
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004331566A
Other languages
Japanese (ja)
Inventor
Tsutomu Takeya
努 竹谷
Shinya Yokoyama
進矢 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2004331566A priority Critical patent/JP2006142497A/en
Publication of JP2006142497A publication Critical patent/JP2006142497A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermal head realizing high image quality and high speed printing. <P>SOLUTION: The thermal head comprises a plurality of heating resistors generating heat upon conduction, an insulating barrier layer covering each heating resistor entirely, and an electrode layer conducting to the opposite ends of each heating resistor in the longitudinal direction thereof wherein a metal film for transmitting heat generated from the heating resistor is provided on the insulating barrier layer without touching the electrode layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱転写プリンタに搭載されるサーマルヘッドに関する。   The present invention relates to a thermal head mounted on a thermal transfer printer.

サーマルヘッドは一般に、蓄熱層を備えた放熱性基板上に、通電により発熱する複数の発熱抵抗体と、該複数の発熱抵抗体を通電するための電極層と、これら複数の発熱抵抗体及び電極層の一部を保護する保護層とを有し、発熱させた発熱抵抗体をインクリボンとプラテンローラに巻きつけられた被印刷物とに圧接させることで印刷動作している。このようなサーマルヘッドでは、近年、印画速度の高速化が進められている。印画高速化を実現するには、印画濃度をある一定以上に確保するため、発熱抵抗体への一回の通電時間を短くする一方で一回の供給電力を大きくし、発熱抵抗体の単位時間当たりの発熱量を増大させる必要がある。
特開昭57−61585号公報 特開昭57−61586号公報 特開平5−318796号公報 特開2001−96784号公報
In general, a thermal head has a plurality of heating resistors that generate heat when energized on a heat-dissipating substrate having a heat storage layer, an electrode layer for energizing the plurality of heating resistors, and the plurality of heating resistors and electrodes. And a protective layer that protects a part of the layer, and a heating operation is performed by bringing the heat generating resistor that has generated heat into pressure contact with an ink ribbon and a substrate to be printed wound around a platen roller. In such a thermal head, in recent years, the printing speed has been increased. In order to achieve high-speed printing, in order to ensure the print density above a certain level, the current supply time to the heating resistor is shortened while the supply power is increased to reduce the unit time of the heating resistor. It is necessary to increase the amount of heat generated per hit.
JP-A-57-61585 JP 57-61586 A JP-A-5-318796 JP 2001-96784 A

しかしながら、従来構造のサーマルヘッドでは、発熱抵抗体をその抵抗長方向に沿って通電したとき、通電方向に直交する抵抗幅方向の中心部での温度上昇が同抵抗幅方向の周縁部に比べて大きく、その温度分布(発熱分布)は図4のようになる。このため、印画高速化を目的として発熱抵抗体への単位時間当たりの発熱量を増大させると、発熱抵抗体の温度上昇も大きくなり、発熱抵抗体のピーク温度がインクリボンの軟化点を超えてしまうことが問題になっている。発熱抵抗体のピーク温度は条件によっては600℃を超える虞がある。これに対し、従来多用されているインクリボンはPET(ポリエチレンテレフタレート)を主成分としていて、発熱抵抗体の温度がインクリボンの軟化点を大きく超えていると、該発熱抵抗体に圧接するインクリボンがダメージを受け、リボン切れが発生し、印画できない。逆に、発熱抵抗体のピーク温度がインクリボンの軟化点を超えないように発熱抵抗体の単位時間当たりの発熱量を抑えると、発熱抵抗体への1回の通電時間が短くなるため、印画濃度が薄くなってしまう。また、PET主成分からなるインクリボンの替わりに、高温の軟化点を有する材料で形成したインクリボンを用いることもできるが、コストが高くなり、好ましくない。   However, in the thermal head having the conventional structure, when the heating resistor is energized along the resistance length direction, the temperature rise at the center portion in the resistance width direction orthogonal to the energization direction is larger than that at the peripheral portion in the resistance width direction. The temperature distribution (heat generation distribution) is large as shown in FIG. For this reason, if the amount of heat generation per unit time to the heating resistor is increased for the purpose of speeding up printing, the temperature rise of the heating resistor also increases, and the peak temperature of the heating resistor exceeds the softening point of the ink ribbon. Is a problem. The peak temperature of the heating resistor may exceed 600 ° C. depending on conditions. On the other hand, an ink ribbon that has been widely used in the past is mainly composed of PET (polyethylene terephthalate), and when the temperature of the heating resistor greatly exceeds the softening point of the ink ribbon, the ink ribbon that is in pressure contact with the heating resistor. Is damaged, ribbon breaks and printing is not possible. On the other hand, if the amount of heat generation per unit time of the heating resistor is suppressed so that the peak temperature of the heating resistor does not exceed the softening point of the ink ribbon, the energization time for the heating resistor will be shortened. The concentration will be lighter. Further, an ink ribbon formed of a material having a softening point at a high temperature can be used in place of the ink ribbon made of a PET main component, but this is not preferable because the cost increases.

