JP2928189B2 - Method for producing porous composite oxide - Google Patents

Method for producing porous composite oxide

Info

Publication number
JP2928189B2
JP2928189B2 JP9063635A JP6363597A JP2928189B2 JP 2928189 B2 JP2928189 B2 JP 2928189B2 JP 9063635 A JP9063635 A JP 9063635A JP 6363597 A JP6363597 A JP 6363597A JP 2928189 B2 JP2928189 B2 JP 2928189B2
Authority
JP
Japan
Prior art keywords
oxide source
porous composite
psi
solution
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9063635A
Other languages
Japanese (ja)
Other versions
JPH1036111A (en
Inventor
鎬眞 權
舜▲教▼ 洪
桂東 白
恵眞 金
東坤 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansei Denshi Co Ltd
Original Assignee
Sansei Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansei Denshi Co Ltd filed Critical Sansei Denshi Co Ltd
Publication of JPH1036111A publication Critical patent/JPH1036111A/en
Application granted granted Critical
Publication of JP2928189B2 publication Critical patent/JP2928189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多孔性複合酸化物の
製造方法に係り、特に微細気孔が豊かに形成されている
上に気孔直径の分布度が比較的均一なため、担体として
用いるに好適な多孔性複合酸化物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous composite oxide, and more particularly, to a method for producing a porous composite oxide, which is rich in fine pores and has a relatively uniform distribution of pore diameters. And a method for producing a porous composite oxide.

【0002】[0002]

【従来の技術】現在、化学関連産業の発達は多様な触媒
の開発を伴っている。触媒は物質の合成、分解、改質な
どの分野においてほとんど必須的に用いられている極め
て重要な要素である。このような触媒としては金属又は
その他の成分の微粒子が用いられるのが一般的である。
かつ、多様な利用方法があるが、通常担体に担持させて
用いる。
2. Description of the Related Art At present, the development of the chemical-related industry is accompanied by the development of various catalysts. The catalyst is a very important element that is almost indispensably used in the fields of synthesis, decomposition and reforming of substances. As such a catalyst, fine particles of a metal or other components are generally used.
In addition, although there are various uses, it is usually used by being supported on a carrier.

【0003】触媒粒子を担持するに用いられる担体は、
その自体が反応性を有しないことが一般的であり、特に
豊かな微細気孔が形成されていなければならない。何故
ならば、触媒反応を活性化するためには、微粒物質の触
媒成分と反応物質とが接触する空間が広くなければなら
ないからである。現在一般的に用いられている担体とし
ては、シリカ、アルミナ、アルミノケイ酸塩、ゼオライ
ト、活性炭などがある。この内、アルミノケイ酸塩は多
様なサイズの気孔を有する性質があるため、担体として
多用されている。
[0003] The carrier used to support the catalyst particles includes:
In general, it does not have reactivity in itself, and particularly rich fine pores must be formed. This is because, in order to activate the catalytic reaction, the space in which the catalyst component of the fine particle substance and the reactant come into contact must be wide. Currently commonly used carriers include silica, alumina, aluminosilicate, zeolite, activated carbon and the like. Among them, aluminosilicate has a property of having pores of various sizes, and thus is often used as a carrier.

【0004】一方、円滑な触媒反応のために、反応物質
と触媒との接触面積をなおさら増やし得る担体の開発が
要求されている。現在アルミノケイ酸塩は水溶性アルミ
ニウムオキサイド源とシリコンオキサイド源を水に溶解
させた後、加熱する過程を通して製造されるのが一般的
である。ところが、このような方法により製造されるア
ルミノケイ酸塩は触媒粒子を担持し得る気孔が少ないと
いう問題点がある。担体に形成されている気孔は触媒粒
子が担持されて反応を起こし得る空間であるが、このよ
うな気孔が少ないと円滑な触媒反応ができなくなる。従
って、豊かな気孔を有する担体の開発が要求されている
のである。
On the other hand, there has been a demand for the development of a carrier capable of further increasing the contact area between a reactant and a catalyst for a smooth catalytic reaction. At present, aluminosilicate is generally manufactured through a process in which a water-soluble aluminum oxide source and a silicon oxide source are dissolved in water and then heated. However, the aluminosilicate produced by such a method has a problem that there are few pores capable of supporting the catalyst particles. The pores formed in the carrier are spaces in which catalyst particles can be carried to cause a reaction, but if such pores are small, a smooth catalytic reaction cannot be performed. Therefore, development of a carrier having rich pores is required.

【0005】他にも、担体には多様なサイズの直径を有
する気孔が均一に分布されていなければならない。何故
ならば、多様なサイズの触媒微粒子を容易に担持する必
要があるからである。ところが、従来の方法により製造
されるアルミノケイ酸塩は気孔サイズの分布度が不均一
な問題点がある。
[0005] In addition, pores having various diameters must be uniformly distributed on the carrier. This is because it is necessary to easily support catalyst fine particles of various sizes. However, the aluminosilicate produced by the conventional method has a problem that the pore size distribution is not uniform.

【0006】[0006]

【発明が解決しようとする課題】本発明は前記のような
問題点を解決するために案出されたものであり、担体と
して用いるに好適な、微細気孔が豊かに形成されてお
り、気孔サイズの分布度が均一な多孔性複合酸化物の製
造方法を提供することである。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve the above-mentioned problems, and has fine pores which are suitable for use as a carrier and have a large pore size. The object of the present invention is to provide a method for producing a porous composite oxide having a uniform distribution.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に本発明による多孔性複合酸化物の製造方法は、シリコ
ンオキサイド源を含む溶液とアルミニウムオキサイド源
を含む溶液を製造する段階と、前記溶液のうち一つの溶
液を他の溶液に徐々に投与しながらかき混ぜる段階と、
前記段階から得られた混合溶液に塩酸を投与して透明な
ゾルを製造した後、水酸化ナトリウムを投与してゲルを
形成する段階と、前記ゲルに含まれているシリコンオキ
サイド源とアルミニウムオキサイド源とを高温かつ高圧
で反応させる段階とを含むことを特徴とする。
In order to achieve the above object, a method for producing a porous composite oxide according to the present invention comprises the steps of producing a solution containing a silicon oxide source and a solution containing an aluminum oxide source; Stirring while gradually administering one solution to the other solution,
Administering a hydrochloric acid to the mixed solution obtained in the above step to produce a transparent sol, and then administering sodium hydroxide to form a gel; and a silicon oxide source and an aluminum oxide source contained in the gel. And reacting at a high temperature and a high pressure.

【0008】[0008]

【発明の実施の形態】以下、本発明を添付した図面に基
づき更に詳細に説明する。本発明によると、アルミノケ
イ酸塩の製造工程中に塩酸と水酸化アンモニウムを投与
することにより、多様なサイズの気孔が均一かつ豊かに
形成され得る。まず、水溶性シリコンオキサイド源と水
溶性アルミニウムオキサイド源を別々に水に溶解させ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. According to the present invention, pores of various sizes can be uniformly and richly formed by administering hydrochloric acid and ammonium hydroxide during the aluminosilicate production process. First, a water-soluble silicon oxide source and a water-soluble aluminum oxide source are separately dissolved in water.

【0009】本発明において、シリコンオキサイド源と
してはケイ酸塩が望ましく、更に望ましくはナトリウム
ケイ酸塩である。アルミニウムオキサイド源としてはア
ルミン酸塩が望ましく、更に望ましくはナトリウムアル
ミン酸塩である。反応物質が水に対する溶解速度が遅い
場合には加熱し得る。特に、シリコンオキサイド源は常
温における水に対する溶解度が低いため、加熱して溶解
させることが望ましい。加熱温度は用いられる反応物質
の溶解度及び性質に応じて変わるが、通常的に50から
60℃程度が望ましい。
In the present invention, the silicon oxide source is preferably a silicate, more preferably a sodium silicate. The aluminate source is preferably an aluminate, more preferably a sodium aluminate. If the reactants dissolve slowly in water, they can be heated. In particular, since the silicon oxide source has low solubility in water at room temperature, it is desirable to dissolve it by heating. The heating temperature varies depending on the solubility and properties of the reactants used, but is generally preferably about 50 to 60 ° C.