本発明は、上記課題に鑑みてなされたものであり、印画高速化を実現可能なサーマルヘッドを得ることを目的とする。   SUMMARY An advantage of some aspects of the invention is that it provides a thermal head capable of realizing high-speed printing.

本発明は、発熱抵抗体の局所的な発熱集中を緩和し、インクリボンの切れが発生しない範囲で高温(発熱量増大)となる領域を抵抗長方向に拡げれば、印画品質を落とさずに印画速度を高められることに着目したものである。   In the present invention, the local heat concentration of the heating resistor is alleviated, and if the region of high temperature (increased heat generation) is expanded in the resistance length direction without causing the ink ribbon to break, the print quality is not deteriorated. This is because the printing speed can be increased.

すなわち、本発明は、通電により発熱する複数の発熱抵抗体と、各発熱抵抗体を全面的に覆う絶縁バリア層と、各発熱抵抗体の抵抗長方向の両端部に導通する電極層とを備えたサーマルヘッドにおいて、絶縁バリア層の上に、発熱抵抗体が発生した熱を一様に伝える伝熱金属膜を、電極層とは非接触で設けたことを特徴としている。   That is, the present invention includes a plurality of heating resistors that generate heat when energized, an insulating barrier layer that covers the entire heating resistors, and electrode layers that are electrically connected to both ends of each heating resistor in the resistance length direction. The thermal head is characterized in that a heat transfer metal film for uniformly transmitting the heat generated by the heating resistor is provided on the insulating barrier layer in a non-contact manner with the electrode layer.

上記態様によれば、伝熱金属膜で覆われた領域が一様に高温になるので、発熱抵抗体への単位時間当たりの給電電力を増大させても、インクリボンの切れが発生しない範囲で高温領域を得ることができる。   According to the above aspect, since the region covered with the heat transfer metal film is uniformly heated, the ink ribbon is not cut even when the power supplied to the heating resistor per unit time is increased. A high temperature region can be obtained.

インクリボンの走行方向は発熱抵抗体の抵抗長方向であるから、伝熱金属膜は、抵抗長方向に長い矩形状で形成されていることが好ましい。この態様によれば、発熱抵抗体の抵抗長方向に一様な高温領域を拡げることができる。   Since the traveling direction of the ink ribbon is the resistance length direction of the heating resistor, the heat transfer metal film is preferably formed in a rectangular shape that is long in the resistance length direction. According to this aspect, a uniform high temperature region can be expanded in the resistance length direction of the heating resistor.

伝熱金属膜は、発熱抵抗体の最高発熱温度よりも融点の高い金属材料で形成する必要がある。具体的には、Cr、Ti、Ta、Mo、Wの少なくとも1つを含む高融点金属材料、Al及びCuのいずれか、または上記高融点金属材料を含む合金材料、あるいはAlまたはCuを含む合金材料により形成されていることが好ましい。さらに、この伝熱金属膜は、電極層と同一の金属材料により形成されていることが好ましい。伝熱金属膜と電極層が同一の金属材料からなる場合には、該伝熱金属膜と電極層を同時に形成することができ、製造工程が容易になる。   The heat transfer metal film needs to be formed of a metal material having a melting point higher than the maximum heat generation temperature of the heating resistor. Specifically, a refractory metal material containing at least one of Cr, Ti, Ta, Mo, and W, one of Al and Cu, an alloy material containing the refractory metal material, or an alloy containing Al or Cu It is preferable that it is formed of a material. Furthermore, the heat transfer metal film is preferably formed of the same metal material as the electrode layer. When the heat transfer metal film and the electrode layer are made of the same metal material, the heat transfer metal film and the electrode layer can be formed at the same time, which facilitates the manufacturing process.