【0010】シリコンオキサイド源とアルミニウムオキ
サイド源が溶解されているそれぞれの溶液が用意される
と、この溶液を混ぜ合わせる。シリコンオキサイド源と
アルミニウムオキサイド源の含量比はアルミニウムに対
するシリコンのモール比が1から3程度にする方が望ま
しい。一方、シリコンオキサイド源とアルミニウムオキ
サイド源が均一に混ぜられるように、両溶液のうち何れ
か一つを他の溶液に徐々に投与する。かつ、溶液の混合
過程で投与される溶液を加熱及び混合する必要がある。
When the respective solutions in which the silicon oxide source and the aluminum oxide source are dissolved are prepared, these solutions are mixed. It is desirable that the content ratio between the silicon oxide source and the aluminum oxide source is such that the mole ratio of silicon to aluminum is about 1 to 3. On the other hand, one of the two solutions is gradually administered to the other solution so that the silicon oxide source and the aluminum oxide source are uniformly mixed. In addition, it is necessary to heat and mix the solution to be administered during the solution mixing process.

【0011】前記両溶液の混合が完了されると、透明な
ゾルが得られるまで塩酸を添加する。次いで、水酸化ナ
トリウムを投与してから、所定の時間だけ保持するとゾ
ルがゲルに変わる。ここで、水酸化ナトリウムは水に溶
解されたシリコンオキサイド源とアルミニウムオキサイ
ド源とを円滑かつ均一に反応させる働きをする。塩酸と
水酸化ナトリウムはそれぞれ希釈溶液状で投与されるこ
とが望ましく、反応溶液のpHは3から12程度が望ま
しい。
When the mixing of the two solutions is completed, hydrochloric acid is added until a clear sol is obtained. Next, when sodium hydroxide is administered and then held for a predetermined time, the sol changes to a gel. Here, the sodium hydroxide functions to smoothly and uniformly react the silicon oxide source and the aluminum oxide source dissolved in water. Hydrochloric acid and sodium hydroxide are each desirably administered in the form of a dilute solution, and the pH of the reaction solution is desirably about 3 to 12.

【0012】最後に、前記ゲルを加熱すると、微細な気
孔を有するアルミノケイ酸塩が製造される。加熱は10
0から1200PSIの圧力及び100から300℃の
温度で1から10時間だけ行われる。望ましくは、圧力
が100から200PSIであり、温度が100から1
50℃である。以下、実施例及び比較例を通して本発明
を具体的に説明するが、本発明は必ずこれに限定される
ものではない。
Finally, when the gel is heated, an aluminosilicate having fine pores is produced. Heating is 10
It is performed for 1 to 10 hours at a pressure of 0 to 1200 PSI and a temperature of 100 to 300 ° C. Preferably, the pressure is between 100 and 200 PSI and the temperature is between 100 and 1 PSI.
50 ° C. Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not necessarily limited thereto.

【0013】<実施例1>ナトリウムケイ酸塩(Na2
SiO3)98.4gを蒸留水150mlに投与した
後、55℃の温度に保持して完全溶解させた。それとは
別途に、ナトリウムアルミン酸塩(NaAiO2)15
2.5gを蒸留水700mlに溶解させた。ナトリウム
アルミン酸塩溶液をナトリウムケイ酸塩溶液に徐々に投
与する。この際、混ぜられる溶液をかき混ぜると同時に
引き続き加熱して温度を55℃に保持させる。混合が完
了された後、反応混合物が透明になるまで6N HCl
を投与した。透明な溶液に、pHが10になるまで6N
NaOHを投与した後、60分間放置してゲルを得
た。ゲルを反応器に入れて、100℃、100PSIで
1時間だけ反応させた。真空減圧装置を用いて、反応結
果物を濾過した後、100℃で24時間だけ乾燥させて
粉末状のアルミノケイ酸塩を製造した。製造された粉末
に対する表面積と気孔サイズに対する気孔体積の関係を
測定したところ、BET表面積は135(m2/g)で
あり、気孔のサイズの分布度は比較的均一だった。(図
1 グラフa)
<Example 1> Sodium silicate (Na 2
98.4 g of (SiO 3 ) was administered to 150 ml of distilled water, and then completely dissolved at a temperature of 55 ° C. Separately, sodium aluminate (NaAiO 2 ) 15
2.5 g was dissolved in 700 ml of distilled water. The sodium aluminate solution is slowly administered to the sodium silicate solution. At this time, the solution to be mixed is stirred and simultaneously heated to keep the temperature at 55 ° C. After mixing is complete, add 6N HCl until the reaction mixture is clear.
Was administered. 6N to clear solution until pH 10
After administration of NaOH, the mixture was left for 60 minutes to obtain a gel. The gel was placed in a reactor and reacted at 100 ° C. and 100 PSI for only 1 hour. The reaction product was filtered using a vacuum decompression device, and then dried at 100 ° C. for 24 hours to produce a powdery aluminosilicate. When the relationship between the surface area of the produced powder and the pore volume relative to the pore size was measured, the BET surface area was 135 (m 2 / g), and the pore size distribution was relatively uniform. (Fig. 1 graph a)

【0014】<実施例2>pHが7になるように6N
NaOHを投与し反応条件を150℃、150PSIに
することを除くと、実施例1と同一な方法にて粉末状の
アルミノケイ酸塩を製造した。製造された粉末に対する
表面積と気孔のサイズに対する気孔体積の関係を測定し
たところ、BET表面積は135(m2/g)であり、
気孔のサイズの分布度は比較的均一だった。(図1 グ
ラフb)
<Example 2> 6N so that the pH becomes 7
A powdery aluminosilicate was produced in the same manner as in Example 1 except that NaOH was administered and the reaction conditions were changed to 150 ° C. and 150 PSI. When the relationship between the surface area of the produced powder and the pore volume with respect to the pore size was measured, the BET surface area was 135 (m 2 / g).
The distribution of pore sizes was relatively uniform. (Fig. 1 graph b)

【0015】<実施例3>pHが3になるように6N
NaOHを投与し反応条件を265℃、1100PSI
にすることを除くと、実施例1と同一な方法にて粉末状
のアルミノケイ酸塩を製造した。製造された粉末に対す
る表面積と気孔のサイズに対する気孔体積の関係を測定
したところ、BET表面積は205(m2/g)であ
り、気孔のサイズの分布度が比較的均一だった。(図1
グラフ)
<Example 3> 6N so that the pH becomes 3.
NaOH was administered and the reaction conditions were 265 ° C and 1100 PSI.
A powdery aluminosilicate was produced in the same manner as in Example 1, except that When the relationship between the surface area of the produced powder and the pore volume with respect to the pore size was measured, the BET surface area was 205 (m 2 / g), and the pore size distribution was relatively uniform. (Figure 1
Graph)

【0016】<比較例>HClとNaOHを投与しない
ことを除くと、実施例1と同一な方法にて粉末状のアル
ミノケイ酸塩を製造した後、BET表面積と気孔分布度
を測定した。実施例と比較例の結果から分かるように、
本発明により製造されたアルミノケイ酸塩はBET表面
積が100(m2/g)よりさらに大きいのに対して、
従来の方法により製造されたアルミノケイ酸塩はBET
表面積が3.3(m2/g)なので望ましくない。気孔
分布度の側面でも、本発明のアルミノケイ酸塩は気孔の
サイズに応じる気孔体積の変化が比較的均一な反面(図
1)、従来のアルミノケイ酸塩は気孔のサイズに応じる
気孔体積の分布度が大変不均一な(図2)問題点がある。
<Comparative Example> A powdery aluminosilicate was prepared in the same manner as in Example 1 except that HCl and NaOH were not administered, and the BET surface area and the pore distribution were measured. As can be seen from the results of Examples and Comparative Examples,
The aluminosilicates prepared according to the invention have a BET surface area of more than 100 (m 2 / g), whereas
Aluminosilicates produced by conventional methods are BET
The surface area is 3.3 (m 2 / g), which is not desirable. In terms of the pore distribution, the aluminosilicate of the present invention has a relatively uniform change in pore volume according to the pore size (FIG. 1), whereas the conventional aluminosilicate has a pore volume distribution according to the pore size. However, there is a problem that is very uneven (FIG. 2).