本発明によれば、印画品質に優れ、印画高速化を実現可能なサーマルヘッドを得ることができる。   According to the present invention, it is possible to obtain a thermal head that is excellent in printing quality and can realize high-speed printing.

図1〜図3は本発明の第1実施形態によるサーマルヘッド1を示している。図1はサーマルヘッド1(耐磨耗保護層を形成する前の状態)を示す平面図、図2は図1のII−II線に沿う断面図である。本サーマルヘッド1は、熱転写プリンタに搭載され、発熱抵抗体4の発する熱を感熱紙またはインクリボンに与えることで印刷を行なう。   1 to 3 show a thermal head 1 according to a first embodiment of the present invention. FIG. 1 is a plan view showing a thermal head 1 (a state before forming a wear-resistant protective layer), and FIG. 2 is a sectional view taken along line II-II in FIG. The thermal head 1 is mounted on a thermal transfer printer and performs printing by applying heat generated by the heating resistor 4 to thermal paper or an ink ribbon.

サーマルヘッド1は、Siやセラミック材料、金属材料等からなる放熱性に優れた基板2上に例えばガラス等の断熱材料からなる蓄熱層3を有し、この蓄熱層3の上に、図1の左右方向に微小間隔をあけて一列に配置した複数の発熱抵抗体4を備えている。各発熱抵抗体4は、Ta2NやTa−SiO2等のサーメット材料を用いて蓄熱層3の上に全面形成された抵抗体層4’の一部であり、その表面が絶縁バリア層5により覆われている。絶縁バリア層5は、例えばSiO2、SiON、SiAlON等の絶縁材料から形成されていて、各発熱抵抗体4の平面的な大きさ(長さ寸法L、幅寸法W)を規定している。隣接する発熱抵抗体4の間には、基板2が露出するギャップ領域γが存在している。 The thermal head 1 has a heat storage layer 3 made of a heat insulating material such as glass on a substrate 2 made of Si, a ceramic material, a metal material or the like and having excellent heat dissipation, and the heat storage layer 3 shown in FIG. A plurality of heating resistors 4 arranged in a line at a minute interval in the left-right direction are provided. Each heating resistor 4 is a part of a resistor layer 4 ′ formed entirely on the heat storage layer 3 using a cermet material such as Ta 2 N or Ta—SiO 2 , and the surface thereof is an insulating barrier layer 5. Covered by. The insulating barrier layer 5 is made of an insulating material such as SiO 2 , SiON, or SiAlON, for example, and defines the planar size (length dimension L, width dimension W) of each heating resistor 4. Between adjacent heating resistors 4, there is a gap region γ where the substrate 2 is exposed.

各発熱抵抗体4の抵抗長方向の両端部には電極層6が導通接続されている。発熱抵抗体4の抵抗長方向はインクリボンの走行方向に平行である。電極層6は、抵抗体層4’の上に全面的に成膜した後に各発熱抵抗体4の表面を露出させる開放部6cをあけて形成したもので、開放部6cを介して、全発熱抵抗体4に共通接続されたコモン電極6aと、各発熱抵抗体4毎に独立接続された複数の個別電極6bとに分離している。コモン電極6aと個別電極6bの間にはギャップ領域γが存在し、このギャップ領域γによりコモン電極6a及び個別電極6bの幅寸法は、発熱抵抗体4の幅寸法Wと同一に規定されている。この電極層6は、Cr、Ta、Mo、W、Ti等の高融点金属材料、Al及びCuのいずれか、または、上記高融点金属材料を含む合金材料、あるいはAlまたはCuを含む合金材料により形成することができる。本実施形態の電極層6はAlにより形成されており、数百μs程度のごく短い周期で大電流を与えて発熱抵抗体4をオン(通電)/オフ(非通電)する高速印刷動作にも対応可能になっている。   Electrode layers 6 are conductively connected to both end portions of each heating resistor 4 in the resistance length direction. The resistance length direction of the heating resistor 4 is parallel to the running direction of the ink ribbon. The electrode layer 6 is formed on the resistor layer 4 ′ over the entire surface, and is formed by opening an opening 6c that exposes the surface of each heating resistor 4. Through the opening 6c, all the heat is generated. A common electrode 6 a commonly connected to the resistor 4 and a plurality of individual electrodes 6 b independently connected to each heating resistor 4 are separated. A gap region γ exists between the common electrode 6a and the individual electrode 6b, and the width dimension of the common electrode 6a and the individual electrode 6b is defined to be the same as the width dimension W of the heating resistor 4 by the gap region γ. . This electrode layer 6 is made of a refractory metal material such as Cr, Ta, Mo, W, Ti, Al, Cu, an alloy material containing the refractory metal material, or an alloy material containing Al or Cu. Can be formed. The electrode layer 6 of this embodiment is made of Al, and is used for high-speed printing operation in which a large current is applied with a very short period of about several hundreds μs to turn on (energize) / off (non-energize) the heating resistor 4. It can be supported.