【0017】[0017]

【発明の効果】よって、本発明により製造される多孔性
複合酸化物は微細気孔が豊かに形成されており、気孔の
サイズの分布度が均一なので、担体として用いるに好適
である。
Thus, the porous composite oxide produced according to the present invention is suitable for use as a carrier, since it has rich fine pores and a uniform pore size distribution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例により製造された多孔性複合酸
化物の気孔サイズに対する気孔体積の関係を示したグラ
フである。
FIG. 1 is a graph showing a relationship between pore size and pore volume of a porous composite oxide manufactured according to an embodiment of the present invention.

【図2】従来の方法により製造された多孔性複合酸化物
の気孔サイズに対する気孔体積の関係を示したグラフで
ある。
FIG. 2 is a graph showing a relationship between a pore size and a pore volume of a porous composite oxide manufactured by a conventional method.

【符号の説明】[Explanation of symbols]

a…実施例1の方法で製造した粉末に対する表面積と気
孔サイズに対する気孔体積の関係 b…実施例2の方法で製造した粉末に対する表面積と気
孔サイズに対する気孔体積の関係 c…実施例3の方法で製造した粉末に対する表面積と気
孔サイズに対する気孔体積の関係
a: Relationship between surface area and pore volume with respect to pore size for powder produced by the method of Example 1 b: Relationship between surface area and pore volume with respect to pore size for powder produced by the method of Example 2 c: By method of Example 3 Relationship of pore volume to surface area and pore size for manufactured powders

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金 恵眞 大韓民国京畿道光明市鐵山洞241番地住 公アパート713棟202號 (72)発明者 朴 東坤 大韓民国ソウル特別市江南區押鴎亭洞 447番地現代アパート206棟212號 (56)参考文献 特開 昭61−281013(JP,A) 特開 昭61−48426(JP,A) 特公 昭40−11732(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C01B 33/26 C01B 39/02 B01J 21/00 - 38/74 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kim Ei-sin, 241 Tongsan-dong, Gwangmyeong-si, Gyeonggi-do, Republic of Korea No. 713 Building 202 No. Apartment No. 206 Building 212 No. 56 (56) References JP-A-61-281013 (JP, A) JP-A-61-48426 (JP, A) JP-B-40-11732 (JP, B1) (58) Int.Cl. 6 , DB name) C01B 33/26 C01B 39/02 B01J 21/00-38/74

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコンオキサイド源を含む溶液とアル
ミニウムオキサイド源を含む溶液とを製造する段階と、 前記溶液のうちいずれか一つの溶液を他方の溶液に徐々
に投与しながらかき混ぜる段階と、 前記段階により得られた混合溶液に塩酸を投与して透明
なゾルを製造した後、水酸化ナトリウムを投与してゲル
を形成する段階と、 前記ゲルに含まれているシリコンオキサイド源とアルミ
ニウムオキサイド源を高温かつ高圧で反応させる段階と
を含むことを特徴とする多孔性複合酸化物の製造方法。
Forming a solution containing a silicon oxide source and a solution containing an aluminum oxide source; stirring one of the solutions while gradually administering the other solution to the other solution; Administering hydrochloric acid to the mixed solution obtained in the above to produce a transparent sol, and then administering sodium hydroxide to form a gel, and heating the silicon oxide source and the aluminum oxide source contained in the gel to a high temperature. And a step of reacting at high pressure.
【請求項2】 前記シリコンオキサイド源と前記アルミ
ニウムオキサイド源はアルミニウムに対するシリコンの
モル比が1から3までの間になるように投与されること
を特徴とする請求項1に記載の多孔性複合酸化物の製造
方法。
2. The porous composite oxidation according to claim 1, wherein the silicon oxide source and the aluminum oxide source are administered so that the molar ratio of silicon to aluminum is between 1 and 3. Method of manufacturing a product.
【請求項3】 前記シリコンオキサイド源はケイ酸塩で
あることを特徴とする請求項1に記載の多孔性複合酸化
物の製造方法。
3. The method according to claim 1, wherein the silicon oxide source is a silicate.
【請求項4】 前記ケイ酸塩はナトリウムケイ酸塩であ
ることを特徴とする請求項3に記載の多孔性複合酸化物
の製造方法。
4. The method according to claim 3, wherein the silicate is a sodium silicate.
【請求項5】 前記アルミニウムオキサイド源はアルミ
ン酸塩であることを特徴とする請求項1に記載の多孔性
複合酸化物の製造方法。
5. The method according to claim 1, wherein the aluminum oxide source is an aluminate.
【請求項6】 前記アルミン酸塩はナトリウムアルミン
酸塩であることを特徴とする請求項5に記載の多孔性複
合酸化物の製造方法。
6. The method according to claim 5, wherein the aluminate is a sodium aluminate.
【請求項7】 前記水酸化ナトリウムは前記ゾルのpH
が3から12になるように投与されることを特徴とする
請求項1に記載の多孔性複合酸化物の製造方法。
7. The method according to claim 7, wherein the sodium hydroxide has a pH of the sol.
2. The method for producing a porous composite oxide according to claim 1, wherein the amount is set to 3 to 12.
【請求項8】 前記反応は100℃から300℃までの
温度及び100PSIから1200PSIまでの圧力下
で行われることを特徴とする請求項1に記載の多孔性複
合酸化物の製造方法。
8. The method according to claim 1, wherein the reaction is performed at a temperature of 100 ° C. to 300 ° C. and a pressure of 100 PSI to 1200 PSI.
【請求項9】 前記温度は100℃から150℃までの
温度であり、前記圧力は100PSIから200PSI
までの圧力であることを特徴とする請求項1に記載の多
孔性複合酸化物の製造方法。
9. The temperature is between 100 ° C. and 150 ° C. and the pressure is between 100 PSI and 200 PSI.
The method for producing a porous composite oxide according to claim 1, wherein the pressure is not higher than the pressure.
JP9063635A 1996-07-19 1997-03-17 Method for producing porous composite oxide Expired - Fee Related JP2928189B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019960029309A KR100195111B1 (en) 1996-07-19 1996-07-19 Method for manufacturing porous composite oxide
KR199629309 1996-07-19

Publications (2)

Publication Number Publication Date
JPH1036111A JPH1036111A (en) 1998-02-10
JP2928189B2 true JP2928189B2 (en) 1999-08-03

Family

ID=19466849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9063635A Expired - Fee Related JP2928189B2 (en) 1996-07-19 1997-03-17 Method for producing porous composite oxide

Country Status (6)

Country Link
JP (1) JP2928189B2 (en)
KR (1) KR100195111B1 (en)
CN (1) CN1074303C (en)
BR (1) BR9701084A (en)
GB (1) GB2315430B (en)
IT (1) IT1289954B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI279848B (en) 2004-11-04 2007-04-21 Ind Tech Res Inst Structure and method for forming a heat-prevented layer on plastic substrate
CN101388414B (en) * 2004-11-05 2011-01-26 财团法人工业技术研究院 Heat resistance construction on plastic substrate
KR100761452B1 (en) * 2006-11-06 2007-10-04 한양대학교 산학협력단 Method for manufacturing cement having minute particle by chemical synthesis and method for manufacturing concrete using thereof
KR101142398B1 (en) * 2009-08-17 2012-05-08 (주)한천자원 Manufacturing method of molding coal using coal dust
CN103055891A (en) * 2012-12-03 2013-04-24 天津大学 Method for preparing nano porous titanium dioxide thin film doped with Pd by constant voltage dealloying method on amorphous alloy stripe
CN114763543A (en) 2021-01-15 2022-07-19 百瑞全球有限公司 Membranous immobilized cell, polypeptide, oligopeptide or protein and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1413874A (en) * 1973-01-10 1975-11-12 Atlantic Richfield Co Process for hydrotreating high nitrogen feedstocks and a catalyst for use therein
US3974099A (en) * 1975-04-08 1976-08-10 W. R. Grace & Co. High activity amorphous silica-alumina catalyst
US4181532A (en) * 1975-10-22 1980-01-01 United Kingdom Atomic Energy Authority Production of colloidal dispersions
US4559321A (en) * 1985-01-28 1985-12-17 Shell Oil Company Process for producing wide pore catalyst supports
IT1219692B (en) * 1988-05-06 1990-05-24 Eniricerche Spa SILICA GEL AND CATALYTICALLY ACTIVE ALUMINUM AND PROCEDURE FOR ITS PREPARATION
JPH0655276B2 (en) * 1990-02-28 1994-07-27 富田製薬株式会社 Method for producing ammonium ion-selective adsorbent
GB2276486A (en) * 1993-02-25 1994-09-28 Ronald William Bennett Combined clamp/tuning means for a guitar string
BE1007148A3 (en) * 1993-05-17 1995-04-11 Solvay Support for catalyst, method for producing gel precursor media for catalyst, method for preparing a catalyst support, catalyst for olefin polymerization and method for olefin polymerization using the catalyst .
IT1265320B1 (en) * 1993-12-22 1996-10-31 Eniricerche Spa PROCEDURE FOR THE PREPARATION OF CATALYTICALLY ACTIVE AMORPHOUS SILICON-ALUMIN
US5436681A (en) * 1994-04-12 1995-07-25 Michaels; Brian A. Apparatus and method for screening individuals for ametropic conditions
BE1008640A7 (en) * 1994-09-14 1996-07-02 Messadek Jallal Silica-alumina xerogel preparation methods
DE69503142T2 (en) * 1994-09-22 1998-11-05 Hoffmann La Roche HETEROGENIC CATALYSTS