絶縁バリア層5、コモン電極6a及び個別電極6bの上には、例えばSiAlONやTa25等の耐摩耗性材料からなる耐磨耗保護層7が形成されている。耐磨耗保護層7は、ヘッド動作時に生じる摩擦から絶縁バリア層5、コモン電極6a及び個別電極6bを保護する。なお、図1では耐磨耗保護層7は図示省略されている。図示されていないが、本サーマルヘッドには、複数の発熱抵抗体4への通電を制御するための駆動ICやプリント回路基板等も備えられている。 On the insulating barrier layer 5, the common electrode 6a, and the individual electrode 6b, a wear-resistant protective layer 7 made of a wear-resistant material such as SiAlON or Ta 2 O 5 is formed. The wear-resistant protective layer 7 protects the insulating barrier layer 5, the common electrode 6a, and the individual electrode 6b from friction generated during head operation. In FIG. 1, the wear-resistant protective layer 7 is not shown. Although not shown, the thermal head is also provided with a drive IC, a printed circuit board, and the like for controlling energization to the plurality of heating resistors 4.

上記構成のサーマルヘッド1には、絶縁バリア層5の上に、発熱抵抗体4が発生した熱を一様に伝える伝熱金属膜10が、電極層6とは非接触で設けられている。伝熱金属膜10は、発熱抵抗体4の抵抗長方向に長い矩形状をなし、その抵抗長方向の長さL1は100μm程度、幅寸法W1は70μm程度である。また、伝熱金属膜10と電極層6との抵抗長方向の間隔dは、50μm程度となっている。   In the thermal head 1 configured as described above, the heat transfer metal film 10 that uniformly transmits the heat generated by the heating resistor 4 is provided on the insulating barrier layer 5 in a non-contact manner with the electrode layer 6. The heat transfer metal film 10 has a rectangular shape that is long in the resistance length direction of the heating resistor 4, and the length L1 in the resistance length direction is about 100 μm, and the width dimension W1 is about 70 μm. Further, the distance d in the resistance length direction between the heat transfer metal film 10 and the electrode layer 6 is about 50 μm.

伝熱金属膜10は、熱伝導性に優れ且つ発熱抵抗体4の最高発熱温度よりも高融点の金属材料からなり、具体的にはCr、Ti、Ta、Mo、Wの少なくとも1つを含む高融点金属材料、Al及びCuのいずれか、または上記高融点金属材料を含む合金材料、あるいはAlまたはCuを含む合金材料で形成されることが好ましい。本実施形態の伝熱金属膜10は、電極層6と同一材料のAlからなり、電極層6を形成する製造工程で該電極層6と同時に形成されている。具体的には、抵抗体層4’と絶縁バリア層5の上にAl導体膜を全面的に形成し、絶縁バリア層5の表面を露出させる開放部6cを形成する際に、絶縁バリア層5上のAl導体膜を残してこれを伝熱金属膜10とする。伝熱金属膜10は、単層膜であっても多層膜であってもよい。   The heat transfer metal film 10 is made of a metal material that is excellent in thermal conductivity and has a melting point higher than the maximum heat generation temperature of the heating resistor 4, and specifically includes at least one of Cr, Ti, Ta, Mo, and W. It is preferably formed of a refractory metal material, one of Al and Cu, an alloy material containing the refractory metal material, or an alloy material containing Al or Cu. The heat transfer metal film 10 of the present embodiment is made of Al, which is the same material as the electrode layer 6, and is formed simultaneously with the electrode layer 6 in the manufacturing process for forming the electrode layer 6. Specifically, when an Al conductor film is formed on the entire surface of the resistor layer 4 ′ and the insulating barrier layer 5 and the opening 6 c exposing the surface of the insulating barrier layer 5 is formed, the insulating barrier layer 5 is formed. The upper Al conductor film is left as the heat transfer metal film 10. The heat transfer metal film 10 may be a single layer film or a multilayer film.

図3は、発熱抵抗体4の抵抗長方向の温度分布を説明する模式図である。電極層6(コモン電極6a、個別電極6b)を介して発熱抵抗体4を抵抗長方向に通電すると、発熱抵抗体4が発生した熱は、絶縁バリア層5を介して伝熱金属膜10に伝わり、伝熱金属膜10によって一様に拡げられることから、発熱抵抗体4の中心部での温度上昇が緩和される。図3に示すように発熱抵抗体4は、伝熱金属膜10で覆われた領域がほぼ一様な高温領域となる。上述したように伝熱金属膜10は抵抗長方向に長い矩形状をなしているので、上記高温領域も抵抗長方向に長くなっている。   FIG. 3 is a schematic diagram illustrating the temperature distribution in the resistance length direction of the heating resistor 4. When the heating resistor 4 is energized in the resistance length direction via the electrode layer 6 (common electrode 6a, individual electrode 6b), the heat generated by the heating resistor 4 is transferred to the heat transfer metal film 10 via the insulating barrier layer 5. Since it is transmitted and uniformly spread by the heat transfer metal film 10, the temperature rise at the center of the heating resistor 4 is alleviated. As shown in FIG. 3, in the heating resistor 4, the region covered with the heat transfer metal film 10 becomes a substantially uniform high temperature region. As described above, since the heat transfer metal film 10 has a rectangular shape that is long in the resistance length direction, the high-temperature region is also long in the resistance length direction.

以上の本実施形態によれば、発熱抵抗体4が抵抗長方向(インクリボンの走行方向)にピーク温度のない温度分布をとるので、発熱抵抗体4への単位時間当たりの発熱量(給電電力)を増大させても、インクリボンの軟化点を超えない範囲で高温領域を得ることができ、印画の高品質化及び高速化を実現可能である。
According to the above embodiment, since the heating resistor 4 has a temperature distribution without a peak temperature in the resistance length direction (travel direction of the ink ribbon), the amount of heat generated per unit time (feeding power) to the heating resistor 4 ), A high temperature region can be obtained in a range not exceeding the softening point of the ink ribbon, and high quality and high speed printing can be realized.

本発明の一実施形態によるサーマルヘッドを示す平面図ある。It is a top view which shows the thermal head by one Embodiment of this invention. 図1のII―II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 発熱抵抗体の温度分布を説明する模式図である。It is a schematic diagram explaining the temperature distribution of a heating resistor. 従来構造のサーマルヘッドにおける発熱抵抗体の温度分布を説明する模式図である。It is a schematic diagram explaining the temperature distribution of the heating resistor in the thermal head of the conventional structure.

符号の説明Explanation of symbols

1 サーマルヘッド
4 発熱抵抗体
5 絶縁バリア層
6 電極層
6a コモン電極
6b 個別電極
6c 開放部
10 伝熱金属膜
L 抵抗長方向の寸法
W 抵抗幅方向の寸法
γ ギャップ領域
DESCRIPTION OF SYMBOLS 1 Thermal head 4 Heating resistor 5 Insulation barrier layer 6 Electrode layer 6a Common electrode 6b Individual electrode 6c Opening part 10 Heat transfer metal film L Resistance length direction dimension W Resistance width direction dimension γ Gap region

Claims (4)

通電により発熱する複数の発熱抵抗体と、各発熱抵抗体を全面的に覆う絶縁バリア層と、前記各発熱抵抗体の抵抗長方向の両端部に導通する電極層とを備えたサーマルヘッドにおいて、
前記絶縁バリア層の上に、前記発熱抵抗体が発生した熱を一様に伝える伝熱金属膜を、前記電極層とは非接触で設けたことを特徴とするサーマルヘッド。
In a thermal head comprising a plurality of heating resistors that generate heat by energization, an insulating barrier layer that covers the entire heating resistors, and electrode layers that are electrically connected to both ends in the resistance length direction of the heating resistors,
A thermal head, wherein a heat transfer metal film for uniformly transmitting heat generated by the heating resistor is provided on the insulating barrier layer in a non-contact manner with the electrode layer.
請求項1記載のサーマルヘッドにおいて、前記伝熱金属膜は、前記抵抗長方向に長い矩形状で形成されているサーマルヘッド。 2. The thermal head according to claim 1, wherein the heat transfer metal film is formed in a rectangular shape that is long in the resistance length direction. 請求項1または2記載のサーマルヘッドにおいて、前記伝熱金属膜は、Cr、Ti、Ta、Mo、Wの少なくとも1つを含む高融点金属材料、Al及びCuのいずれか、または前記高融点金属材料を含む合金材料、あるいはAlまたはCuを含む合金材料により形成されているサーマルヘッド。 3. The thermal head according to claim 1, wherein the heat transfer metal film is a refractory metal material containing at least one of Cr, Ti, Ta, Mo, and W, Al and Cu, or the refractory metal. A thermal head formed of an alloy material containing a material or an alloy material containing Al or Cu. 請求項1ないし3のいずれか一項に記載のサーマルヘッドにおいて、前記伝熱金属膜と前記電極層は、同一の高融点金属材料により形成されているサーマルヘッド。
4. The thermal head according to claim 1, wherein the heat transfer metal film and the electrode layer are formed of the same refractory metal material. 5.
JP2004331566A 2004-11-16 2004-11-16 Thermal head Withdrawn JP2006142497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331566A JP2006142497A (en) 2004-11-16 2004-11-16 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331566A JP2006142497A (en) 2004-11-16 2004-11-16 Thermal head

Publications (1)

Publication Number Publication Date
JP2006142497A true JP2006142497A (en) 2006-06-08

Family

ID=36622741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331566A Withdrawn JP2006142497A (en) 2004-11-16 2004-11-16 Thermal head

Country Status (1)

Country Link
JP (1) JP2006142497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110923A (en) * 2008-11-04 2010-05-20 Alps Electric Co Ltd Thermal head and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110923A (en) * 2008-11-04 2010-05-20 Alps Electric Co Ltd Thermal head and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2005193535A (en) Thermal head, method of manufacturing the same, and method of adjusting dot aspect ratio of the thermal head
WO2015111520A1 (en) Thermal print head and thermal printer
JP2007245667A (en) Thermal head and printer
JP2001253104A (en) Thermal head
JP2006205520A (en) Thermal head
JP4722186B2 (en) RECORDING HEAD AND RECORDING DEVICE HAVING THE SAME
JP2009184272A (en) Thermal head, thermal printer and manufacturing method of thermal head
JP2008036923A (en) Thermal print head
JP2006142497A (en) Thermal head
JP5157494B2 (en) Thermal head and thermal printer
JP5106089B2 (en) RECORDING HEAD AND RECORDING DEVICE HAVING THE SAME
JP2010269489A (en) Thermal head, manufacturing method of thermal head, and thermal transfer printer
JP5329887B2 (en) Thermal head
JP2012061778A (en) Thermal print head and thermal printer
JP2006192703A (en) Thermal head
JP4986712B2 (en) RECORDING HEAD, MANUFACTURING METHOD THEREOF, AND RECORDING DEVICE HAVING THE RECORDING HEAD
JP2006159467A (en) Thermal head and its manufacturing method
JP2006312244A (en) Thermal head and its manufacturing method
JPH1029335A (en) Thermal head
JP2003165240A (en) Thermal head
JP4666972B2 (en) Thermal head and thermal printer using the same
JP2011068049A (en) Thermal head and thermal printer equipped with the same
JP2527007Y2 (en) Thermal head
JPS61227068A (en) Thermal head
JPH0199860A (en) Thermal head

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070112

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Effective date: 20090804

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20090828

Free format text: JAPANESE INTERMEDIATE CODE: A761