Also Published As

Publication number Publication date
CN1074303C (en) 2001-11-07
CN1171295A (en) 1998-01-28
JPH1036111A (en) 1998-02-10
GB2315430A (en) 1998-02-04
IT1289954B1 (en) 1998-10-19
GB2315430B (en) 1999-04-07
KR980009114A (en) 1998-04-30
GB9701614D0 (en) 1997-03-19
ITMI970382A1 (en) 1998-08-21
BR9701084A (en) 1998-12-15
KR100195111B1 (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US3944658A (en) Transparent activated nonparticulate alumina and method of preparing same
CN102826565B (en) Preparation method of multi-stage pore channel beta molecular screen
JPH10236818A (en) Production of hollow spherical silicate cluster
JP2006206436A (en) Titanium-silicalite molecular sieve and method for its preparation
WO2003104148A1 (en) Method for synthesizing mesoporous zeolite
CN110420637B (en) Method for preparing composite catalyst by using W modified carrier loaded with metal Pd and application of composite catalyst
WO2003080514A1 (en) Process for producing micro-mesoporous metal oxide having regulated pores formed by novel template removal method
JP2928189B2 (en) Method for producing porous composite oxide
JPH01290522A (en) Production of high purity high density silica having large particle size
JPH02221119A (en) Cerium(1v) oxide having improved morphological characteristic and manufacture thereof
KR102149834B1 (en) A method for manufacturing of a porous silicon carbide sintered body by carbothermal reduction process
JP3577681B2 (en) Method for producing mesoporous metallosilicate
JP2928204B2 (en) Method for producing porous composite oxide
KR100525209B1 (en) Metal-incorporated nanoporous materials, Metal-VSB-5 molecular sieve and their preparation methods
JPH08259220A (en) Mesoporous aluminosilicate and its production
KR20030017201A (en) Mesoporous transition metal oxide thin film and powder and preparation thereof
JP2003313024A (en) Surface modified porous silica and method for manufacturing the same
JPH0222120A (en) Spherical silica porous form and production thereof
JP2668958B2 (en) Method for producing spherical silica porous material
KR920008518B1 (en) Process for preparing cerium(ii) oxide having high specific surface
JPH0632610A (en) Production of type a or faujasite-type zeolite membrane
CN116178206A (en) Method for preparing ketazine through imine oxygen oxidation and method for preparing hydrazine hydrate
JPS6267450A (en) Carrier for liquid chromatography and manufacture thereof
WO2005002727A1 (en) Photocatalytically active nanoporous material and method for producing same
JP5691046B2 (en) Porous body and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990413

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees