WO2005002727A1 - Photocatalytically active nanoporous material and method for producing same - Google Patents

Photocatalytically active nanoporous material and method for producing same Download PDF

Info

Publication number
WO2005002727A1
WO2005002727A1 PCT/JP2004/009784 JP2004009784W WO2005002727A1 WO 2005002727 A1 WO2005002727 A1 WO 2005002727A1 JP 2004009784 W JP2004009784 W JP 2004009784W WO 2005002727 A1 WO2005002727 A1 WO 2005002727A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
nanoporous
photocatalytically active
substrate
aqueous solution
Prior art date
Application number
PCT/JP2004/009784
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Yao
Yasuo Iizuka
Atsushi Nakahira
Naoshi Ozawa
Original Assignee
Kansai Technology Licensing Organization Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co., Ltd. filed Critical Kansai Technology Licensing Organization Co., Ltd.
Priority to US10/566,524 priority Critical patent/US20080153438A1/en
Publication of WO2005002727A1 publication Critical patent/WO2005002727A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide

Definitions

  • the present invention provides a method of forming titanium oxide on the surface of a porous substrate having nano-order pores and an inner surface of the pores from an aqueous solution containing a precursor of titanium oxide, and is produced by the method.
  • the present invention relates to a nanoporous material having photocatalytic activity.
  • titanium oxide can easily decompose organic substances by light irradiation, titanium oxide is used as a catalyst for photodecomposition reactions to decompose various organic substances, such as toxic substances dissolved in water or suspended in air. It can be used to decompose and sterilize odorous substances, and has been put into practical use for environmental purification, epidemic prevention, and the like.
  • Titanium oxide is effectively used as a catalyst by forming a titanium oxide thin film on the surface of a substrate such as glass or tile.
  • Methods for forming a titanium oxide thin film on a substrate surface include methods such as CVD, ion plating, and sputtering.
  • CVD chemical vapor deposition
  • ion plating ion plating
  • sputtering a method in which an admixture obtained by kneading a fine powder of titanium oxide with a binder and a dispersant is applied to the surface of a base material and dried.
  • a method of immersing a substrate in an aqueous solution containing fluorotitanic acid in the presence of a fluoride ion scavenger such as boric acid to form a titanium oxide coating layer on the surface of the substrate is disclosed in Japanese Patent Application Laid-Open No. 9-249. No. 418, and WO98 / 11020 pamphlet.
  • Japanese Patent Application Laid-Open No. Hei 9-249418 and International Patent Publication No. WO 98/110210 both disclose a method of forming a titanium oxide coating layer on the surface of a substrate. There is no disclosure of a method for forming a uniform titanium oxide thin film on the surface of a porous material and the surface inside pores. Further, it is disclosed that the titanium oxide thin film formed by the method of Japanese Patent Application Laid-Open No. Hei 9-244918 and WO 98/110210 has a photocatalytic activity. But only in the visible light range It does not exhibit a high photocatalytic function for such light sources. Disclosure of the invention
  • An object of the present invention is to overcome the problems of the prior art and form a fine titanium oxide on the surface of a nano-porous substrate and on the inner surface of pores.
  • An object of the present invention is to provide a photocatalytically active nanoporous material formed by the method, particularly a photocatalytically active nanoporous material having photocatalytic activity in a visible light region.
  • Another object of the present invention is to provide a use of the photocatalytically active nanoporous material.
  • the present inventors have conducted intensive studies in order to achieve the above-mentioned object.As a result, the nanoporous substrate was placed in an aqueous solution containing a specific concentration of a fluorotitanium complex conjugate and a fluoride ion scavenger. It has been found that fine titanium oxide can be formed not only on the surface of the substrate but also on the inner surface of the pores by immersion and degassing. Further studies based on such knowledge led to the completion of the present invention.
  • the present invention relates to the following method for producing a photocatalytically active nanoporous material, a nanoporous material having photocatalytic activity produced by the method, and uses of the photocatalytically active nanoporous material.
  • Item 1 A photocatalytically active nanoporous material characterized in that a nanoporous substrate is brought into contact with an aqueous solution containing a precursor of titanium oxide to form titanium oxide on the surface of the substrate and the inner surface of pores. Recipe.
  • a nanoporous substrate is immersed in an aqueous solution containing a titanium oxide precursor, and is evacuated under reduced pressure to form titanium oxide on the surface of the substrate and the inner surface of pores.
  • the aqueous solution containing the precursor of titanium oxide is (1) an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger, (2) an aqueous solution containing titanium fluoride (TiF 4 ) and ammonia, (3) titanyl sulfate aqueous solution containing (TiOS0 4) and HC 1 or NH 4 ⁇ _H, or (4) photocatalytic activity nanoporous according to claim 1 or 2 Ru titanium dichloride (TiOCl 2) Taukappa solution der obtained from titanium tetrachloride and water Quality material manufacturing method.
  • Item 4 An aqueous solution containing a precursor of Titan is prepared by mixing a fluorotitanium complex compound and a fluorine compound.
  • Item 3. The method for producing a photocatalytically active nanoporous material according to Item 1 or 2, which is an aqueous solution containing a halide ion scavenger.
  • the fluorotitanium complex compound is H 2 T i F 6 , (NH 4 ) 2 T i F 6 , Na 2 T i F 6 , K 2 T i F 6 , R b 2 T i F 6, and C s Item 5.
  • Item 7 The method according to Item 4, wherein the fluoride ion scavenger is at least one member selected from the group consisting of orthoboric acid, metaboric acid, and boron oxide.
  • Claim 8 The concentration of fluoride ion-capturing agent in the aqueous solution, 1 X 1 0- 2 ⁇ : process according to L 0 mo 1 to claim 7 is ZL about.
  • Item 9 The method according to any one of Items 1 to 4, wherein the nanoporous substrate is a substrate containing 99.9% by weight or more of silicon dioxide.
  • Item 10 The BET specific surface area of the nanoporous base material is about 50 to 100 O n ⁇ Z g, and the total pore volume by the MP method is about 0.3 to 1.0 O ml Zg. Item 5. The method according to any one of Items 1 to 4, wherein the pore diameter is about 1 to 100 nm.
  • Item 11 The method according to any one of Items 1 to 4, wherein the precipitation height of titanium oxide formed on the surface of the nanoporous substrate and the inner surface of the pores is about 0.2 to 10 nm.
  • Item 1 2. The method according to Item 4, wherein the nanoporous substrate is used in an amount of about 10 to 500 g per liter of an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger.
  • Item 1 The pore size distribution of the raw material nanoporous substrate and the pore size distribution of the photocatalytically active nanoporous material after the formation of titanium oxide are substantially different.
  • Item 5 The method according to any one of Items 1 to 4.
  • Item 1 4. Item 1 to: A photocatalytically active nanoporous material produced by the production method according to any one of L3.
  • Item 15 The photocatalytically active nanoporous material according to Item 14, which has photocatalytic activity in visible light (wavelength: about 500 to 700 nm).
  • Item 1 A photocatalytically active nanoporous material in which titanium oxide having a deposition height of about 0.2 to 10 nm is formed on the surface of a nanoporous substrate and the inner surface of pores.
  • Item 17 The photocatalytically active nanoporous material according to Item 16, having photocatalytic activity in visible light (wavelength: about 500 to 700 nm).
  • Item 16 The photocatalytically active nanoporous material according to Item 16, wherein the content of titanium oxide is about 0.01 to 20% by weight based on the total weight of the photocatalytically active nanoporous material.
  • Claim 1 9. a BET specific surface area of 5 0 ⁇ 1 0 0 0 m 2 Zg about a total pore volume of 0. 3 to 1 Om l Zg about by the MP method, a pore diameter. 1 to:.
  • L Item 16 The photocatalytically active nanoporous material according to Item 16, having a value of about 0 O nm.
  • Item 21 The method according to Item 20, wherein the chemical treatment is a treatment in which the obtained photocatalytically active nanoporous material is brought into contact with an acidic liquid without degassing.
  • Item 22 A photocatalytically active nanoporous material produced by the production method according to Item 20 or 21.
  • Item 23 A film containing the photocatalytically active nanoporous material according to any one of Items 14 to 19.
  • Item 24 A wall material containing the photocatalytically active nanoporous material according to any one of Items 14 to 19 and 22.
  • FIG. 1 is a schematic diagram of a reaction vessel used in Test Example 1.
  • FIG. 2 is a diagram showing the pore size distribution of the nanoporous substrate (catalyst support) in Test Example 3.
  • FIG. 3 is a diagram showing the pore size distribution of the photocatalytically active nanoporous material of the present invention (Example 1) in Test Example 3. Detailed description of the invention
  • the photocatalytically active nanoporous material of the present invention is produced by contacting a nanoporous substrate with an aqueous solution containing a precursor of titanium oxide to form titanium oxide on the surface of the substrate and the inner surface of pores. You.
  • aqueous solution containing the titanium oxide precursor examples include (1) an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger, (2) an aqueous solution containing titanium fluoride (TiF 4 ) and ammonia, and (3) a titanyl sulfate (TiOS0 An aqueous solution containing 4 ) and HC 1 or NH 4 ⁇ H, or (4) an aqueous solution of dichloride titanate (TiOCl 2 ) obtained from titanium chloride and water can be given.
  • TiOS0 An aqueous solution containing 4 ) and HC 1 or NH 4 ⁇ H, or (4) an aqueous solution of dichloride titanate (TiOCl 2 ) obtained from titanium chloride and water can be given.
  • TiOCl 2 dichloride titanate
  • an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger in the present invention, the fluorothiane complex compound used for forming a titanium oxide thin film has a general formula (I):
  • A is the same or different and represents a hydrogen atom, an alkali metal atom, or an ammonium group.
  • Compound (I) may be a polynuclear complex compound having a plurality of Ti atoms.
  • Examples of such a fluorotitanium complex compound represented by the general formula (I) include H 2 T i F 6 , (NH 4 ) 2 T i F 6 , Na 2 T i F 6 , K 2 T i F 6 , and Rb 2 T i F 6 and Cs 2 T i F 6 are exemplified. Among them, (NH 4 ) 2 T i F 6 is particularly preferable.
  • the fluorotitanium complex compound used in the present invention is not particularly limited as long as it is produced by a known method. For example, titanium oxide powder may be treated with hydrofluoric acid to obtain fluorotitanic acid. As the titanium oxide, any of rutile type, anatase type, brookite type, and amorphous may be used.
  • a hydroxide or oxyhydroxide of titanium is dissolved in an aqueous solution of a metal hydrogen hydrogen fluoride such as ammonium hydrogen difluoride or sodium hydrogen difluoride to synthesize a fluorotitanium complex compound. It may be used in the production method of the present invention.
  • Furuorochitan complex compound 1 0- 9 ⁇ 9 X 1 0- 2 mo 1 / L , preferably about 1 0 one 6 ⁇ 9 X 1 0 one 3 mo 1 / L or so, more preferably 1 0 one 5-9 used in preparing the aqueous solution of X 1 0 one 3 m 0 1 ZL amounts of concentrations.
  • titanium oxide is mixed with 40 Oml of a 0.0001 to 0.6 mo / L hydrofluoric acid aqueous solution to give a concentration of 10 to 9 to 10 g.
  • an aqueous solution containing 9 X 1 0- 2 mo 1 / L of about Furuorochita down complex Ion is obtained.
  • one 0- 9 mo less than about 1 / L can not be formed of titanium oxide capable of emitting volatilization effects of the present invention to a substrate surface or surfaces inside the pores, an aqueous solution exceeding 9 X 1 0 ⁇ about 2 mo 1 ZL When used, it becomes cloudy together with the fluoride ion scavenger or a solution added thereto, and a titanium oxide thin film capable of exhibiting the effect of the present invention cannot be formed on the surface of the substrate or the inner surface of the pores.
  • the term may be an aqueous solution containing excess hydrogen fluoride used for synthesizing the complex compound from titanium oxide as described above.
  • water-soluble substances such as hydrogen fluoride, hydrogen chloride, and ammonia may be contained as long as the effects of the present invention are not adversely affected.
  • an excess amount of titanium oxide is further added to the prepared aqueous solution of the fluorotitanium complex compound (hereinafter, as defined above) to form a saturated solution of the above complex compound, and then the insoluble titanium oxide is filtered off. The removed aqueous solution may be used.
  • a seed crystal for forming titanium oxide may be added to an aqueous solution of such a fluorotitanium complex compound.
  • the seed crystal to be used is preferably a target titanium oxide crystal.
  • the seed crystal may have a small average particle diameter of 0.2 to about 0 nm, and the addition amount thereof is optional but may be small. By adding seed crystals, the deposition rate of titanium oxide can be increased.
  • the aqueous solution may contain a water-soluble organic solvent as long as the effect of the present invention is not adversely affected.
  • a water-soluble organic solvent for example, alcohols such as methanol and ethanol; ethers such as dimethyl ether and getyl ether; ketones such as acetone; and the prevention of the presence of other water-soluble organic solvents Absent.
  • the content of the organic solvent is preferably about 50% by volume or less based on the whole ⁇ solution.
  • the fluoride ion scavenger used in the present invention has a uniformity dissolved in a liquid phase.
  • a heterogeneous type which is a solid. Depending on the purpose, one of these two types may be used, or both may be used.
  • the homogeneous fluoride ion scavenger reacts with the fluoride ion to form a stable fluoro complex compound and / or a stable fluoride, thereby oxidizing the surface of the nanoporous substrate and the inner surface of the pore. It shifts the equilibrium in a direction that promotes the hydrolysis reaction so that a titanium thin film is deposited.
  • boron compounds such as orthoboric acid, metaboric acid, and boron oxide
  • aluminum chloride, sodium hydroxide, and aqueous ammonia are examples.
  • T I_ ⁇ 2 when precipitating with orthoboric acid (NH 4) 2 T i F 6 forces et T I_ ⁇ 2, the reaction represented by the formula (III), F_ since moves rightward to consume, the equilibrium represented by the formula (II) is moved to the right to generate the F-, the result, a thin film made of T I_ ⁇ 2 is precipitated.
  • a capturing agent is usually used in the form of an aqueous solution, but may be added in the form of a powder and dissolved in the system. The addition of the trapping agent may be performed once or several times intermittently, or may be performed continuously at a controlled supply rate, for example, at a constant rate.
  • F— near the solid is consumed and its concentration decreases, so that the chemical equilibrium of that part shifts and titanium oxide is deposited.
  • titanium oxide can be deposited on the surface of the nanoporous substrate and the inner surface of the pores immersed in an aqueous solution, depending on the insertion method and reaction conditions.
  • Homogeneous fluoride ion scavengers vary depending on the type and shape of the precipitates.
  • the amount corresponding to the equivalent amount of fluoride ions in the solution usually about 10 one 4-5000 0%, preferably in a range of about 10 one from 1 to 30,000%.
  • the heterogeneous fluoride ion scavenger is not particularly limited, and is preferably used in an amount that achieves the object and effects of the present invention.
  • This aqueous solution is produced by adding a small amount of aqueous ammonia to an aqueous solution of TiF 4 .
  • the concentration of the aqueous solution of TiF 4 may be about 0.005 to 0.5 mol / L, preferably about 0.01 to 0.1 mol / L, and the concentration of aqueous ammonia is about 0.05 to 5 mol / L, preferably 0.1 to 3 mol / L. It may be L or so.
  • the aqueous solution obtained by adding aqueous ammonia preferably has a pH of between 1 and 3, preferably between 1.5 and 2.5, particularly about 1.0.
  • TiF 4 0.74 g is dissolved in 150 ml of water to prepare a 0.04 mol / L aqueous solution, and a small amount of 0.1 mol / L aqueous ammonia is added to adjust the pH to about 2.0. In this solution, the hydration and dehydration of TiF 4 gradually progress, and titanium oxide is formed. For example, at 60t: titanium oxide is formed in 1 to 48 hours.
  • the aqueous solution so that the concentration of Ti is 0.001 ⁇ 0.1 mol / L, TiOS0 4.
  • X3 ⁇ 40 was added to an aqueous solution containing HC1 or NH 4 0H, is prepared by stirring about 1 hour at room temperature. At this time, the pH of the aqueous solution should be between 1.00 and 1.70. In this solution, 60: Holding, in 10 days from a few hours, Ti0 2 is formed on the substrate.
  • This aqueous solution is prepared, for example, by adding (distilled water to TiCl 4 at TC to hydrolyze to prepare a TiOCl 2 solution, and when the temperature is 17 to 230 ° C., O 2 is precipitated. Use autoclave.
  • a porous substrate having nano-scale (about 1 nm to 100 nm), more specifically, a mesopore (2 to 50 nm) is particularly preferable.
  • the nano BET specific surface area of the porous substrate is 50 to 100 0 m 2 Zg about, in particular 200 to 500 meters 2 Zg about all Hosoanayo product by the MP method is 0. 3 ⁇ 1.
  • Oml / g approximately, Especially if it is about 0.3-0.7ml / g Yes.
  • the substrate can use a wide range of materials to carry the titanium oxide formed or to be coated for a particular purpose by the formed titanium oxide.
  • materials such as silicon dioxide, aluminum oxide, zirconium oxide, glass, magnesium oxide, zeolite, silicon nitride, silicon carbide, carbon materials, metals such as aluminum and titanium, silicon, germanium, etc. And the like.
  • silicon dioxide when used as a substrate for a photocatalytically active nanoporous material, silicon dioxide contains at least about 99.9% by weight, preferably about 99.9% by weight, excluding loss on ignition. Nanoporous substrates are preferred.
  • Siri force reference catalyst (JRC-S 1 ⁇ -8, a reference catalyst committee of the Catalysis Society of Japan), which is a nanoporous material produced from an aerosol of silicon dioxide, silica gel Q15 (average pore diameter of 15 plates, Pore volume: 1.0 ml / g, specific surface area: 200 m 2 / g, manufactured by Fuji Silicon Chemical Co., Ltd.).
  • the conventional titanium oxide catalyst can be used with natural light (ultraviolet light and visible light) or even with visible light (wavelength: about 400 to 800 nm, especially about 500 to 700 nm). It has an extremely high activity compared to.
  • the shape of the substrate is not particularly limited. Various shapes such as a sphere, a plate, a prism, or a donut with a hole in the center are used depending on the application.
  • the base material can be held through a fiber or the like in a donut-shaped bamboo or center hole.
  • the photocatalytically active nanoporous material of the present invention is produced by forming titanium oxide on the surface of the nanoporous material and the inner surface of the pores as follows.
  • a nanoporous substrate is brought into contact with an aqueous solution containing a precursor of titanium oxide to form titanium oxide on the surface of the substrate and the inner surface of pores.
  • aqueous solution containing the precursor of titanium oxide include the aqueous solutions of the above (1) to (4), and any aqueous solution may be used.
  • aqueous solution containing fluoro titanium complex compound and fluoride ion scavenger The liquid will be specifically described below by way of example, but is not limited thereto.
  • a mixed solution is obtained by adding a fluoride ion scavenger to an aqueous solution containing a fluorotitanium complex compound.
  • concentration of the fluorothiane complex compound and the fluoride ion scavenger in the aqueous solution can be appropriately selected from the above-mentioned ranges and employed.
  • a nanoporous substrate is brought into contact with the mixed solution to form titanium oxide on the surface of the substrate and the inner surface of the pores.
  • the method of contacting the nanoporous base material with the mixed solution is as follows. Specifically, while immersing the nanoporous base material in the mixed solution, the gas contained in the pores of the base material is reduced under reduced pressure. Do it out of the air. Alternatively, the pressure may be reduced in a container containing only the nanoporous substrate, the gas contained in the pores of the substrate is evacuated, and the mixed solution may be injected into the container. As a result, the mixture infiltrates into the pores of the nanoporous base material, and fine titanium oxide precipitates in the pores.
  • Vacuum conditions are not particularly limited as long as the pressure that may evacuated gas from the pores, e.g., 1 0- 2 ⁇ 1 0 4 P a , preferably about 1 0 one 2 to 1 0 2 P a
  • the pressure may be about 0.1 to 10 minutes.
  • the temperature at which the nanoporous substrate is immersed in the mixed solution is about 10 to 80 ° C, preferably about 20 to 50 ° C, and more preferably about 35 to Set in the range of about 40 ° C.
  • the time may be about 4 to 48 hours.
  • the nanoporous substrate is usually used in an amount of about 10 to 500 g, preferably about 50 to about L 0 g per 1 L of an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger. Good. Within this range, the intended photocatalytically active nanoporous material of the present invention can be easily obtained.
  • the time at which the nanoporous substrate is immersed in the aqueous solution of the fluorotitanium complex compound may be before, at the same time as, or after the addition or introduction of the fluoride scavenger.
  • care must be taken in the composition of the solution, the reaction conditions, and the timing of immersion.
  • the substance constituting the nanoporous substrate acts as a heterogeneous fluoride ion trapping material, it may not be necessary to add the uniform fluoride ion trapping material.
  • the shape of the nanoporous substrate is arbitrary, and particles, plates, or specific shapes depending on the purpose can be used.
  • the substrate can be slowly rotated at a rotation speed of, for example, 10 rpm or less, preferably 5 rpm or less.
  • the oxidized titanium thus formed on the substrate has photocatalytic activity by appropriately setting the precipitation conditions, particularly without going through a heating step such as firing.
  • a heating step may be provided according to the purpose. The heating step can be performed, for example, at 80 to 600 ° C. for about 0.5 to 50 hours.
  • fine titanium oxide is uniformly formed on the surface of the nanoporous substrate and the inner surface of the pores.
  • the titanium oxide may be precipitated as fine particles on the surface of the substrate and the inner surface of the pores, or as a thin film (or layer).
  • the titanium oxide on the surface of the substrate can be removed by a physical treatment or a chemical treatment.
  • the acid liquid for example, sulfuric acid, hot concentrated sulfuric acid, hot concentrated sulfuric acid and ammonium sulfate
  • the acid liquid for example, sulfuric acid, hot concentrated sulfuric acid, hot concentrated sulfuric acid and ammonium sulfate
  • a mixed solution an acid such as hydrofluoric acid
  • a basic liquid eg, ⁇ sodium oxide, etc.
  • the surface of the porous material is cut using a roll mill, a sand mill, or the like, thereby substantially reducing the thickness.
  • a nanoporous substrate having titanium oxide formed only on the inner surface of the pore can be obtained.
  • the photocatalytically active nanoporous material since the material surface has no photocatalytic activity, it has the characteristic that even if it comes into direct contact with an organic substance or the like, it does not attack it.
  • the photocatalytically active nanoporous material can be used, for example, woven into a fiber, or stored and stored in a plastic container.
  • the photocatalytically active nanoporous material of the present invention has high photocatalytic activity in visible light (wavelength: about 400 to 800 nm, particularly about 500 to 70 O nm).
  • the deposition height (thickness) of titanium oxide is about 0.2 to 10 nm, preferably about 0.2 to 5 nm, and the deposition height (thickness) of titanium oxide is very small. It has the characteristic of.
  • the titanium oxide and the silicon dioxide contained in the nanoporous base material are It is thought that the bandgap of titanium atoms becomes smaller due to the action of the interface, and this makes it possible to absorb visible light.
  • the deposition height (thickness) means the height (thickness) of the titanium oxide particles or thin film deposited on the substrate from the substrate surface.
  • the content of titanium oxide contained in the photocatalytically active nanoporous material of the present invention is about 0.01 to 20% by weight, preferably about 0.05 to 10% by weight, based on the total weight of the material. It is.
  • the fine pores of the photocatalytically active nanoporous material of the present invention are not densely filled with titanium oxide particles, but fine titanium oxide particles are formed on the inner surface of the fine pores. It is characterized in that sufficient pore voids for entering organic molecules remain. This is supported, for example, by the results of Test Example 3. That is, Test Example 3 shows that the pore size distribution (or pore size distribution) of the photocatalytically active nanoporous material of the present invention is almost equal to the pore size distribution of the raw material nanoporous substrate. Is performed.
  • the pore size distribution refers to the relationship between the pore diameter and the pore volume obtained from the adsorption isotherm at the liquid nitrogen temperature of nitrogen gas by the BJH method, as described in Test Example 3. Measured by the method. Therefore, according to the production method of the present invention, a photocatalytically active nanoporous material in which the pore size distribution of the nanoporous substrate of the catalyst carrier is not substantially changed is produced.
  • the BET specific surface area of the photocatalytic activity nanoporous material of the present invention is 5 0 ⁇ 1 0 0 0 m about 2 Z g, a total pore volume by the MP method is 0.3 to 1.
  • the pore diameter of the nanoporous substrate is about 1 to 100 nm, which is substantially the same as the nanoporous substrate of the catalyst support. Therefore, the light transmission efficiency is increased, and the opportunity of sufficient contact between the titanium oxide photocatalyst and the organic molecule is maintained. Further, since the titanium oxide of the photocatalytically active nanoporous material of the present invention is very fine or thin as described above, the amount of titanium oxide as a raw material (and, as a result, a titanium oxide precursor such as a fluorotitanium complex compound as a raw material) is reduced. Is economical.
  • the titanium oxide of the photocatalytically active nanoporous material of the present invention has a feature that it is strong and stable.
  • the photocatalytically active nanoporous material of the present invention can be used as a material for various filters that maintain a photocatalytic function.
  • a method for fixing the photocatalytically active nanoporous material to the substrate a known method may be used.
  • a photocatalytically active nanoporous material is fixed to a substrate such as a honeycomb filter using a binder (for example, a silica-based binder such as silicon alkoxide, colloidal silica, an alumina-based binder, and a cement-based binder). And the like.
  • a binder for example, a silica-based binder such as silicon alkoxide, colloidal silica, an alumina-based binder, and a cement-based binder.
  • the filter thus obtained is used as a photocatalyst filter together with a light source such as a natural light or an ultraviolet lamp.
  • a light source such as a natural light or an ultraviolet lamp.
  • the photocatalytically active nanoporous material of the present invention has high photocatalytic activity even in natural light, its use is wide.
  • filters for household appliances air purifiers, ventilation fans, etc.
  • filters for automobile-related parts dust-proof filters, air-conditioner filters, etc.
  • filters for civil engineering and building materials room wallpaper, dust-proof filters, etc.
  • It can be used in a wide range of fields, such as filters for industrial parts (such as filtration filters).
  • the filter of the present invention can treat airborne odor-causing substances, dust, microorganisms, viruses, causative substances of the Sick House Syndrome (formaldehyde and the like), odor components (tobacco odor and the like), chemical substances and the like. According to the photocatalytic filter of the present invention, these can be efficiently adsorbed, decomposed and removed.
  • the photocatalytically active nanoporous material of the present invention has high durability, and is suitable for natural light, particularly in the visible light region (wavelength: about 400 to 800, particularly about 500 to 700).
  • it since it has high photocatalytic activity, it can be used as indoor and outdoor wall materials, waste liquid treatment materials, adsorbents, building materials, preservatives, etc.
  • a photocatalytically active nanoporous material having titanium oxide only on the inner surface of the pores can be used coexisting with an organic substance, and thus can be used by weaving into fibers, woven fabric, cloth, or the like.
  • a photocatalytically active nanoporous material having titanium oxide only on the inner surface of the pores can be used coexisting with an organic substance, and thus can be used by weaving into fibers, woven fabric, cloth, or the like.
  • it can be fixed with an organic binder, it can be used for paints, indoor and outdoor wall materials, and the like.
  • Reference catalyst JRC-SI0-8 (Catalyst Society of Japan Reference Catalyst Committee) 2. 3 g was immersed in 50 ml of acetone at room temperature and subjected to ultrasonic cleaning for 20 minutes to replace acetone and water inside the pores. After that, iRC_SIO-8 was taken out, stored in an incubator at 105 ° C for 1 day or more, and dried.
  • the sample was rinsed with distilled water a few times, and dried in an incubator set at 105 for about 1 day to obtain 2.3 g of the solvent-active nanoporous material of the present invention.
  • Ti0 2 is calculated to 0.065 wt% on.
  • Example 1 As a control of Example 1, a commercially available photocatalyst, powdered titanium dioxide P25 (powder average particle diameter: 2 nm, manufactured by Nippon Aerosil Co., Ltd.) was used. Test example 1 (natural light)
  • Formaldehyde and Sankare are placed in a 4L soda-lime glass transparent container shown in Fig. 1 and exposed to natural light (sunlight + fluorescent light during the day, fluorescent light only at night). Was decomposed.
  • a container was filled with formaldehyde (initial concentration: 20 ppm) and a sample (1.4 g), and the amount of formaldehyde reduced was measured by irradiation with natural light. The results are shown in Table 1.
  • the sample of Example 1 was in the form of a pellet, and the sample of Comparative Example 1 was in the form of the powder described above.
  • the time (h) in the table is set to 1 hour after the start of the measurement (hereinafter, Tables 2 to 4). Same for 4).
  • Table 2 shows the results obtained by converting the amount of formaldehyde reduction per g of titanium oxide in the sample.
  • the content of Sani ⁇ titanium in each Sankare used in the experiment the content of Comparative Example 1 (P 2 5) are all Ti0 2 so Ti0 2 is 1. 4 g
  • real Example 1 the 1.4 0.065 wt% maximum of g is 1 ⁇ 0 2 so, the content of Ti0 2 is 0. 0 0 0 9 1 g at maximum.
  • Reduction of formaldehyde in each time (pm), divided by the amount of Ti0 2 in each sample (g) is a number in Table 2.
  • the real time is considered to be larger than the values in Table 2.
  • Table 1 shows that the photocatalytically active nanoporous material of the present invention (Example 1) has a high formaldehyde resolution under natural light. Furthermore, according to Table 2, it was observed that the photocatalytically active nanoporous material of the present invention had extremely high formaldehyde resolving power per 1 g of titanium oxide.
  • Test example 2 (visible light)
  • Formaldehyde and a sample were put in a 4L soda lime glass transparent container shown in Fig. 1, and a visible light (fluorescent lamp (Toshiba Corporation; FHF32YPNU) was used to conduct a formaldehyde experiment, in which a container was filled with formaldehyde (initial concentration: 20 ppm) and a sample (1.4 g), and the amount of formaldehyde reduction was measured by irradiating with visible light.
  • the results are shown in Table 3. Note that the sample of Example 1 was in the form of pellets, and the sample of Comparative Example 1 was in the form of powder as described above.
  • Table 4 shows the results obtained by converting the amount of reduced formaldehyde to 1 g of titanium oxide in the sample.
  • the titanium dioxide in each Sankare used in the experiment Content, Comparative Example 1 (P 2 5) the content of all Ti0 2 so Ti0 2 is 1.4 g
  • the actual Example 1 is 1.4 0.065 wt% maximum of g is Ti0 2 since , the content of Ti0 2 is 0. 0 0 0 9 1 g at maximum.
  • Reduction of formaldehyde in each time (pm), divided by the amount of Ti0 2 in each sample (g) is a number in Table 4.
  • the real time is considered to be larger than the values in Table 4.
  • Table 3 shows that the photocatalytically active nanoporous material of the present invention (Example 1) has a high formaldehyde resolution under visible light. Furthermore, according to Table 4, it can be seen that the photocatalytically active nanoporous material of the present invention has extremely high formaldehyde resolving power per 1 g of titanium oxide.
  • Example 1 About 0.2 g of the sample of Example 1 was placed in a sample tube, pretreated at 150 ° C, and sufficiently degassed under vacuum. Then, N 2 gas was introduced, and the adsorption isotherm was measured by the BJH method. Assuming that the pores of the sample of Example 1 were cylindrical pores, the pore diameter distribution was determined by a method of calculating the pore diameter distribution using a desorption isotherm. Figure 2 shows the results.
  • Rp represents a pore radius
  • V represents a pore volume
  • the pore distribution curves in FIGS. 2 and 3 show the rate of change of the pore volume V (d VZd R) with respect to a small change in the pore radius Rp.
  • FIGS. 2 and 3 show that the catalyst carriers JRC-SI0-8 and the sample of Example 1 have almost the same pore size distribution. From this, it is inferred that the titanium oxide precipitated in the material of the present invention is extremely fine of nano size.
  • silica gel Q15 (average pore size: 15 nm, pore volume: 1. Oml / g, specific surface area: 200 m 2 / g, manufactured by Fuji Silicon Chemical Co., Ltd.) was dried in a 105 ° C incubator for 1 day.
  • the sample was rinsed with distilled water a few times, and dried in an incubator set at 50 ° C. for about 1 day to obtain 2.3 g of the photocatalytically active nanoporous material of the present invention. If you and was deposited on the silica force gel Q15 becomes titanium component of titanium oxide of the mixed solution, Ti0 2 is calculated to 0.13 wt% on.
  • Boron oxide (B 2 0 3) 4.
  • the 1772 g was dissolved in ultrapure water 25 OML, and a B 2 0 3 solution of concentration 0. 24mo 1ZL.
  • 0.1484 g of (NH 4 ) 2 Ti F 6 was dissolved in 30 Oml of ultrapure water to obtain an aqueous solution of (NH 4 ) 2 Ti F 6 having a concentration of 0.0025mo 1 / L.
  • Example 2 Except for the above, the same treatment as in Example 2 gave 2.3 g of a photocatalytically active nanoporous material of the present invention.
  • Ti0 2 is Ru was calculated to 0.065% by weight carrier.
  • Test example 4 (natural light or visible light)
  • Example 2 Place formaldehyde and a sample (Example 2 or Example 3) in a 4L soda-lime glass transparent container shown in Fig. 1 and use natural light (sunlight + fluorescent light during the day, fluorescent light only at night).
  • natural light unsunlight + fluorescent light during the day, fluorescent light only at night.
  • formaldehyde and sampler (Example 2) were placed in a 4L soda lime glass transparent container shown in Fig. 1, and visible light (a fluorescent lamp with a spectral distribution of 500 to 700 nm wavelength (Toshiba Corporation, FHF32YPNU)
  • visible light a fluorescent lamp with a spectral distribution of 500 to 700 nm wavelength (Toshiba Corporation, FHF32YPNU)
  • formaldehyde decomposition experiment was conducted in a container filled with formaldehyde (initial concentration: 20 ppm) and 1.4 g of each sample, and the amount of formaldehyde reduction was measured by irradiating natural light or visible light.
  • Table 5 Note that the samples in Examples 2 and 3 were pellets, and the initial physical adsorption of formaldehyde to the sample was mainly performed until 1 hour from the start of measurement. Therefore, the time (h) in the table was set as the start time one hour after the start of measurement (the same applies to Table 6 below).
  • Table 6 shows the results obtained by converting the amount of reduced formaldehyde to 1 g of titanium oxide in the sample.
  • the titanium dioxide in each Sankare used in the experiment Content Example 2 1.4 up to 0.13% by weight of g 0 2 so the content of Ti0 2 is 0. 0 0 1 8 2 g at maximum, also Example 3 the 1.4 0.065 wt% maximum of g is Ti0 2 so the content of Ti0 2 is at most 0. 0 0 0 9 1 g .
  • Reduction of formaldehyde in each time (p pm), divided by the amount of Ti0 2 in each sample (g) is a number in Table 6.
  • Example 2 and Example 3 since the content was calculated in Ti0 2 in each sample as a maximum value, in fact, considered to be larger than the values in Table 6.
  • the photocatalytically active nanoporous materials of the present invention (Examples 2 and 3) have high formaldehyde resolution under natural light.
  • the medium-active nanoporous material of the present invention (Example 2) has a high formaldehyde resolution even under visible light.
  • 1 medium activity nanoporous material of the present invention (Examples 2 and 3), it is seen formaldehyde resolution per Sani ⁇ titanium 1 g is extremely high.
  • the photocatalytically active nanoporous material obtained in Example 2 was subjected to normal temperature (25 ° C) and normal pressure, 0. Immersion in lmol / L hydrofluoric acid for 5 minutes to dissolve and remove titanium oxide on the surface of the nanoporous material, and nanoporous with silicon oxide formed only on the inner surface of pores The material was obtained.
  • the photocatalytically active nanoporous material obtained in Example 2 was treated with a pole mill to physically cut and remove titanium oxide on the surface of the nanoporous material, and substantially to the inner surface of the pores. Only a nanoporous material on which titanium oxide was formed was obtained.
  • the nanoporous materials obtained in Examples 4, 5, and 6 maintain high catalytic activity and are stable without decomposition even when irradiated with light using a substrate such as a fiber or an organic binder. Was found to be retained.
  • the invention's effect
  • titanium oxide can be formed almost uniformly on the surface of the nanoporous substrate and the surface of the pores thereof. Moreover, in this production method, a heating step for crystallizing the titanium oxide is not necessarily required, so that it is not particularly necessary to consider the heat durability of the substrate. There is no distortion due to heating and cooling. Furthermore, it is a simple and inexpensive manufacturing method.
  • the pore size distribution between the nanoporous substrate and the photocatalytically active nanoporous material after the deposition of titanium oxide is substantially equal, and therefore the pore size of the substrate is reduced. Size can be reflected in the target photocatalytically active nanoporous material. That is, since titanium oxide is formed very thinly (nano-orderly) on the surface of the nanoporous base material and the surface of the pores, a sufficient contact field (pore size) with organic molecules is maintained. It is.
  • the titanium oxide on only the surface of the substrate is substantially removed by physical treatment or chemical treatment, and Only a nanoporous substrate on which titanium oxide is formed can be obtained.
  • the surface since the surface has no photocatalytic activity, even if it comes into direct contact with an organic substance or the like, it does not attack it, and can be used, for example, woven into fibers.
  • the photocatalytically active nanoporous material of the present invention has high photocatalytic activity in visible light. Therefore, natural light can be used effectively without using expensive short-wavelength light sources. Further, the photocatalytically active nanoporous material of the present invention is characterized in that the photocatalytic activity per unit amount of titanium oxide is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a method for forming uniform titanium oxide on the surface and nanopore surfaces of a nanoporous substrate. Also disclosed are a photocatalytically active nanoporous material produced by such a method and uses of the photocatalytically active nanoporous material. Specifically, disclosed is a method for producing a photocatalytically active nanoporous material which is characterized in that titanium oxide is formed on the surface and nanopore surfaces of a nanoporous substrate by bringing the nanoporous substrate into contact with an aqueous solution containing precursors of titanium oxide.

Description

光触媒活性ナノ多孔質材料及びその製法 技術分野  Photocatalytically active nanoporous material and its production method
本発明は、 酸化チタンの前駆体を含む水溶液から、 ナノオーダ一の細孔を有す る多孔質基材の表面及びその細孔内表面に酸化チタンを形成させる方法、 及び該 方法により製造される光触媒活性を有するナノ多孔質材料に関する。  The present invention provides a method of forming titanium oxide on the surface of a porous substrate having nano-order pores and an inner surface of the pores from an aqueous solution containing a precursor of titanium oxide, and is produced by the method. The present invention relates to a nanoporous material having photocatalytic activity.
 Light
背景田技術  Background field technology
酸化チタンは、 光照射によって有機物を容書易に分解できるので、 酸化チタンを 光分解反応の触媒として用いて、 各種の有機物の分解反応、 たとえば水中に溶解 または空気中に浮遊している有害物質や悪臭物質の分解、 殺菌などに用いること ができ、 環境浄化、 防疫などへの応用が実用化されてきている。  Since titanium oxide can easily decompose organic substances by light irradiation, titanium oxide is used as a catalyst for photodecomposition reactions to decompose various organic substances, such as toxic substances dissolved in water or suspended in air. It can be used to decompose and sterilize odorous substances, and has been put into practical use for environmental purification, epidemic prevention, and the like.
酸化チタンは、 ガラス、 タイルなどの基材の表面に酸化チタン薄膜を形成する ことにより、 触媒として効果的に利用される。 基材表面に酸化チタン薄膜を形成 させる方法としては、 C VD、 イオンプレーティング、 スパッタリングなどの方 法がある。 また、 他の方法として、 酸化チタンの微粉末を、 バインダーおよび分 散剤と混練して得られた混和物を基材表面に塗布し、 乾燥させる方法もある。 また、 フルォロチタン酸を含む水溶液に、 ホウ酸のようなフッ化物イオン捕捉 剤を存在させて基材を浸漬し、基材表面に酸化チタン被覆層を形成させる方法が、 特開平 9— 2 4 9 4 1 8号公報及び国際公開第 9 8 / 1 1 0 2 0号パンフレツト に記載されている。  Titanium oxide is effectively used as a catalyst by forming a titanium oxide thin film on the surface of a substrate such as glass or tile. Methods for forming a titanium oxide thin film on a substrate surface include methods such as CVD, ion plating, and sputtering. As another method, there is a method in which an admixture obtained by kneading a fine powder of titanium oxide with a binder and a dispersant is applied to the surface of a base material and dried. Further, a method of immersing a substrate in an aqueous solution containing fluorotitanic acid in the presence of a fluoride ion scavenger such as boric acid to form a titanium oxide coating layer on the surface of the substrate is disclosed in Japanese Patent Application Laid-Open No. 9-249. No. 418, and WO98 / 11020 pamphlet.
しかし、 特開平 9— 2 4 9 4 1 8号公報及び国際公開第 9 8 / 1 1 0 2 0号パ ンフレツトは、 ともに基材表面に酸化チタン被覆層を形成させる方法が開示され ているが、 多孔質材料の表面及び細孔内部の表面への均質な酸化チタン薄膜を形 成する方法については一切開示がない。 また、 特開平 9— 2 4 9 4 1 8号公報及 び国際公開第 9 8 X 1 1 0 2 0号パンフレツトの方法により形成される酸化チタ ン薄膜は、 光触媒活性を有することは開示されているものの、 可視光領域のみか らなる光源に対して高い光触媒機能を発揮するものではない。 発明の開示 However, Japanese Patent Application Laid-Open No. Hei 9-249418 and International Patent Publication No. WO 98/110210 both disclose a method of forming a titanium oxide coating layer on the surface of a substrate. There is no disclosure of a method for forming a uniform titanium oxide thin film on the surface of a porous material and the surface inside pores. Further, it is disclosed that the titanium oxide thin film formed by the method of Japanese Patent Application Laid-Open No. Hei 9-244918 and WO 98/110210 has a photocatalytic activity. But only in the visible light range It does not exhibit a high photocatalytic function for such light sources. Disclosure of the invention
本発明の目的は、 このような従来技術の問題点を克服して、 ナノ多孔質基材 (nano-porous substrate)の表面及び細孔内表面に微細な酸化チタンを形成する 方法、 及び該方法により形成される光触媒活性ナノ多孔質材料、 特に可視光領域 にて光触媒活性を有する光触媒活性ナノ多孔質材料を提供することである。 また、 本発明の他の目的は、 該光触媒活性ナノ多孔質材料の用途を提供するこ とである。  An object of the present invention is to overcome the problems of the prior art and form a fine titanium oxide on the surface of a nano-porous substrate and on the inner surface of pores. An object of the present invention is to provide a photocatalytically active nanoporous material formed by the method, particularly a photocatalytically active nanoporous material having photocatalytic activity in a visible light region. Another object of the present invention is to provide a use of the photocatalytically active nanoporous material.
本発明者らは、 上記の目的を達成するために鋭意研究を行った結果、 特定の濃 度のフルォロチタン錯ィ匕合物及びフッ化物イオン捕捉剤を含む水溶液中に、 ナノ 多孔質基材を浸漬し抜気することにより、 該基材の表面のみならず細孔内表面に も微細な酸化チタンを形成できることを見出した。 かかる知見に基づきさらに研 究を重ねて、 本発明を完成するに至った。  The present inventors have conducted intensive studies in order to achieve the above-mentioned object.As a result, the nanoporous substrate was placed in an aqueous solution containing a specific concentration of a fluorotitanium complex conjugate and a fluoride ion scavenger. It has been found that fine titanium oxide can be formed not only on the surface of the substrate but also on the inner surface of the pores by immersion and degassing. Further studies based on such knowledge led to the completion of the present invention.
すなわち、 本発明は、 次の光触媒活性ナノ多孔質材料の製法、 該製法により製 造される光触媒活性を有するナノ多孔質材料、 及び該光触媒活性ナノ多孔質材料 の用途に関する。  That is, the present invention relates to the following method for producing a photocatalytically active nanoporous material, a nanoporous material having photocatalytic activity produced by the method, and uses of the photocatalytically active nanoporous material.
項 1 . 酸化チタンの前駆体を含む水溶液にナノ多孔質基材を接触させて、 該基 材の表面及び細孔内表面に酸化チタンを形成することを特徴とする光触媒活性ナ ノ多孔質材料の製法。  Item 1. A photocatalytically active nanoporous material characterized in that a nanoporous substrate is brought into contact with an aqueous solution containing a precursor of titanium oxide to form titanium oxide on the surface of the substrate and the inner surface of pores. Recipe.
項 2 . 酸化チタンの前駆体を含む水溶液にナノ多孔質基材を浸漬させ、 減圧下 で抜気して、 該基材の表面及び細孔内表面に酸化チタンを形成することを特徴と する項 1に記載の製法。  Item 2. A nanoporous substrate is immersed in an aqueous solution containing a titanium oxide precursor, and is evacuated under reduced pressure to form titanium oxide on the surface of the substrate and the inner surface of pores. The production method according to item 1.
項 3 . 酸ィヒチタンの前駆体を含む水溶液が、 (1) フルォロチタン錯化合物及び フッ化物イオン捕捉剤を含む水溶液、 (2) フッ化チタン (TiF4) 及びアンモニア を含む水溶液、 (3)硫酸チタニル(TiOS04)と H C 1又は NH4〇Hを含む水溶液、 又は (4) 塩化チタンと水から得られるチタン酸ジクロリド (TiOCl2) τΚ溶液であ る項 1又は 2に記載の光触媒活性ナノ多孔質材料の製法。 Item 3. The aqueous solution containing the precursor of titanium oxide is (1) an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger, (2) an aqueous solution containing titanium fluoride (TiF 4 ) and ammonia, (3) titanyl sulfate aqueous solution containing (TiOS0 4) and HC 1 or NH 4 〇_H, or (4) photocatalytic activity nanoporous according to claim 1 or 2 Ru titanium dichloride (TiOCl 2) Taukappa solution der obtained from titanium tetrachloride and water Quality material manufacturing method.
項 4. 酸ィ匕チタンの前駆体を含む水溶液が、 フルォロチタン錯化合物及びフッ 化物イオン捕捉剤を含む水溶液である項 1又は 2に記載の光触媒活性ナノ多孔質 材料の製法。 Item 4. An aqueous solution containing a precursor of Titan is prepared by mixing a fluorotitanium complex compound and a fluorine compound. Item 3. The method for producing a photocatalytically active nanoporous material according to Item 1 or 2, which is an aqueous solution containing a halide ion scavenger.
項 5. フルォロチタン錯化合物が、 H2T i F6、 (NH4) 2T i F6、 N a2T i F 6、 K2T i F6、 R b2T i F6及び C s 2T i F6からなる群から選ばれる少なくとも 1種である項 4に記載の製法。 Item 5. The fluorotitanium complex compound is H 2 T i F 6 , (NH 4 ) 2 T i F 6 , Na 2 T i F 6 , K 2 T i F 6 , R b 2 T i F 6, and C s Item 5. The production method according to Item 4, which is at least one member selected from the group consisting of 2 T i F 6 .
項 6. 前記水溶液中のフルォロチタン錯化合物の濃度が、 1 X 1 0— 9〜: L X 1 0一2 mo 1 ZL程度である項 5に記載の製法。 Concentration of claim 6. Furuorochitan complex compound in the aqueous solution, 1 X 1 0- 9 ~: LX 1 0 one 2 process according to claim 5, about mo 1 ZL.
項 7. フッ化物イオン捕捉剤が、 オルトホウ酸、 メタホウ酸及び酸化ホウ素か らなる群から選ばれる少なくとも 1種である項 4に記載の製法。  Item 7. The method according to Item 4, wherein the fluoride ion scavenger is at least one member selected from the group consisting of orthoboric acid, metaboric acid, and boron oxide.
項 8. 前記水溶液中のフッ化物イオン捕捉剤の濃度が、 1 X 1 0— 2〜: L 0 m o 1 ZL程度である項 7に記載の製法。 Claim 8. The concentration of fluoride ion-capturing agent in the aqueous solution, 1 X 1 0- 2 ~: process according to L 0 mo 1 to claim 7 is ZL about.
項 9. ナノ多孔質基材が、 二酸化ケイ素を 9 9. 9重量%以上含有している基 材である項 1〜 4のいずれかに記載の製法。  Item 9. The method according to any one of Items 1 to 4, wherein the nanoporous substrate is a substrate containing 99.9% by weight or more of silicon dioxide.
項 1 0. ナノ多孔質基材の B E T比表面積が 5 0〜1 0 0 O n^Z g程度であ り、 MP法による全細孔容積が 0. 3〜1 . O m l Zg程度であり、 細孔径が 1 〜1 0 0 nm程度である項 1〜4のいずれかに記載の製法。  Item 10: The BET specific surface area of the nanoporous base material is about 50 to 100 O n ^ Z g, and the total pore volume by the MP method is about 0.3 to 1.0 O ml Zg. Item 5. The method according to any one of Items 1 to 4, wherein the pore diameter is about 1 to 100 nm.
項 1 1 . ナノ多孔質基材の表面及び細孔内表面に形成される酸化チタンの析出 高さが、 0. 2〜1 0 nm程度である項 1〜4のいずれかに記載の製法。  Item 11. The method according to any one of Items 1 to 4, wherein the precipitation height of titanium oxide formed on the surface of the nanoporous substrate and the inner surface of the pores is about 0.2 to 10 nm.
項 1 2. フルォロチタン錯化合物及びフッ化物イオン捕捉剤を含む水溶液 1 L に対し、 ナノ多孔質基材 1 0〜5 0 0 g程度を用いる項 4に記載の製法。  Item 1 2. The method according to Item 4, wherein the nanoporous substrate is used in an amount of about 10 to 500 g per liter of an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger.
項 1 3. 原料のナノ多孔質基材の細孔サイズ分布 (pore size distribution) と、 酸化チタン形成後の光触媒活性ナノ多孔質材料の細孔サイズ分布とが、 実質 的に変ィヒしていない項 1〜 4のいずれかに記載の製法。  Item 1 3. The pore size distribution of the raw material nanoporous substrate and the pore size distribution of the photocatalytically active nanoporous material after the formation of titanium oxide are substantially different. Item 5. The method according to any one of Items 1 to 4.
項 1 4. 項 1〜: L 3のいずれかに記載の製法により製造される光触媒活性ナノ 多孔質材料。  Item 1 4. Item 1 to: A photocatalytically active nanoporous material produced by the production method according to any one of L3.
項 1 5. 可視光 (波長: 5 0 0〜 7 0 0 nm程度) で光触媒活性を有する項 1 4に記載の光触媒活性ナノ多孔質材料。  Item 15 5. The photocatalytically active nanoporous material according to Item 14, which has photocatalytic activity in visible light (wavelength: about 500 to 700 nm).
項 1 6. ナノ多孔質基材の表面及び細孔内表面に、 析出高さ 0. 2〜1 0 nm 程度の酸化チタンが形成されてなる光触媒活性ナノ多孔質材料。 項 1 7. 可視光 (波長: 5 0 0〜 7 0 0 nm程度) で光触媒活性を有する項 1 6に記載の光触媒活性ナノ多孔質材料。 Item 1 6. A photocatalytically active nanoporous material in which titanium oxide having a deposition height of about 0.2 to 10 nm is formed on the surface of a nanoporous substrate and the inner surface of pores. Item 17. The photocatalytically active nanoporous material according to Item 16, having photocatalytic activity in visible light (wavelength: about 500 to 700 nm).
項 1 8.光触媒活性ナノ多孔質材料の全重量に対する酸化チタンの含有量が 0. 0 1〜2 0重量%程度である項 1 6に記載の光触媒活性ナノ多孔質材料。  Item 16. The photocatalytically active nanoporous material according to Item 16, wherein the content of titanium oxide is about 0.01 to 20% by weight based on the total weight of the photocatalytically active nanoporous material.
項 1 9. B E T比表面積が 5 0〜1 0 0 0 m2Zg程度であり、 MP法による 全細孔容積が 0. 3〜1 . Om l Zg程度であり、 細孔径が 1〜: L 0 O nm程度 である項 1 6に記載の光触媒活性ナノ多孔質材料。 Claim 1 9. a BET specific surface area of 5 0~1 0 0 0 m 2 Zg about a total pore volume of 0. 3 to 1 Om l Zg about by the MP method, a pore diameter. 1 to:. L Item 16. The photocatalytically active nanoporous material according to Item 16, having a value of about 0 O nm.
項 2 0. さらに、 得られた光触媒活性ナノ多孔質材料を、 化学的又は物理的に 処理して、 該光触媒活性ナノ多孔質材料の表面に形成された酸化チタンを除去す ることを特徴とする項 1〜1 3のいずれかに記載の製法。  Item 20. Further, the obtained photocatalytically active nanoporous material is chemically or physically treated to remove titanium oxide formed on the surface of the photocatalytically active nanoporous material. Item 13. The method according to any one of Items 1 to 13.
項 2 1 . 前記化学的処理が、 得られた光触媒活性ナノ多孔質材料を、 抜気せず に酸性液体に接触させる処理である項 2 0に記載の製法。  Item 21. The method according to Item 20, wherein the chemical treatment is a treatment in which the obtained photocatalytically active nanoporous material is brought into contact with an acidic liquid without degassing.
項 2 2. 項 2 0又は 2 1に記載の製法により製造される光触媒活性ナノ多孔質 材料。  Item 22. A photocatalytically active nanoporous material produced by the production method according to Item 20 or 21.
項 2 3. 項 1 4〜 1 9のいずれかに記載の光触媒活性ナノ多孔質材料を含有す るフィル夕一。  Item 23. A film containing the photocatalytically active nanoporous material according to any one of Items 14 to 19.
項 2 4. 項 1 4〜1 9及び 2 2のいずれかに記載の光触媒活性ナノ多孔質材料 を含有する壁材。  Item 24. A wall material containing the photocatalytically active nanoporous material according to any one of Items 14 to 19 and 22.
項 2 5. 項 2 2に記載の光触媒活性ナノ多孔質材料を含有する繊維。 図面の簡単な説明  Item 2 5. A fiber containing the photocatalytically active nanoporous material according to Item 22. Brief Description of Drawings
図 1は、 試験例 1で用いる反応容器の模式図である。  FIG. 1 is a schematic diagram of a reaction vessel used in Test Example 1.
図 2は、 試験例 3におけるナノ多孔質基材 (触媒担体) の気孔径分布を示す図 である。  FIG. 2 is a diagram showing the pore size distribution of the nanoporous substrate (catalyst support) in Test Example 3.
図 3は、 試験例 3における本発明の光触媒活性ナノ多孔質材料 (実施例 1 ) の 気孔径分布を示す図である。 発明の詳細な記述  FIG. 3 is a diagram showing the pore size distribution of the photocatalytically active nanoporous material of the present invention (Example 1) in Test Example 3. Detailed description of the invention
以下、 本発明について詳細に説明する。 I -光触媒活性ナノ多孔質材料 Hereinafter, the present invention will be described in detail. I-Photocatalytically active nanoporous material
本発明の光触媒活性ナノ多孔質材料は、 酸化チタンの前駆体を含む水溶液にナ ノ多孔質基材を接触させて、 該基材の表面及び細孔内表面に酸化チタンを形成し て製造される。  The photocatalytically active nanoporous material of the present invention is produced by contacting a nanoporous substrate with an aqueous solution containing a precursor of titanium oxide to form titanium oxide on the surface of the substrate and the inner surface of pores. You.
1 -1. 酸化チタンの前駆体を含む水溶液  1 -1. Aqueous solution containing precursor of titanium oxide
酸化チタンの前駆体を含む水溶液としては、 (1) フルォロチタン錯化合物及び フッ化物イオン捕捉剤を含む水溶液、 (2) フッ化チタン (TiF4) 及びアンモニア を含む水溶液、 (3)硫酸チタニル(TiOS04)と HC 1又は NH4〇Hを含む水溶液、 又は (4) 塩化チタンと水から得られるチタン酸ジクロリド (TiOCl2) 水溶液が挙 げられる。 以下、 (1)〜 (4)について具体的に説明する。 Examples of the aqueous solution containing the titanium oxide precursor include (1) an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger, (2) an aqueous solution containing titanium fluoride (TiF 4 ) and ammonia, and (3) a titanyl sulfate (TiOS0 An aqueous solution containing 4 ) and HC 1 or NH 4 〇H, or (4) an aqueous solution of dichloride titanate (TiOCl 2 ) obtained from titanium chloride and water can be given. Hereinafter, (1) to (4) will be specifically described.
(1) フルォロチタン錯化合物及びフッ化物イオン捕捉剤を含む水溶液 本発明において、 酸化チタン薄膜の形成に用いられるフルォロチ夕ン錯化合物 は、 一般式 ( I ):  (1) An aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger In the present invention, the fluorothiane complex compound used for forming a titanium oxide thin film has a general formula (I):
A2T i F6 (I) A 2 T i F 6 (I)
(式中、 Aは、 同一又は異なって水素原子、 アルカリ金属原子、 アンモニゥム基 を示す)  (In the formula, A is the same or different and represents a hydrogen atom, an alkali metal atom, or an ammonium group.)
で表される。 アルカリ金属原子としては、 L i、 Na、 K、 Rb、 Cs等が挙げ られる。 なお、 化合物 (I) は、 複数の T i原子を有する多核錯化合物であって もよい。 このような一般式 (I) で示されるフルォロチタン錯化合物としては、 H2T i F6、 (NH4) 2T i F6、 Na2T i F6、 K2T i F6、 Rb2T i F6、 Cs2T i F6などが例示される。 このうち、特に、 (NH4) 2T i F6が好ましい。 本発明に用いられるフルォロチタン錯化合物は、 公知の方法で製造されたもの であれば特に限定はない。たとえば、酸化チタン粉末をフッ化水素酸で処理して、 フルォロチタン酸としてもよい。酸化チタンとしては、ルチル型、アナタース型、 ブルッカイト型、 アモルファスのいずれを用いてもよい。 It is represented by Examples of the alkali metal atom include Li, Na, K, Rb, and Cs. Compound (I) may be a polynuclear complex compound having a plurality of Ti atoms. Examples of such a fluorotitanium complex compound represented by the general formula (I) include H 2 T i F 6 , (NH 4 ) 2 T i F 6 , Na 2 T i F 6 , K 2 T i F 6 , and Rb 2 T i F 6 and Cs 2 T i F 6 are exemplified. Among them, (NH 4 ) 2 T i F 6 is particularly preferable. The fluorotitanium complex compound used in the present invention is not particularly limited as long as it is produced by a known method. For example, titanium oxide powder may be treated with hydrofluoric acid to obtain fluorotitanic acid. As the titanium oxide, any of rutile type, anatase type, brookite type, and amorphous may be used.
また、チタンの水酸化物またはォキシ水酸化物を、ニフッ化水素ァンモニゥム、 またはニフッ化水素ナトリゥムのようなニフッ化水素アル力リ金属の水溶液に溶 解させて、 フルォロチタン錯化合物を合成して、 本発明の製造方法に用いてもよ い。 . フルォロチタン錯化合物は、 1 0— 9〜9 X 1 0— 2m o 1 /L程度、好ましくは 1 0一6〜 9 X 1 0一3 m o 1 /L程度、 さらに好ましくは 1 0一5〜 9 X 1 0一3 m 0 1 ZL程度の濃度の水溶液に調製して用いられる。 たとえば、 酸化チタンを濃 度 0. 0 0 1〜0. 6 mo 1 /Lのフッ化水素酸水溶液 4 0 Omlに対し 0 . 0 0 1〜2 0 g程度混合させて、 1 0 _9〜9 X 1 0— 2mo 1 /L程度のフルォロチタ ン錯ィオンを含む水溶液が得られる。 Also, a hydroxide or oxyhydroxide of titanium is dissolved in an aqueous solution of a metal hydrogen hydrogen fluoride such as ammonium hydrogen difluoride or sodium hydrogen difluoride to synthesize a fluorotitanium complex compound. It may be used in the production method of the present invention. . Furuorochitan complex compound, 1 0- 9 ~9 X 1 0- 2 mo 1 / L , preferably about 1 0 one 6 ~ 9 X 1 0 one 3 mo 1 / L or so, more preferably 1 0 one 5-9 used in preparing the aqueous solution of X 1 0 one 3 m 0 1 ZL amounts of concentrations. For example, about 0.001 to 20 g of titanium oxide is mixed with 40 Oml of a 0.0001 to 0.6 mo / L hydrofluoric acid aqueous solution to give a concentration of 10 to 9 to 10 g. an aqueous solution containing 9 X 1 0- 2 mo 1 / L of about Furuorochita down complex Ion is obtained.
1 0— 9mo 1 /L程度未満では、基材表面又は細孔内表面に本発明の効果を発 揮しうる酸化チタンを形成できず、 9 X 1 0 ~2m o 1 ZL程度を越える水溶液を 用いると、 フッ化物イオン捕捉剤またはその溶液の添カ卩とともに白濁を生じ、 本 発明の効果を発揮しうる酸化チタン薄膜を基材表面又は細孔内表面に形成できな レ ここに、 水溶液とは、 前述のような酸ィ匕チタンから前述の錯化合物を合成す るために用いた過剰のフッ化水素を含む水溶液であってもよい。 また、 本発明の 効果に悪影響を与えない範囲で、 フッ化水素、 塩化水素、 アンモニア等の水に可 溶な物質を含んでいてもよい。 また、 調製されたフルォロチタン錯化合物の水溶 液 (以下、 上記の定義による) に、 さらに酸化チタンの過剰量を添加して、 上記 の錯化合物の飽和溶液にした後に、 溶解しない酸化チタンをろ別して除いた水溶 液を用いてもよい。 In one 0- 9 mo less than about 1 / L, can not be formed of titanium oxide capable of emitting volatilization effects of the present invention to a substrate surface or surfaces inside the pores, an aqueous solution exceeding 9 X 1 0 ~ about 2 mo 1 ZL When used, it becomes cloudy together with the fluoride ion scavenger or a solution added thereto, and a titanium oxide thin film capable of exhibiting the effect of the present invention cannot be formed on the surface of the substrate or the inner surface of the pores. The term may be an aqueous solution containing excess hydrogen fluoride used for synthesizing the complex compound from titanium oxide as described above. Further, water-soluble substances such as hydrogen fluoride, hydrogen chloride, and ammonia may be contained as long as the effects of the present invention are not adversely affected. Further, an excess amount of titanium oxide is further added to the prepared aqueous solution of the fluorotitanium complex compound (hereinafter, as defined above) to form a saturated solution of the above complex compound, and then the insoluble titanium oxide is filtered off. The removed aqueous solution may be used.
さらに、 このようなフルォロチタン錯化合物の水溶液に、 酸化チタン形成のた めの種結晶を添カ卩しても差し支えない。 用いる種結晶は、 目的とする酸化チタン の結晶がよい。種結晶は、平均粒径が 0 . 2〜; L 0 nmほどの微小なものでよく、 その添加量は任意であるが微量でよい。 種結晶の添加によって、 酸化チタンの析 出速度を上げることができる。  Further, a seed crystal for forming titanium oxide may be added to an aqueous solution of such a fluorotitanium complex compound. The seed crystal to be used is preferably a target titanium oxide crystal. The seed crystal may have a small average particle diameter of 0.2 to about 0 nm, and the addition amount thereof is optional but may be small. By adding seed crystals, the deposition rate of titanium oxide can be increased.
なお、本発明において、水溶液とは、本発明の効果に悪影響を与えない範囲で、 水と可溶な有機溶媒を含有していてもよい。 水が主成分である限り、 例えば、 メ 夕ノール、 エタノール等のアルコール類;ジメチルエーテル、 ジェチルエーテル 等のエーテル類;アセトン等のケトン類;その他水に可溶な有機溶媒が存在する ことを妨げない。 但し、 有機溶媒の含有量は、 τΚ溶液全体に対し 5 0体積%程度 以下であるのが好ましい。  In the present invention, the aqueous solution may contain a water-soluble organic solvent as long as the effect of the present invention is not adversely affected. As long as water is the main component, for example, alcohols such as methanol and ethanol; ethers such as dimethyl ether and getyl ether; ketones such as acetone; and the prevention of the presence of other water-soluble organic solvents Absent. However, the content of the organic solvent is preferably about 50% by volume or less based on the whole τΚ solution.
本発明で用いられるフッ化物イオン捕捉剤には、 液相内に溶解させて用いる均 一系と、 固形物である不均一系とがある。 目的に応じて、 これら両者の一方を用 いても、 併用しても差し支えない。 The fluoride ion scavenger used in the present invention has a uniformity dissolved in a liquid phase. There are one type and a heterogeneous type which is a solid. Depending on the purpose, one of these two types may be used, or both may be used.
均一系フッ化物イオン捕捉剤は、 フッ化物イオンと反応して安定なフルォロ錯 化合物及び/又は安定なフッ化物を形成することにより、 ナノ多孔質基材表面及 び細孔内表面に酸ィ匕チタン薄膜を析出させるように、 加水分解反応を促進する方 向に平衡を移動させるものである。 オルトホウ酸、 メタホウ酸、 酸化ホウ素など のホウ素化合物のほか;塩化アルミニウム、 水酸化ナトリウム、 アンモニア水な どが例示される。  The homogeneous fluoride ion scavenger reacts with the fluoride ion to form a stable fluoro complex compound and / or a stable fluoride, thereby oxidizing the surface of the nanoporous substrate and the inner surface of the pore. It shifts the equilibrium in a direction that promotes the hydrolysis reaction so that a titanium thin film is deposited. In addition to boron compounds such as orthoboric acid, metaboric acid, and boron oxide; aluminum chloride, sodium hydroxide, and aqueous ammonia are examples.
具体的には、 下記式に示すように、 オルトホウ酸を用いて (NH4) 2T i F6 力ら T i〇2を析出させる際は、 式 (III) で示される反応が、 F_を消費する右 方向に移動するので、 式 (II) で示される平衡が、 F—を生成する右方向に移動 し、 その結果、 T i〇2からなる薄膜が析出する。 このような捕捉剤は、 通常、 水 溶液の形で用いられるが、 粉末の形で添加して、 系中に溶解させてもよい。 該捕 捉剤の添加は、 1回に、 または数回に分けて間欠的に行ってもよく、 制御された 供給速度、 たとえば一定の速度で連続的に行ってもよい。 Specifically, as shown in the following formula, when precipitating with orthoboric acid (NH 4) 2 T i F 6 forces et T I_〇 2, the reaction represented by the formula (III), F_ since moves rightward to consume, the equilibrium represented by the formula (II) is moved to the right to generate the F-, the result, a thin film made of T I_〇 2 is precipitated. Such a capturing agent is usually used in the form of an aqueous solution, but may be added in the form of a powder and dissolved in the system. The addition of the trapping agent may be performed once or several times intermittently, or may be performed continuously at a controlled supply rate, for example, at a constant rate.
T i F6 2~ + 2H20 71 T i 02 + 6 F一 + 4H+ ( || )T i F 6 2 ~ + 2H 2 0 71 T i 0 2 + 6 F 1 + 4H + (||)
B03 3— + 4 F— + 6H+ → B F4- + 3H20 (III) 不均一系フッ化物イオン捕捉剤としては、 アルミニウム、 チタン、 鉄、 エッケ ル、 マグネシウム、 銅、 亜鉛などの金属;ガラスなどのセラミックス;ケィ素、 ゲルマニウムなどの半導体;オルトホウ酸、 メタホウ酸、 酸化ホウ素などのホウ 素化合物;及ぴ ¾化カルシウム、 酸化アルミニウム、 二酸化ケイ素、 酸化マグネ' シゥムなどの化合物が例示される。 このような固形物を水溶液に添加または挿入 すると、 固形物近傍の F—が消費されて、 その濃度が減少するので、 その部分の 化学平衡がシフトして、 酸化チタンが析出する。 このような固形物を用いると、 その挿入方法と反応条件により、 水溶液に浸漬した該ナノ多孔質基材表面及び細 孔内表面に酸化チタンを析出させることが可能となる。 B0 3 3 - + 4 F- + 6H + → BF 4 - + 3H 2 0 (III) as the heterogeneous type fluoride ion-capturing agent, aluminum, titanium, iron, Ecke Le, magnesium, copper, metals such as zinc Semiconductors such as silicon and germanium; boron compounds such as orthoboric acid, metaboric acid and boron oxide; and compounds such as calcium oxide, aluminum oxide, silicon dioxide and magnesium oxide films. You. When such a solid is added or inserted into an aqueous solution, F— near the solid is consumed and its concentration decreases, so that the chemical equilibrium of that part shifts and titanium oxide is deposited. When such a solid is used, titanium oxide can be deposited on the surface of the nanoporous substrate and the inner surface of the pores immersed in an aqueous solution, depending on the insertion method and reaction conditions.
均一系フッ化物イオン捕捉剤は、 析出物の種類や形状によっても異なるが、 溶 液中のフッ化物イオンの当量に相当する量に対して、 通常、 10一4〜 5000 0%程度であり、 好ましくは 10一1〜 30000%程度の範囲で用いられる。 不 均一系フッ化物イオン捕捉剤は、 特に限定されず、 本発明の目的および効果が達 成されるような量で使用されることが好ましい。 Homogeneous fluoride ion scavengers vary depending on the type and shape of the precipitates. The amount corresponding to the equivalent amount of fluoride ions in the solution, usually about 10 one 4-5000 0%, preferably in a range of about 10 one from 1 to 30,000%. The heterogeneous fluoride ion scavenger is not particularly limited, and is preferably used in an amount that achieves the object and effects of the present invention.
(2) フッ化チタン (TiF4) 及びアンモニアを含む水溶液 (2) Aqueous solution containing titanium fluoride (TiF 4 ) and ammonia
この水溶液は、 TiF4の水溶液に少量のアンモニア水を加えることにより製造さ れる。 TiF4の水溶液の濃度は、 0.005〜0.5mol/L程度、好ましくは 0.01〜0. lmol/L 程度であればよく、 アンモニア水の濃度は、 0.05〜5mol/L程度、 好ましくは 0.1 〜3mol/L程度であればよい。 アンモニア水を加えて得られる水溶液は、 pHを 1〜 3の間、 好ましくは 1.5〜2.5の間、 特に 1.0程度とするのが好ましい。 例えば、 0.74gの TiF4を 150mlの水に溶かして 0.04mol/Lの水溶液を調製し、 これに少量 の 0. lmol/Lのアンモニア水を加えて pHを約 2.0とする。 この溶液においては、 TiF4の加水連と脱水が徐々に進み、 酸化チタンが形成される。 例えば、 60t:に おいて 1〜48時間で酸化チタンが形成される。 This aqueous solution is produced by adding a small amount of aqueous ammonia to an aqueous solution of TiF 4 . The concentration of the aqueous solution of TiF 4 may be about 0.005 to 0.5 mol / L, preferably about 0.01 to 0.1 mol / L, and the concentration of aqueous ammonia is about 0.05 to 5 mol / L, preferably 0.1 to 3 mol / L. It may be L or so. The aqueous solution obtained by adding aqueous ammonia preferably has a pH of between 1 and 3, preferably between 1.5 and 2.5, particularly about 1.0. For example, 0.74 g of TiF 4 is dissolved in 150 ml of water to prepare a 0.04 mol / L aqueous solution, and a small amount of 0.1 mol / L aqueous ammonia is added to adjust the pH to about 2.0. In this solution, the hydration and dehydration of TiF 4 gradually progress, and titanium oxide is formed. For example, at 60t: titanium oxide is formed in 1 to 48 hours.
(3) 硫酸チタニル (TiOS04) と HC 1又は NH4〇Hを含む水溶液 (3) an aqueous solution containing HC 1 or NH 4 〇_H and titanyl sulfate (TiOS0 4)
この水溶液は、 Tiの濃度が 0.001〜0.1 mol/Lとなるように、 TiOS04. x¾0を HC1 あるいは NH40Hを含む水溶液に加え、 室温で約 1時間攪拌して製造される。 この とき水溶液の pHは、一1.00〜1.70の間になるようにする。この溶液においては、 60 :で保持すると、 数時間から 10日で、 Ti02が基材上に形成される。 The aqueous solution, so that the concentration of Ti is 0.001~0.1 mol / L, TiOS0 4. X¾0 was added to an aqueous solution containing HC1 or NH 4 0H, is prepared by stirring about 1 hour at room temperature. At this time, the pH of the aqueous solution should be between 1.00 and 1.70. In this solution, 60: Holding, in 10 days from a few hours, Ti0 2 is formed on the substrate.
(4) 塩化チタンと水から得られるチタン酸ジクロリド水溶液  (4) Titanium dichloride aqueous solution obtained from titanium chloride and water
この水溶液は、例えば、(TCで TiCl4に蒸留水を加えて加水分解して TiOCl2溶液 を調製し、 これを 17〜230°Cにすると、 02が析出する。 高温にするときは、 ォ 一トクレーブを使用する。 This aqueous solution is prepared, for example, by adding (distilled water to TiCl 4 at TC to hydrolyze to prepare a TiOCl 2 solution, and when the temperature is 17 to 230 ° C., O 2 is precipitated. Use autoclave.
1 -2. ナノ多孔質基材  1 -2. Nanoporous substrate
本発明で用いられるナノ多孔質基材としては、 ナノスケール (1 nm〜l 00 nm程度)、 より具体的にはメソ孔(2〜50nm)の細孔を有する多孔質基材で あれば特に限定はない。 また、 ナノ多孔質基材の BET比表面積が 50〜100 0m2Zg程度、 特に 200〜 500m2Zg程度であり、 MP法による全細孔容 積が 0. 3〜1. Oml/g程度、 特に 0. 3〜0. 7ml/g程度であればよ い。 As the nanoporous substrate used in the present invention, a porous substrate having nano-scale (about 1 nm to 100 nm), more specifically, a mesopore (2 to 50 nm) is particularly preferable. There is no limitation. Further, the nano BET specific surface area of the porous substrate is 50 to 100 0 m 2 Zg about, in particular 200 to 500 meters 2 Zg about all Hosoanayo product by the MP method is 0. 3~1. Oml / g approximately, Especially if it is about 0.3-0.7ml / g Yes.
該基材は、 形成される酸化チタンを担持するため、 あるいは形成された該酸化 チタンによって特定の目的のためにコ一ティングされるための、 広範囲の物質を 用いることができる。 例えば、 二酸化ケイ素、 酸化アルミニウム、 酸化ジルコ二 ゥム、 ガラス、 酸化マグネシウム、 ゼォライト、 窒化ケィ素、 炭化ケィ素などの セラミックス、 炭素材料、 アルミニウム、 チタンなどの金属、 ケィ素、 ゲルマ二 ゥムなどの半導体等が挙げられる。 中でも、 光触媒活性ナノ多孔質材料の基材と して用いる場合、 強熱減量を除いた含量で二酸化ケイ素を 9 9. 9重量%程度以 上、 好ましくは 9 9. 9 9重量%程度以上含有するナノ多孔質基材が好ましい。 例えば、 二酸化ケィ素のエア口ゾルから製造されたナノ多孔質材料であるシリ力 参照触媒 ( J R C - S 1〇— 8、 触媒学会参照触媒委員会)、 シリカゲル Q15 (平 均細孔径 15皿、 細孔容積 1. 0ml/g、 比表面積 200m2/g、 富士シリシァ化学株式会 社製) などが挙げられる。 これは、 形成される酸化チタンとナノ多孔質基材に含 まれる二酸化ケイ素との界面の作用により、 酸化チタンのバンドギヤップが小さ くなり、 これにより可視光の吸収が容易になると考えられるからである。 その場 合、 自然光 (紫外光及び可視光) においても、 さらに可視光 (波長: 4 0 0 - 8 0 0 nm程度、 特に 5 0 0〜7 0 0 nm程度) だけでも、 従来の酸化チタン触媒 に比し極めて高い活性を有している。 The substrate can use a wide range of materials to carry the titanium oxide formed or to be coated for a particular purpose by the formed titanium oxide. For example, ceramics such as silicon dioxide, aluminum oxide, zirconium oxide, glass, magnesium oxide, zeolite, silicon nitride, silicon carbide, carbon materials, metals such as aluminum and titanium, silicon, germanium, etc. And the like. Above all, when used as a substrate for a photocatalytically active nanoporous material, silicon dioxide contains at least about 99.9% by weight, preferably about 99.9% by weight, excluding loss on ignition. Nanoporous substrates are preferred. For example, Siri force reference catalyst (JRC-S 1〇-8, a reference catalyst committee of the Catalysis Society of Japan), which is a nanoporous material produced from an aerosol of silicon dioxide, silica gel Q15 (average pore diameter of 15 plates, Pore volume: 1.0 ml / g, specific surface area: 200 m 2 / g, manufactured by Fuji Silicon Chemical Co., Ltd.). This is thought to be because the band gap of titanium oxide is reduced due to the action of the interface between the formed titanium oxide and the silicon dioxide contained in the nanoporous substrate, thereby facilitating absorption of visible light. It is. In this case, the conventional titanium oxide catalyst can be used with natural light (ultraviolet light and visible light) or even with visible light (wavelength: about 400 to 800 nm, especially about 500 to 700 nm). It has an extremely high activity compared to.
また基材の形状には特に制限はない。 球状、 板状、 角柱状あるいは中心に穴の あいたドーナツ状等、用途に応じて種々の形状が用いられる。ドーナツ状の塲合、 中心の穴に繊維等を通して基材を保持することができる。  The shape of the substrate is not particularly limited. Various shapes such as a sphere, a plate, a prism, or a donut with a hole in the center are used depending on the application. The base material can be held through a fiber or the like in a donut-shaped bamboo or center hole.
I I. 光触媒活性ナノ多孔質材料の製法 I I. Preparation of photocatalytically active nanoporous materials
本発明の光触媒活性ナノ多孔質材料は、 次のようにしてナノ多孔質材料の表面 及び細孔内表面に酸化チタンを形成することにより製造される。  The photocatalytically active nanoporous material of the present invention is produced by forming titanium oxide on the surface of the nanoporous material and the inner surface of the pores as follows.
まず、 酸化チタンの前駆体を含む水溶液にナノ多孔質基材を接触させて、 該基 材の表面及び細孔内表面に酸化チタンを形成する。 酸化チタンの前駆体を含む水 溶液としては、 前述の(1)〜 (4)の水溶液が挙げられ、 いずれの水溶液を用いても よい。  First, a nanoporous substrate is brought into contact with an aqueous solution containing a precursor of titanium oxide to form titanium oxide on the surface of the substrate and the inner surface of pores. Examples of the aqueous solution containing the precursor of titanium oxide include the aqueous solutions of the above (1) to (4), and any aqueous solution may be used.
ここでは、 (1) フルォロチタン錯化合物及びフッ化物イオン捕捉剤を含む水溶 液を例にとって以下具体的に説明するが、これに限定されるものではない。まず、 フルォロチタン錯化合物を含む水溶液に、 フッ化物イオン捕捉剤を添加して混合 液を得る。 フルォロチ夕ン錯化合物及びフッ化物イオン捕捉剤の水溶液中の濃度 は、 上述の範囲の濃度を適宜選択して採用することができる。 Here, (1) aqueous solution containing fluoro titanium complex compound and fluoride ion scavenger The liquid will be specifically described below by way of example, but is not limited thereto. First, a mixed solution is obtained by adding a fluoride ion scavenger to an aqueous solution containing a fluorotitanium complex compound. The concentration of the fluorothiane complex compound and the fluoride ion scavenger in the aqueous solution can be appropriately selected from the above-mentioned ranges and employed.
該混合液に、 ナノ多孔質基材を接触させて、 該基材の表面及び細孔内表面に酸 化チタンを形成する。 混合液にナノ多孔質基材を接触する方法は、 具体的には、 混合液にナノ多孔質基材を浸漬させながら、 これを減圧下で該基材の細孔内に含 まれる気体を抜気して行う。 或いは、 ナノ多孔質基材のみを入れた容器を減圧に して、 該基材の細孔内に含まれる気体を抜気し、 該容器に該混合液を注入して行 つてもよい。 これにより、 ナノ多孔質基材の細孔内に混合液が浸潤し、 細孔内に 微細な酸化チタンが析出する。 減圧条件は、 細孔内から気体を抜気し得る圧力で あれば特に限定はなく、 例えば、 1 0— 2〜1 0 4 P a程度、 好ましくは、 1 0一2 〜1 0 2 P a程度の圧力で、 0. 1〜1 0分程度であればよい。 また、 混合液に ナノ多孔質基材を浸漬させる温度は、 減圧条件も含めて、 1 0〜8 0 °C程度、 好 ましくは 2 0〜 5 0 °C程度、 さらに好ましくは 3 5〜 4 0 °C程度の範囲で設定さ れる。 また、 時間は、 4〜4 8時間程度浸漬させればよい。 A nanoporous substrate is brought into contact with the mixed solution to form titanium oxide on the surface of the substrate and the inner surface of the pores. The method of contacting the nanoporous base material with the mixed solution is as follows. Specifically, while immersing the nanoporous base material in the mixed solution, the gas contained in the pores of the base material is reduced under reduced pressure. Do it out of the air. Alternatively, the pressure may be reduced in a container containing only the nanoporous substrate, the gas contained in the pores of the substrate is evacuated, and the mixed solution may be injected into the container. As a result, the mixture infiltrates into the pores of the nanoporous base material, and fine titanium oxide precipitates in the pores. Vacuum conditions are not particularly limited as long as the pressure that may evacuated gas from the pores, e.g., 1 0- 2 ~1 0 4 P a , preferably about 1 0 one 2 to 1 0 2 P a The pressure may be about 0.1 to 10 minutes. The temperature at which the nanoporous substrate is immersed in the mixed solution is about 10 to 80 ° C, preferably about 20 to 50 ° C, and more preferably about 35 to Set in the range of about 40 ° C. The time may be about 4 to 48 hours.
また、 ナノ多孔質基材は、 フルォロチタン錯化合物及びフッ化物イオン捕捉剤 を含む水溶液 1 L程度に対し、 通常 1 0〜 5 0 0 g程度、 好ましくは 5 0〜: L 0 0 g程度用いればよい。 この範囲であれば、 目的とする本発明の光触媒活性ナノ 多孔質材料を得られやすい。  In addition, the nanoporous substrate is usually used in an amount of about 10 to 500 g, preferably about 50 to about L 0 g per 1 L of an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger. Good. Within this range, the intended photocatalytically active nanoporous material of the present invention can be easily obtained.
なお、 ナノ多孔質基材をフルォロチタン錯化合物の水溶液に浸漬する時期は、 フッ化物捕捉剤を添加ないし投入する前でも、 同時でも、 後でも差し支えない。 ただし、 系によって侵されるおそれのあるナノ多孔質基材を用いる場合は、 溶液 の組成、 反応条件、 および浸漬する時期に注意する必要がある。 ナノ多孔質基材 を構成する物質が、 不均一フッ化物イオン捕捉材として作用するときは、 均一フ ッ化物イオン捕捉材を加えなくてもよい場合がある。 ナノ多孔質基材の形状は任 意であり、粒子状、板状、或いは目的に応じ特定の形状のものも使用可能である。 また、微細な酸ィ匕チタンを均質に析出させる目的で、たとえば、 1 0 r pm以下、 好ましくは 5 r pm以下の回転速度で基材をゆっくりと回転させることができる。 このようにして基材上に形成された酸ィ匕チタンは、 特に焼成のような加熱工程 を経なくても、 析出条件を適宜設定することにより、 光触媒活性を有している。 また、 目的に応じて加熱工程を設けてもよい。 加熱工程は、 たとえば、 8 0〜6 0 0 °Cで 0 . 5〜 5 0時間程度行うことができる。 The time at which the nanoporous substrate is immersed in the aqueous solution of the fluorotitanium complex compound may be before, at the same time as, or after the addition or introduction of the fluoride scavenger. However, when using a nanoporous substrate that may be attacked by the system, care must be taken in the composition of the solution, the reaction conditions, and the timing of immersion. When the substance constituting the nanoporous substrate acts as a heterogeneous fluoride ion trapping material, it may not be necessary to add the uniform fluoride ion trapping material. The shape of the nanoporous substrate is arbitrary, and particles, plates, or specific shapes depending on the purpose can be used. Further, for the purpose of uniformly depositing fine titanium oxide, the substrate can be slowly rotated at a rotation speed of, for example, 10 rpm or less, preferably 5 rpm or less. The oxidized titanium thus formed on the substrate has photocatalytic activity by appropriately setting the precipitation conditions, particularly without going through a heating step such as firing. Further, a heating step may be provided according to the purpose. The heating step can be performed, for example, at 80 to 600 ° C. for about 0.5 to 50 hours.
かくして得られる本発明の光触媒活性ナノ多孔質材料は、 ナノ多孔質基材の表 面及び細孔内表面に、微細な酸化チタンが均質に形成されている。酸ィ匕チタンは、 基材の表面及び細孔内表面に微細な粒子として、 或いは薄膜 (又は層) として析 出していてもよい。  In the photocatalytically active nanoporous material of the present invention thus obtained, fine titanium oxide is uniformly formed on the surface of the nanoporous substrate and the inner surface of the pores. The titanium oxide may be precipitated as fine particles on the surface of the substrate and the inner surface of the pores, or as a thin film (or layer).
更に、 基材の表面及び細孔内表面に酸化チタンを形成後、 物理的処理又は化学 的処理により、 基材の表面の酸ィ匕チタンを除去することもできる。  Furthermore, after titanium oxide is formed on the surface of the substrate and the inner surface of the pores, the titanium oxide on the surface of the substrate can be removed by a physical treatment or a chemical treatment.
化学的除去としては、 例えば、 基材の表面及び細孔内表面に酸化チタンを形成 後、 抜気をせずに酸性液体 (例えば、 硫酸、 熱濃硫酸、 熱濃硫酸と硫酸アンモニ ゥムの混合液、 フッ酸等の酸) あるいは塩基性液体 (例えば、 τΚ酸化ナトリウム 等)で接触(浸漬、撹拌等)することにより、基材表面の酸ィ匕チタンを溶解して、 実質的に細孔内表面にのみ酸ィ匕チタンが形成されたナノ多孔質基材を得ることが できる。  For chemical removal, for example, after forming titanium oxide on the surface of the base material and the inner surface of the pores, do not deaerate the acid liquid (for example, sulfuric acid, hot concentrated sulfuric acid, hot concentrated sulfuric acid and ammonium sulfate) By contacting (immersion, stirring, etc.) with a mixed solution, an acid such as hydrofluoric acid) or a basic liquid (eg, τΚ sodium oxide, etc.), the titanium oxide on the surface of the base material is dissolved to substantially reduce It is possible to obtain a nanoporous substrate having titanium oxide formed only on the inner surface of the pore.
また、 物理的除去としては、 例えば、 基材の表面及び細孔内表面に酸化チタン を形成後、 ポ一ルミルゃサンドミル等を用いて多孔質材料の表面を切削すること により、 実質的に細孔内表面にのみ酸化チタンが形成されたナノ多孔質基材を得 ることができる。  In addition, for physical removal, for example, after forming titanium oxide on the surface of the base material and the inner surface of the pores, the surface of the porous material is cut using a roll mill, a sand mill, or the like, thereby substantially reducing the thickness. A nanoporous substrate having titanium oxide formed only on the inner surface of the pore can be obtained.
この光触媒活性ナノ多孔質材料の場合、材料表面は光触媒活性を持たないため、 有機物等と直接接触してもそれを侵すことがないという特徴を有している。 この 光触媒活性ナノ多孔質材料は、 この特徴を利用して、 例えば、 繊維に織り込んで 使用したり、 ブラスティック製の容器に収納、 保管することもできる。  In the case of this photocatalytically active nanoporous material, since the material surface has no photocatalytic activity, it has the characteristic that even if it comes into direct contact with an organic substance or the like, it does not attack it. By taking advantage of this feature, the photocatalytically active nanoporous material can be used, for example, woven into a fiber, or stored and stored in a plastic container.
本発明の光触媒活性ナノ多孔質材料は、 可視光 (波長: 4 0 0〜8 0 0 nm程 度、 特に 5 0 0〜7 0 O nm程度) で高い光触媒活性を有している。 また、 酸化 チタンの析出高さ (厚さ) は、 0. 2〜1 0 nm程度、 好ましくは、 0. 2〜5 nm程度であり、 酸化チタンの析出高さ (厚さ) が非常に小さいという特徴を有 している。 これにより、 酸ィ匕チタンとナノ多孔質基材に含まれるニ酸ィ匕ケィ素と の界面の作用により、 チタン原子のバンドギャップが小さくなり、 これにより可 視光の吸収が可能になると考えられる。 ここで、 析出高さ (厚さ) とは、 基材上 に析出した酸ィ匕チタンの粒子或いは薄膜の基材表面からの高さ (厚さ) を意味す る。 The photocatalytically active nanoporous material of the present invention has high photocatalytic activity in visible light (wavelength: about 400 to 800 nm, particularly about 500 to 70 O nm). The deposition height (thickness) of titanium oxide is about 0.2 to 10 nm, preferably about 0.2 to 5 nm, and the deposition height (thickness) of titanium oxide is very small. It has the characteristic of. Thus, the titanium oxide and the silicon dioxide contained in the nanoporous base material are It is thought that the bandgap of titanium atoms becomes smaller due to the action of the interface, and this makes it possible to absorb visible light. Here, the deposition height (thickness) means the height (thickness) of the titanium oxide particles or thin film deposited on the substrate from the substrate surface.
本発明の光触媒活性ナノ多孔質材料に含まれる酸化チタンの含有量は、 該材料 の全重量に対し、 0. 0 1〜2 0重量%程度、 好ましくは 0 . 0 5〜1 0重量% 程度である。  The content of titanium oxide contained in the photocatalytically active nanoporous material of the present invention is about 0.01 to 20% by weight, preferably about 0.05 to 10% by weight, based on the total weight of the material. It is.
また、 本発明の光触媒活性ナノ多孔質材料の細孔には、 酸化チタン粒子が密に 充填されているのではなく、 微細な酸ィヒチタンが細孔の内表面に形成されている と考えられ、 有機分子の入り込む十分な細孔空隙が残っている点に特徴を有して いる。 このことは、 例えば、 試験例 3の結果からも裏付けられる。 即ち、 試験例 3では、 本発明の光触媒活性ナノ多孔質材料の細孔サイズ分布 (或いは気孔径分 布) は、 原料のナノ多孔質基材の細孔サイズ分布とほぼ同等であることが示され る。 ここで、 細孔サイズ分布とは、 B J H法により、 窒素ガスの液体窒素温度に おける吸着等温線の麟斤によって得られる細孔径と細孔容積との関係を意味し、 試験例 3に記載の方法により測定される。 従って、 本発明の製法によれば、 触媒 担体のナノ多孔質基材の細孔サイズ分布が実質的に変化していない光触媒活性ナ ノ多孔質材料が製造される。 本発明の光触媒活性ナノ多孔質材料の B E T比表面 積は 5 0〜1 0 0 0 m2Z g程度であり、 MP法による全細孔容積は 0. 3〜1 . O m l /g程度であり、 ナノ多孔質基材の細孔径が 1〜 1 0 0 nm程度であり、 触媒担体のナノ多孔質基材と実質的に同じである。 そのため、 光の透過効率が高 くなると共に酸化チタン光触媒と有機分子の十分な接触の機会が保持される。 また、 本発明の光触媒活性ナノ多孔質材料の酸化チタンは、 上述のように非常 に微細或いは薄いため、 原料の酸ィ匕チタン (ひいては、 原料のフルォロチタン錯 化合物等の酸化チタン前駆体)の量を低減することができ経済的である。しかも、 例えば、 試験例 1で示すように、 自然光 (紫外光及び可視光) における酸化チタ ン 1 g当たりの光触媒活性が、 従来品より極めて大きいことが分かる。 さらに、 例えば、 試験例 2で示すように、 可視光のみでも光触媒活性が極めて大きいこと が分かる。 つまり、 本発明の製法によれば、 酸化チタンを有効活用し、 その光触 媒能力を最大限に引き出すことができるという利点がある。 It is also considered that the fine pores of the photocatalytically active nanoporous material of the present invention are not densely filled with titanium oxide particles, but fine titanium oxide particles are formed on the inner surface of the fine pores. It is characterized in that sufficient pore voids for entering organic molecules remain. This is supported, for example, by the results of Test Example 3. That is, Test Example 3 shows that the pore size distribution (or pore size distribution) of the photocatalytically active nanoporous material of the present invention is almost equal to the pore size distribution of the raw material nanoporous substrate. Is performed. Here, the pore size distribution refers to the relationship between the pore diameter and the pore volume obtained from the adsorption isotherm at the liquid nitrogen temperature of nitrogen gas by the BJH method, as described in Test Example 3. Measured by the method. Therefore, according to the production method of the present invention, a photocatalytically active nanoporous material in which the pore size distribution of the nanoporous substrate of the catalyst carrier is not substantially changed is produced. The BET specific surface area of the photocatalytic activity nanoporous material of the present invention is 5 0~1 0 0 0 m about 2 Z g, a total pore volume by the MP method is 0.3 to 1. In O ml / g of about Yes, the pore diameter of the nanoporous substrate is about 1 to 100 nm, which is substantially the same as the nanoporous substrate of the catalyst support. Therefore, the light transmission efficiency is increased, and the opportunity of sufficient contact between the titanium oxide photocatalyst and the organic molecule is maintained. Further, since the titanium oxide of the photocatalytically active nanoporous material of the present invention is very fine or thin as described above, the amount of titanium oxide as a raw material (and, as a result, a titanium oxide precursor such as a fluorotitanium complex compound as a raw material) is reduced. Is economical. Moreover, for example, as shown in Test Example 1, it can be seen that the photocatalytic activity per 1 g of titanium oxide in natural light (ultraviolet light and visible light) is much larger than that of the conventional product. Furthermore, for example, as shown in Test Example 2, it can be seen that the photocatalytic activity is extremely large only with visible light. In other words, according to the production method of the present invention, titanium oxide is effectively used, There is an advantage that the medium capacity can be maximized.
さらに、 本発明の光触媒活性ナノ多孔質材料の酸化チタンは、 強固で安定であ るという特徴も有している。  Furthermore, the titanium oxide of the photocatalytically active nanoporous material of the present invention has a feature that it is strong and stable.
I I I.光触媒活性ナノ多孔質材料の用途 I I I. Applications of photocatalytically active nanoporous materials
本発明の光触媒活性ナノ多孔質材料は、 光触媒機能を保持する各種フィルター の素材として用いることができる。 光触媒活性ナノ多孔質材料を基体に固着する 方法は、 公知の方法を用いればよい。 例えば、 光触媒活性ナノ多孔質材料を、 ハ 二カムフィルタ一等の基体に、 バインダー (例えば、 シリカ系バインダーとして シリコンのアルコキシド、 コロイダルシリカ等、 アルミナ系バインダー、 セメン ト系バインダー等) を用いて固着する方法等が挙げられる。  The photocatalytically active nanoporous material of the present invention can be used as a material for various filters that maintain a photocatalytic function. As a method for fixing the photocatalytically active nanoporous material to the substrate, a known method may be used. For example, a photocatalytically active nanoporous material is fixed to a substrate such as a honeycomb filter using a binder (for example, a silica-based binder such as silicon alkoxide, colloidal silica, an alumina-based binder, and a cement-based binder). And the like.
この様にして得られるフィル夕一は、 自然光、 紫外線ランプ等の光源と共に用 いて光触媒フィル夕一等として用いられる。 特に、 本発明の光触媒活性ナノ多孔 質材料は、 自然光でも高い光触媒活性を有しているため、 その用途は広い。 具体 的には、家電用品のフィルター(空気清浄機、換気扇等)、 自動車関連部品のフィ ルター(防塵フィルタ一、エアコンフィルタ一等)、土木建築材料のフィルター(室 内壁紙、 防塵フィルタ一等)、工業部品のフィルター(濾過フィルタ一等)等の広 範な分野で利用可能である。  The filter thus obtained is used as a photocatalyst filter together with a light source such as a natural light or an ultraviolet lamp. In particular, since the photocatalytically active nanoporous material of the present invention has high photocatalytic activity even in natural light, its use is wide. Specifically, filters for household appliances (air purifiers, ventilation fans, etc.), filters for automobile-related parts (dust-proof filters, air-conditioner filters, etc.), and filters for civil engineering and building materials (room wallpaper, dust-proof filters, etc.) It can be used in a wide range of fields, such as filters for industrial parts (such as filtration filters).
本発明のフィル夕では、 大気中の悪臭原因物質、 粉塵、 微生物、 ウィルス、 シ ックハウス症候群の原因物質 (ホルムアルデヒド等)、 臭い成分 (たばこ臭等)、 化学物質等を処理することができる。 本発明の光触媒フィルタによればこれらを 効率的に吸着、 分解除去することができる。  The filter of the present invention can treat airborne odor-causing substances, dust, microorganisms, viruses, causative substances of the Sick House Syndrome (formaldehyde and the like), odor components (tobacco odor and the like), chemical substances and the like. According to the photocatalytic filter of the present invention, these can be efficiently adsorbed, decomposed and removed.
また、 本発明の光触媒活性ナノ多孔質材料は、 高い耐久性を有し、 自然光、 特 に可視光領域 (波長: 4 0 0〜 8 0 0 謹程度、 特に 5 0 0〜 7 0 0 謹程度) でも高い光触媒活性を有しているため、室内や屋外の壁材、廃液処理材、吸着材、 建築材、 防腐材等として用いることもできる。  In addition, the photocatalytically active nanoporous material of the present invention has high durability, and is suitable for natural light, particularly in the visible light region (wavelength: about 400 to 800, particularly about 500 to 700). However, since it has high photocatalytic activity, it can be used as indoor and outdoor wall materials, waste liquid treatment materials, adsorbents, building materials, preservatives, etc.
特に細孔内表面にのみ酸化チタンを有する光触媒活性ナノ多孔質材料は、 有機 物と共存して使用できるため、 繊維、 織物、 布等に織り込んで用いることができ る。 或いは、 有機物系のバインダーで固定することもできるため、 塗料、 室内や 屋外の壁材等の用途にも用いることができる。 発明を実施するための最良の形態 In particular, a photocatalytically active nanoporous material having titanium oxide only on the inner surface of the pores can be used coexisting with an organic substance, and thus can be used by weaving into fibers, woven fabric, cloth, or the like. Alternatively, since it can be fixed with an organic binder, it can be used for paints, indoor and outdoor wall materials, and the like. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例によりさらに詳細に説明するが、 本発明は、 これらの例 によってなんら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
実施例 1  Example 1
(1)触媒担体基材の乾燥  (1) Drying of the catalyst support substrate
参照触媒 JRC- SI0-8 (触媒学会参照触媒委員会) 2. 3gを、 室温でアセトン 50m 1に浸漬した状態で 20分間超音波洗浄し、 細孔内部の水分とアセトンを 置換した。 その後、 ; iRC_SIO- 8を取りだし 105°Cのインキュベータ中で 1 日間 以上保存し、 乾燥した。  Reference catalyst JRC-SI0-8 (Catalyst Society of Japan Reference Catalyst Committee) 2. 3 g was immersed in 50 ml of acetone at room temperature and subjected to ultrasonic cleaning for 20 minutes to replace acetone and water inside the pores. After that, iRC_SIO-8 was taken out, stored in an incubator at 105 ° C for 1 day or more, and dried.
(2)溶液の調製  (2) Preparation of solution
酸化ホウ素 (B203) 4. 1772 gを超純水 25 Omlに溶解し、 濃度 0. 24mo 1ZLの B23水溶液とした。 また、 (NH4) 2T i F6 0. 1484 gを超純水 30 Omlに溶解し、 濃度 0. 0025mo 1/Lの (NH4) 2T i F6水溶液とした。 Boron oxide (B 2 0 3) 4. The 1772 g was dissolved in ultrapure water 25 OML, was B 23 aqueous solution at a concentration 0. 24mo 1ZL. Also, 0.1484 g of (NH 4 ) 2 Ti F 6 was dissolved in 30 Oml of ultrapure water to obtain an aqueous solution of (NH 4 ) 2 Ti F 6 having a concentration of 0.0025mo 1 / L.
(3)成膜  (3) Film formation
:623水溶液22. 5mlと (NH4) 2T i F67. 5mlをポリスチレンネ ジびんに入れ混合した。 この時、 B23の濃度は 0. 18mol/L、 (NH4) 2T i F6の濃度は 0. 000625 mo 1/Lとなる。混合液をよく振り混ぜた後、 その中 に素早く乾燥済みの JRC- SI0- 82. 3 gを入れた。 ポリスチレンネジびんを真空 デシケ一タ中で 3分間真空引きする (圧力: 102Pa)。 その後、 40°C設定の インキュベータで 1日間経過させ、 ; [RC-SI0-8 に酸化チタンを析出させた。 その 後、 サンプルを蒸留水で 2, 3回すすいで洗浄し、 105で設定のインキュベー 夕で約 1日間乾燥させることにより、 本発明の 媒活性ナノ多孔質材料 2. 3 gを得た。 該混合液中のチタン成分がすべて酸化チタンとなって該 JRC-SI0- 8に 成膜したとすると、 Ti02は、 0.065重量%担持と計算される。 : 6 23 solution 22. 5 ml and (NH 4) 2 T i F 6 7. 5ml was placed and mixed in a polystyrene Ne Jibin. At this time, the concentration of B 23 0. 18 mol / L, the concentration of (NH 4) 2 T i F 6 becomes 0. 000625 mo 1 / L. After the mixture was shaken well, quickly dried JRC-SI0-82.3 g was placed therein. Polystyrene screw bottle vacuumed for 3 minutes in a vacuum desiccator Ichita (pressure: 10 2 Pa). After that, it was allowed to elapse for 1 day in an incubator set at 40 ° C, and [Titanium oxide was deposited on RC-SI0-8. Thereafter, the sample was rinsed with distilled water a few times, and dried in an incubator set at 105 for about 1 day to obtain 2.3 g of the solvent-active nanoporous material of the present invention. When film was formed on the JRC-SI0- 8 titanium component of the mixed solution becomes all titanium oxide, Ti0 2 is calculated to 0.065 wt% on.
比較例 1  Comparative Example 1
実施例 1の対照として、市販の光触媒である粉末状二酸化チタン P 25 (粉末 平均粒径; 2 l nm、 日本ァエロジル (株) 製) を用いた。 試験例 1 (自然光) As a control of Example 1, a commercially available photocatalyst, powdered titanium dioxide P25 (powder average particle diameter: 2 nm, manufactured by Nippon Aerosil Co., Ltd.) was used. Test example 1 (natural light)
図 1に示す 4L のソーダライムガラス製透明容器に、 ホルムアルデヒドとサン カレ (実施例 1又は比較例 1 ) を入れて、 自然光 (日中は太陽光 +蛍光灯、 夜間 は蛍光灯のみ) でホルムアルデヒドの分解実験を行った。 容器内に、 ホルムアル デヒド (初期濃度 2 0 p pm)、サンプル 1 . 4 gを充填し、 自然光を照射してホ ルムアルデヒドの減少量を測定した。 その結果を表 1に示す。 なお、 実施例 1の サンプルはペレツト状のものを用い、 比較例 1のサンプルは上記の粉末状のもの を用いた。 また、 測定開始から 1時間までは、 サンプルに対する初期のホルムァ ルデヒドの物理吸着が主となるため、 表中の時間 (h) は測定開始から 1時間後 を開始時間とした (以下、 表 2〜4についても同じ)。  Formaldehyde and Sankare (Example 1 or Comparative Example 1) are placed in a 4L soda-lime glass transparent container shown in Fig. 1 and exposed to natural light (sunlight + fluorescent light during the day, fluorescent light only at night). Was decomposed. A container was filled with formaldehyde (initial concentration: 20 ppm) and a sample (1.4 g), and the amount of formaldehyde reduced was measured by irradiation with natural light. The results are shown in Table 1. The sample of Example 1 was in the form of a pellet, and the sample of Comparative Example 1 was in the form of the powder described above. In addition, since the initial adsorption of formaldehyde to the sample is mainly performed for 1 hour from the start of the measurement, the time (h) in the table is set to 1 hour after the start of the measurement (hereinafter, Tables 2 to 4). Same for 4).
表 1  table 1
Figure imgf000017_0001
また、 ホルムアルデヒドの減少量を、 サンプル中の酸化チタン 1 g当りに換算 した結果を表 2に示す。 具体的には、 実験に用いた各サンカレ中の酸ィ匕チタンの 含有量は、 比較例 1 (P 2 5 ) はすべて Ti02なので Ti02の含有量は 1 . 4 g、 実 施例 1は 1 . 4 gのうち最大で 0. 065重量%が1^02なので、 Ti02の含有量は最大 で 0. 0 0 0 9 1 gである。各時間におけるホルムアルデヒドの減少量(p m) を、 各サンプル中の Ti02の含有量 (g) で割ったものが表 2中の数値である。 実 施例 1については、 サンプル中の Ti02の含有量を最大値として算出したため、 実 際は、 表 2の値よりも大きくなると考えられる。 表 2
Figure imgf000017_0001
Table 2 shows the results obtained by converting the amount of formaldehyde reduction per g of titanium oxide in the sample. Specifically, the content of Sani匕titanium in each Sankare used in the experiment, the content of Comparative Example 1 (P 2 5) are all Ti0 2 so Ti0 2 is 1. 4 g, real Example 1 the 1.4 0.065 wt% maximum of g is 1 ^ 0 2 so, the content of Ti0 2 is 0. 0 0 0 9 1 g at maximum. Reduction of formaldehyde in each time (pm), divided by the amount of Ti0 2 in each sample (g) is a number in Table 2. For real Example 1, since the content was calculated in Ti0 2 in a sample as a maximum value, the real time is considered to be larger than the values in Table 2. Table 2
Figure imgf000018_0001
表 1によれば、 本発明の光触媒活性ナノ多孔質材料 (実施例 1 ) は、 自然光下 において高いホルムアルデヒド分解能を有していることが分かる。 さらに、 表 2 によれば、 本発明の光触媒活性ナノ多孔質材料は、 酸化チタン 1 g当りのホルム アルデヒド分解能が極めて高いことが観測された。
Figure imgf000018_0001
Table 1 shows that the photocatalytically active nanoporous material of the present invention (Example 1) has a high formaldehyde resolution under natural light. Furthermore, according to Table 2, it was observed that the photocatalytically active nanoporous material of the present invention had extremely high formaldehyde resolving power per 1 g of titanium oxide.
試験例 2 (可視光)  Test example 2 (visible light)
図 1に示す 4L のソーダライムガラス製透明容器に、 ホルムアルデヒドとサン プル(実施例 1又は比較例 1 ) を入れて、可視光(波長 500~700ηιの分光分布の 蛍光ランプ(東芝株式会社製、 FHF32YPNU)でホルムアルデヒドの 実験を行つ た。容器内に、 ホルムアルデヒド (初期濃度 2 0 p pm)、 サンプル 1 . 4 gを充 填し、 可視光を照射してホルムアルデヒドの減少量を測定した。 その結果を表 3 に示す。 なお、 実施例 1のサンプルはペレット状のものを用い、 比較例 1のサン プルは上記の粉末状のものを用いた。  Formaldehyde and a sample (Example 1 or Comparative Example 1) were put in a 4L soda lime glass transparent container shown in Fig. 1, and a visible light (fluorescent lamp (Toshiba Corporation; FHF32YPNU) was used to conduct a formaldehyde experiment, in which a container was filled with formaldehyde (initial concentration: 20 ppm) and a sample (1.4 g), and the amount of formaldehyde reduction was measured by irradiating with visible light. The results are shown in Table 3. Note that the sample of Example 1 was in the form of pellets, and the sample of Comparative Example 1 was in the form of powder as described above.
表 3  Table 3
Figure imgf000018_0002
また、 ホルムアルデヒドの減少量を、 サンプル中の酸化チタン 1 g当りに換算 した結果を表 4に示す。 具体的には、 実験に用いた各サンカレ中の酸ィ匕チタンの 含有量は、 比較例 1 (P 2 5 ) はすべて Ti02なので Ti02の含有量は 1 . 4 g、 実 施例 1は 1 . 4 gのうち最大で 0. 065重量%が Ti02なので、 Ti02の含有量は最大 で 0. 0 0 0 9 1 gである。各時間におけるホルムアルデヒドの減少量(p m) を、 各サンプル中の Ti02の含有量 ( g) で割ったものが表 4中の数値である。 実 施例 1については、 サンプル中を Ti02の含有量を最大値として算出したため、 実 際は、 表 4の値よりも大きくなると考えられる。
Figure imgf000018_0002
Table 4 shows the results obtained by converting the amount of reduced formaldehyde to 1 g of titanium oxide in the sample. To be specific, the titanium dioxide in each Sankare used in the experiment Content, Comparative Example 1 (P 2 5) the content of all Ti0 2 so Ti0 2 is 1.4 g, the actual Example 1 is 1.4 0.065 wt% maximum of g is Ti0 2 since , the content of Ti0 2 is 0. 0 0 0 9 1 g at maximum. Reduction of formaldehyde in each time (pm), divided by the amount of Ti0 2 in each sample (g) is a number in Table 4. For real Example 1, since the sample was calculated Ti0 2 of the content of the maximum value, the real time is considered to be larger than the values in Table 4.
表 4  Table 4
Figure imgf000019_0001
表 3によれば、 本発明の光触媒活性ナノ多孔質材料 (実施例 1 ) は、 可視光下 において高いホルムアルデヒド分解能を有していることが分かる。 さらに、 表 4 によれば、 本発明の光触媒活性ナノ多孔質材料は、 酸化チタン 1 g当りのホルム アルデヒド分解能が極めて高いことが見て取れる。
Figure imgf000019_0001
Table 3 shows that the photocatalytically active nanoporous material of the present invention (Example 1) has a high formaldehyde resolution under visible light. Furthermore, according to Table 4, it can be seen that the photocatalytically active nanoporous material of the present invention has extremely high formaldehyde resolving power per 1 g of titanium oxide.
試験例 3 (気孔径分布)  Test example 3 (pore size distribution)
試料管に、 実施例 1のサンプル 0. 2 g程度を入れ、 150°Cで前処理を行い、 十分 に真空脱気した。 その後、 N2ガスを導入して、 B J H法により吸着等温線を測 定した。 実施例 1のサンプルの気孔をシリンダー状の気孔と仮定して、 脱着等温 線を利用して気孔径分布を算出する方法により気孔径分布を求めた。 その結果を 図 2に示す。 About 0.2 g of the sample of Example 1 was placed in a sample tube, pretreated at 150 ° C, and sufficiently degassed under vacuum. Then, N 2 gas was introduced, and the adsorption isotherm was measured by the BJH method. Assuming that the pores of the sample of Example 1 were cylindrical pores, the pore diameter distribution was determined by a method of calculating the pore diameter distribution using a desorption isotherm. Figure 2 shows the results.
また、 実施例 1の触媒担体である JRC-SI0- 8についても同様にして気孔径分布 を求めた。 その結果を図 3に示す。  In addition, the pore size distribution of JRC-SI0-8, which is the catalyst carrier of Example 1, was determined in the same manner. Figure 3 shows the results.
なお、図 2及び図 3中において、 R pは細孔半径を表し、 Vは細孔体積を表す。 細孔半径 R pの微小変化に対する細孔体積 Vの変化率 (d VZd R) を表したも のが、 図 2及び図 3の細孔分布曲線である。 図 2及び図 3力ゝら、 触媒担体の JRC- SI0- 8と実施例 1のサンプルは、 ほぼ同じ 細孔径分布であることが分かる。 このことから、 本発明の材料における析出する 酸化チタンは、 ナノサイズの極めて微細なものであることが推測される。 In FIGS. 2 and 3, Rp represents a pore radius, and V represents a pore volume. The pore distribution curves in FIGS. 2 and 3 show the rate of change of the pore volume V (d VZd R) with respect to a small change in the pore radius Rp. FIGS. 2 and 3 show that the catalyst carriers JRC-SI0-8 and the sample of Example 1 have almost the same pore size distribution. From this, it is inferred that the titanium oxide precipitated in the material of the present invention is extremely fine of nano size.
実施例 2  Example 2
(1)触媒担体基材の乾燥 (1) Drying of the catalyst support substrate
シリカゲル Q15 (平均細孔径 15nm、 細孔容積 1. Oml/g、 比表面積 200m2/g、 富士 シリシァ化学株式会社製) 2.3gを、 105°Cインキュベータで 1日乾燥した。2.3 g of silica gel Q15 (average pore size: 15 nm, pore volume: 1. Oml / g, specific surface area: 200 m 2 / g, manufactured by Fuji Silicon Chemical Co., Ltd.) was dried in a 105 ° C incubator for 1 day.
(2)溶液の調製 (2) Preparation of solution
酸化ホウ素 (B203) 4. 1772 gを超純水 125mlに溶解し、 濃度 0. 48mo 1 の B203水溶液とした。 また、 (NH4) 2T i F6 0. 1484 gを超純水 15 Omlに溶解し、 濃度 0. 005 Omo 1/Lの (NH4) 2T i F67溶液とした。 Boron oxide (B 2 0 3) 4. 1772 g were dissolved in ultra-pure water 125 ml, and a B 2 0 3 solution of concentration 0. 48mo 1. In addition, the (NH 4) 2 T i to F 6 0. 1484 g was dissolved in ultrapure water 15 OML, concentration 0. 005 Omo 1 / L (NH 4) 2 T i F 6 7 solution.
(3)成膜  (3) Film formation
8203水溶液22. 5mlと (NH4) 2T i F67. 5mlをポリスチレンネ ジびんに入れ混合した。 この時、 B23の濃度は 0. 36mol/L、 (NH4) 2T i ?6の濃度は0. 00125 mo 1/Lとなる。混合液をよく振り混ぜた後、 その中に 素早く乾燥済みの Q152. 3 gを入れた。 ポリスチレンネジびんを真空デシケ一 夕中で 3分間真空引きする (圧力: 102Pa)。 その後、 40 設定のインキュ ベ一夕で 1日間経過させ、 Q15 に酸化チタンを析出させた。 その後、 サンプルを 蒸留水で 2, 3回すすいで洗浄し、 50°C設定のインキュベータで約 1日間乾燥 させることにより、 本発明の光触媒活性ナノ多孔質材料 2. 3gを得た。 該混合 液中のチタン成分がすべて酸化チタンとなって該シリ力ゲル Q15に成膜したとす ると、 Ti02は、 0.13重量%担持と計算される。 8 2 0 3 solution 22. 5 ml and (NH 4) 2 T i F 6 7. 5ml was placed and mixed in a polystyrene Ne Jibin. At this time, the concentration of B 23 is 0.36 mol / L, and the concentration of (NH 4 ) 2 T i? 6 is 0.000125 mo 1 / L. After the mixture was shaken well, quickly dried D152.3 g was put therein. Polystyrene screw bottle evacuated to 3 minutes in a vacuum desiccator one evening in (pressure: 10 2 Pa). After that, one day was allowed to pass for 40 days incubating overnight, and titanium oxide was deposited on Q15. Thereafter, the sample was rinsed with distilled water a few times, and dried in an incubator set at 50 ° C. for about 1 day to obtain 2.3 g of the photocatalytically active nanoporous material of the present invention. If you and was deposited on the silica force gel Q15 becomes titanium component of titanium oxide of the mixed solution, Ti0 2 is calculated to 0.13 wt% on.
実施例 3  Example 3
酸化ホウ素 (B203) 4. 1772 gを超純水 25 Omlに溶解し、 濃度 0. 24mo 1ZLの B203水溶液とした。 また、 (NH4) 2T i F6 0. 1484 gを超純水 30 Omlに溶解し、 濃度 0. 0025mo 1/Lの (NH4) 2T i F6水溶液とした。 Boron oxide (B 2 0 3) 4. The 1772 g was dissolved in ultrapure water 25 OML, and a B 2 0 3 solution of concentration 0. 24mo 1ZL. Also, 0.1484 g of (NH 4 ) 2 Ti F 6 was dissolved in 30 Oml of ultrapure water to obtain an aqueous solution of (NH 4 ) 2 Ti F 6 having a concentration of 0.0025mo 1 / L.
8203水溶液22. 5mlと (NH4) 2T i F67. 5mlをポリスチレンネ ジびんに入れ混合した。 この時、 B 203の濃度は 0 . 1 8mol/L、 (NH4) 2T i F 6の濃度は 0 . 0 0 0 6 2 5 mol/Lとなる。 8 2 0 3 solution 22. 5 ml and polystyrene (NH 4) 2 T i F 6 7. 5ml Ne Mix in a vial. At this time, the concentration of B 2 0 3 is 0. 1 8mol / L, the concentration of (NH 4) 2 T i F 6 becomes 0. 0 0 0 6 2 5 mol / L.
上記以外は、 実施例 2と同様に処理することにより、 本発明の光触媒活性ナノ 多孔質材料 2. 3 gを得た。 該混合液中のチタン成分がすべて酸化チタンとなつ て該シリカゲル Q15に成膜したとすると、 Ti02は、 0. 065重量%担持と計算され る。 Except for the above, the same treatment as in Example 2 gave 2.3 g of a photocatalytically active nanoporous material of the present invention. When titanium component of the liquid mixture Te summer and of titanium oxide and were deposited on the silica gel Q15, Ti0 2 is Ru was calculated to 0.065% by weight carrier.
試験例 4 (自然光又は可視光)  Test example 4 (natural light or visible light)
図 1に示す 4L のソ一ダライムガラス製透明容器に、 ホルムアルデヒドとサン プル (実施例 2又は実施例 3 ) を入れて、 自然光 (日中は太陽光 +蛍光灯、 夜間 は蛍光灯のみ) でホルムアルデヒドの分解実験を行った。  Place formaldehyde and a sample (Example 2 or Example 3) in a 4L soda-lime glass transparent container shown in Fig. 1 and use natural light (sunlight + fluorescent light during the day, fluorescent light only at night). Was used to conduct a formaldehyde decomposition experiment.
また、 図 1に示す 4L のソ一ダライムガラス製透明容器に、 ホルムアルデヒド とサンプレ(実施例 2 ) を入れて、可視光(波長 500〜700nmの分光分布の蛍光ラ ンプ (東芝株式会社製、 FHF32YPNU) でホルムアルデヒドの分解実験を行った。 容器内に、 ホルムアルデヒド (初期濃度 2 0 p pm)、各サンプル 1 . 4 gを充 填し、 自然光又は可視光を照射してホルムアルデヒドの減少量を測定した。 その 結果を表 5に示す。 なお、 実施例 2及び 3のサンプルはペレット状のものを用い た。 また、 測定開始から 1時間までは、 サンプルに対する初期のホルムアルデヒ ドの物理吸着が主となるため、 表中の時間 (h) は測定開始から 1時間後を開始 時間とした (以下、 表 6についても同じ)。  Also, formaldehyde and sampler (Example 2) were placed in a 4L soda lime glass transparent container shown in Fig. 1, and visible light (a fluorescent lamp with a spectral distribution of 500 to 700 nm wavelength (Toshiba Corporation, FHF32YPNU) Formaldehyde decomposition experiment was conducted in a container filled with formaldehyde (initial concentration: 20 ppm) and 1.4 g of each sample, and the amount of formaldehyde reduction was measured by irradiating natural light or visible light. The results are shown in Table 5. Note that the samples in Examples 2 and 3 were pellets, and the initial physical adsorption of formaldehyde to the sample was mainly performed until 1 hour from the start of measurement. Therefore, the time (h) in the table was set as the start time one hour after the start of measurement (the same applies to Table 6 below).
表 5  Table 5
Figure imgf000021_0001
また、 ホルムアルデヒドの減少量を、 サンプル中の酸ィ匕チタン 1 g当りに換算 した結果を表 6に示す。 具体的には、 実験に用いた各サンカレ中の酸ィ匕チタンの 含有量は、 実施例 2は 1 . 4 gのうち最大で 0. 13重量%が 02なので、 Ti02の 含有量は最大で 0. 0 0 1 8 2 gであり、 また、 実施例 3は 1 . 4 gのうち最大 で 0. 065重量%が Ti02なので、 Ti02の含有量は最大で 0 . 0 0 0 9 1 gである。 各時間におけるホルムアルデヒドの減少量(p pm) を、 各サンプル中の Ti02の 含有量 (g) で割ったものが表 6中の数値である。 実施例 2及び実施例 3は、 各 サンプル中の Ti02の含有量を最大値として算出したため、 実際は、表 6の値より も大きくなると考えられる。
Figure imgf000021_0001
Table 6 shows the results obtained by converting the amount of reduced formaldehyde to 1 g of titanium oxide in the sample. To be specific, the titanium dioxide in each Sankare used in the experiment Content, Example 2 1.4 up to 0.13% by weight of g 0 2 so the content of Ti0 2 is 0. 0 0 1 8 2 g at maximum, also Example 3 the 1.4 0.065 wt% maximum of g is Ti0 2 so the content of Ti0 2 is at most 0. 0 0 0 9 1 g . Reduction of formaldehyde in each time (p pm), divided by the amount of Ti0 2 in each sample (g) is a number in Table 6. Example 2 and Example 3, since the content was calculated in Ti0 2 in each sample as a maximum value, in fact, considered to be larger than the values in Table 6.
表 6  Table 6
Figure imgf000022_0001
表 5によれば、 本発明の光触媒活性ナノ多孔質材料 (実施例 2及び実施例 3 ) は、 自然光下において高いホルムアルデヒド分解能を有している。 また、 本発明 の懇媒活性ナノ多孔質材料 (実施例 2 ) は、 可視光下においても高いホルムァ ルデヒド分解能を有している。 さらに、 表 6によれば、 本発明の)1 媒活性ナノ 多孔質材料 (実施例 2及び実施例 3 ) は、 酸ィ匕チタン 1 g当りのホルムアルデヒ ド分解能が極めて高いことが見て取れる。
Figure imgf000022_0001
According to Table 5, the photocatalytically active nanoporous materials of the present invention (Examples 2 and 3) have high formaldehyde resolution under natural light. Further, the medium-active nanoporous material of the present invention (Example 2) has a high formaldehyde resolution even under visible light. Furthermore, according to Table 6) 1 medium activity nanoporous material of the present invention (Examples 2 and 3), it is seen formaldehyde resolution per Sani匕titanium 1 g is extremely high.
なお、 本明細書に記載された公知文献は、 参考として援用される。  In addition, the well-known documents described in this specification are incorporated by reference.
実施例 4  Example 4
実施例 2で得られた光触媒活性ナノ多孔質材料を入れたフラスコ内に、 常圧下 で濃硫酸と硫酸アンモニゥムを 1 . 8 : 1の重量比で加え、 ガスバ一ナでゆつく りと加熱して、 ナノ多孔質材料の表面の酸化チタンを溶解除去し、 実質的に細孔 内表面にのみ酸化チタンが形成されたナノ多孔質材料を得た。  In a flask containing the photocatalytically active nanoporous material obtained in Example 2, concentrated sulfuric acid and ammonium sulfate were added at a weight ratio of 1.8: 1 under normal pressure, and the mixture was slowly heated with a gas burner. Thus, the titanium oxide on the surface of the nanoporous material was dissolved and removed to obtain a nanoporous material in which titanium oxide was formed substantially only on the inner surface of the pores.
実施例 5  Example 5
実施例 2で得られた光触媒活性ナノ多孔質材料を、 常温 (2 5 °C)、 常圧下、 0. lmol/Lフッ酸に 5分浸漬して、ナノ多孔質材料の表面の酸化チタンを溶解除去 し、 実質的に細孔内表面にのみ酸ィ匕チ夕ンが形成されたナノ多孔質材料を得た。 The photocatalytically active nanoporous material obtained in Example 2 was subjected to normal temperature (25 ° C) and normal pressure, 0. Immersion in lmol / L hydrofluoric acid for 5 minutes to dissolve and remove titanium oxide on the surface of the nanoporous material, and nanoporous with silicon oxide formed only on the inner surface of pores The material was obtained.
実施例 6  Example 6
実施例 2で得られた光触媒活性ナノ多孔質材料を、 ポールミルで処理して、 ナ ノ多孔質材料の表面の酸ィ匕チタンを物理的に切削除去し、 実質的に、 細孔内表面 にのみ酸化チタンが形成されたナノ多孔質材料を得た。  The photocatalytically active nanoporous material obtained in Example 2 was treated with a pole mill to physically cut and remove titanium oxide on the surface of the nanoporous material, and substantially to the inner surface of the pores. Only a nanoporous material on which titanium oxide was formed was obtained.
実施例 4、 5及び 6で得られたナノ多孔質材料は、 繊維や有機バインダー等の 基体と共に用いて光照射した場合でも、 高い触媒活性を維持しつつ、 該基体は分 解することなく安定に保持されることが分かった。 発明の効果  The nanoporous materials obtained in Examples 4, 5, and 6 maintain high catalytic activity and are stable without decomposition even when irradiated with light using a substrate such as a fiber or an organic binder. Was found to be retained. The invention's effect
本発明の光触媒活性ナノ多孔質材料の製法によれば、 ナノ多孔質基材表面及び その細孔表面に、 ほぼ均一に酸ィ匕チタンを形成できる。 しかも、 この製法では、 酸ィ匕チタンを結晶化するための加熱工程を必ずしも必要としないので、 基材の熱 耐久性を特に考慮する必要がない。 また、 加熱'冷却によるひずみの発生がない。 更に、 簡便かつ安価な製法である。  According to the method for producing a photocatalytically active nanoporous material of the present invention, titanium oxide can be formed almost uniformly on the surface of the nanoporous substrate and the surface of the pores thereof. Moreover, in this production method, a heating step for crystallizing the titanium oxide is not necessarily required, so that it is not particularly necessary to consider the heat durability of the substrate. There is no distortion due to heating and cooling. Furthermore, it is a simple and inexpensive manufacturing method.
本発明の製法では、 ナノ多孔質基材と、 酸化チタン析出後の光触媒活性ナノ多 孔質材料との間で、 細孔サイズ分布が実質的に等しくなるため、 該基材の細孔サ ィズを目的物の光触媒活性ナノ多孔質材料のものに反映させることができる。 即 ち、 ナノ多孔質基材表面及びその細孔表面に、 酸化チタンが非常に薄く (ナノォ 一ダ一) 形成されるため、 有機分子との十分な接触の場 (細孔サイズ) が保持さ れる。  In the production method of the present invention, the pore size distribution between the nanoporous substrate and the photocatalytically active nanoporous material after the deposition of titanium oxide is substantially equal, and therefore the pore size of the substrate is reduced. Size can be reflected in the target photocatalytically active nanoporous material. That is, since titanium oxide is formed very thinly (nano-orderly) on the surface of the nanoporous base material and the surface of the pores, a sufficient contact field (pore size) with organic molecules is maintained. It is.
更に、 基材の表面及び細孔内表面に酸化チタンを形成後、 物理的処理又は化学 的処理により、 基材の表面のみの酸ィ匕チタンを実質的に除去して、 細孔内表面に のみ酸ィ匕チタンが形成されたナノ多孔質基材を得ることができる。 この場合、 表 面は光触媒活性を持たないため、 有機物等と直接接触してもそれを侵すことがな く、 例えば、 繊維に織り込んで使用することが可能となる。  Furthermore, after forming titanium oxide on the surface of the substrate and the inner surface of the pores, the titanium oxide on only the surface of the substrate is substantially removed by physical treatment or chemical treatment, and Only a nanoporous substrate on which titanium oxide is formed can be obtained. In this case, since the surface has no photocatalytic activity, even if it comes into direct contact with an organic substance or the like, it does not attack it, and can be used, for example, woven into fibers.
本発明の光触媒活性ナノ多孔質材料は、 可視光における光触媒活性が高い。 そ のため、 高価な短波長の光源を用いることなく、 自然光を有効に活用できる。 また、 本発明の光触媒活性ナノ多孔質材料は、 酸ィ匕チタン単位量当たりの光触 媒活性が高いという特徴を有している。 The photocatalytically active nanoporous material of the present invention has high photocatalytic activity in visible light. Therefore, natural light can be used effectively without using expensive short-wavelength light sources. Further, the photocatalytically active nanoporous material of the present invention is characterized in that the photocatalytic activity per unit amount of titanium oxide is high.

Claims

請求の範囲 The scope of the claims
1. 酸ィ匕チタンの前駆体を含む水溶液にナノ多孔質基材を接触させて、 該基材 の表面及び細孔内表面に酸化チタンを形成することを特徴とする «媒活性ナノ 多孔質材料の製法。 1. A nanoporous substrate is brought into contact with an aqueous solution containing a precursor of titanium oxide to form titanium oxide on the surface of the substrate and the inner surface of pores. Material manufacturing method.
2. 酸化チタンの前駆体を含む水溶液にナノ多孔質基材を浸漬させ、 減圧下で 抜気して、 該基材の表面及び細孔内表面に酸化チタンを形成することを特徴とす る請求項 1に記載の製法。  2. The nanoporous substrate is immersed in an aqueous solution containing a titanium oxide precursor, and is evacuated under reduced pressure to form titanium oxide on the surface of the substrate and the inner surface of the pores. The method according to claim 1.
3. 酸化チタンの前駆体を含む水溶液が、 (1) フルォロチタン錯化合物及びフ ッ化物イオン捕捉剤を含む水溶液、 (2) フッ化チタン (TiF4) 及びアンモニアを 含む水溶液、 (3) 硫酸チタニル (TiOS04) と HC 1又は NH4OHを含む水溶液、 又は (4) 塩化チタンと水から得られるチタン酸ジクロリド (TiOCl2) 水溶液であ る請求項 1又は 2に記載の光触媒活性ナノ多孔質材料の製法。 3. The aqueous solution containing the titanium oxide precursor is (1) an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger, (2) an aqueous solution containing titanium fluoride (TiF 4 ) and ammonia, (3) titanyl sulfate (TiOS0 4) and an aqueous solution containing HC 1 or NH 4 OH, or (4) titanium dichloride obtained from titanium tetrachloride and water (TiOCl 2) photocatalytic activity nanoporous described aqueous der Ru claim 1 or 2 Material manufacturing method.
4. 酸化チタンの前駆体を含む水溶液が、 フルォロチタン錯化合物及びフッ化 物イオン捕捉剤を含む水溶液である請求項 1又は 2に記載の光触媒活性ナノ多孔 質材料の製法。  4. The method for producing a photocatalytically active nanoporous material according to claim 1, wherein the aqueous solution containing the titanium oxide precursor is an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger.
5. フルォロチタン錯化合物が、 H2T i F6、 (NH4) 2T i F6、 Na2T i F6、 2T i F6、 Rb2T i F6及び C s2T i F6からなる群から選ばれる少なくとも 1 種である請求項 4に記載の製法。 5. The fluorotitanium complex compound is H 2 T i F 6 , (NH 4 ) 2 T i F 6 , Na 2 T i F 6 , 2T i F 6 , Rb 2 T i F 6 and Cs 2 T i F 6 5. The method according to claim 4, which is at least one member selected from the group consisting of:
6.前記水溶液中のフルォロチタン錯化合物の濃度が、 1 X 1 0 -9〜 1 X 10一 2mo 1ZL程度である請求項 5に記載の製法。 6. Concentration of Furuorochitan complex compound in the aqueous solution, 1 X 1 0 - 9 ~ 1 X 10 one 2 mo process according to claim 5, about 1ZL.
7. フッ化物イオン捕捉剤が、 オルトホウ酸、 メタホウ酸及び ¾化ホウ素から なる群から選ばれる少なくとも 1種である請求項 4に記載の製法。  7. The method according to claim 4, wherein the fluoride ion scavenger is at least one selected from the group consisting of orthoboric acid, metaboric acid and boron dioxide.
8. 前記水溶液中のフッ化物イオン捕捉剤の濃度が、 1 X 10_2〜1 Omo 1 程度である請求項 7に記載の製法。 8. The concentration of fluoride ion-capturing agent in the aqueous solution, the process described in 1 X 10_ 2 ~1 Omo 1 about a is claim 7.
9. ナノ多孔質基材が、 二酸化ケイ素を 99. 9重量%以上含有している基材 である請求項 1〜4のいずれかに記載の製法。  9. The method according to any one of claims 1 to 4, wherein the nanoporous substrate is a substrate containing 99.9% by weight or more of silicon dioxide.
10. ナノ多孔質基材の BET比表面積が 50〜1000m2Zg程度であり、 MP法による全細孔容積が 0. 3〜1. OmlZg程度であり、 細孔径が 1〜1 0 0 nm程度である請求項 1〜4のいずれかに記載の製法。 10. a 2 Zg about BET specific surface area 50~1000m nanoporous substrate, 0.1 is the total pore volume by the MP method 3-1. Is about OmlZg, pore diameter 1 to 1 The method according to any one of claims 1 to 4, wherein the thickness is about 100 nm.
1 1 . ナノ多孔質基材の表面及び細孔内表面に形成される酸化チタンの析出高 さが、 0 . 2〜 1 0 nm程度である請求項 1 ~ 4のいずれかに記載の製法。  11. The method according to claim 1, wherein the precipitation height of titanium oxide formed on the surface of the nanoporous substrate and the inner surface of the pores is about 0.2 to 10 nm.
1 2 . フルォロチタン錯化合物及びフッ化物イオン捕捉剤を含む水溶液 1 Lに 対し、 ナノ多孔質基材 1 0〜5 0 0 g程度を用いる請求項 4に記載の製法。  12. The production method according to claim 4, wherein about 10 to 500 g of the nanoporous substrate is used per 1 L of an aqueous solution containing a fluorotitanium complex compound and a fluoride ion scavenger.
1 3.原料のナノ多孔質基材の細孔サイズ分布 (pore size distribut ion) と、 酸化チタン形成後の光触媒活性ナノ多孔質材料の細孔サイズ分布とが、 実質的に 変化していない請求項 1〜 4のいずれかに記載の製法。  1 3. Claim that the pore size distribution of the raw material nanoporous substrate and the pore size distribution of the photocatalytically active nanoporous material after the formation of titanium oxide are substantially unchanged. Item 5. The production method according to any one of Items 1 to 4.
1 4. 請求項 1〜 1 3のいずれかに記載の製法により製造される光触媒活性ナ ノ多孔質材料。  1 4. A photocatalytically active nanoporous material produced by the production method according to any one of claims 1 to 13.
1 5. 可視光 (波長: 5 0 0〜7 0 0 nm程度) で光触媒活性を有する請求項 1 4に記載の光触媒活性ナノ多孔質材料。  15. The photocatalytically active nanoporous material according to claim 14, which has photocatalytic activity in visible light (wavelength: about 500 to 700 nm).
1 6. ナノ多孔質基材の表面及び細孔内表面に、 析出高さ 0. 2〜: L O nm程 度の酸化チタンが形成されてなる光触媒活性ナノ多孔質材料。  1 6. A photocatalytically active nanoporous material in which a titanium oxide having a deposition height of 0.2 to about L O nm is formed on the surface of the nanoporous substrate and the inner surface of the pores.
1 7 . 可視光 (波長: 5 0 0〜 7 0 0 nm程度) で光触媒活性を有する請求項 1 6に記載の光触媒活性ナノ多孔質材料。  17. The photocatalytically active nanoporous material according to claim 16, which has photocatalytic activity in visible light (wavelength: about 500 to 700 nm).
1 8. 光触媒活性ナノ多孔質材料の全重量に対する酸化チタンの含有量が 0. 0 1〜2 0重量%程度である請求項 1 6に記載の光触媒活性ナノ多孔質材料。  18. The photocatalytically active nanoporous material according to claim 16, wherein the content of titanium oxide is about 0.01 to 20% by weight based on the total weight of the photocatalytically active nanoporous material.
1 9 . B E T比表面積が 5 0〜: L 0 0 0 m2Zg程度であり、 MP法による全 細孔容積が 0. 3〜 1 . 0 m l Z g程度であり、 細孔径が 1〜: L 0 0 nm程度で ある請求項 1 6に記載の光触媒活性ナノ多孔質材料。 . 1 9 BET specific surface area of 5 0 to:. L is 0 0 0 m 2 Zg about a 1 0 ml Z g about 3 to total pore volume of 0.5 by the MP method, pore size 1: 17. The photocatalytically active nanoporous material according to claim 16, which has a L of about 100 nm.
2 0 . さらに、 得られた光触媒活性ナノ多孔質材料を、 化学的又は物理的に処 理して、 該光触媒活性ナノ多孔質材料の表面に形成された酸化チタンを除去する ことを特徴とする請求項 1〜 1 3のいずれかに記載の製法。  20. Further, the obtained photocatalytically active nanoporous material is chemically or physically treated to remove titanium oxide formed on the surface of the photocatalytically active nanoporous material. The method according to any one of claims 1 to 13.
2 1 . 前記化学的処理が、 得られた光触媒活性ナノ多孔質材料を、 抜気せずに 酸性液体に接触させる処理である請求項 2 0に記載の製法。  21. The method according to claim 20, wherein the chemical treatment is a treatment of bringing the obtained photocatalytically active nanoporous material into contact with an acidic liquid without degassing.
2 2 . 請求項 2 0又は 2 1に記載の製法により製造される光触媒活性ナノ多孔 質材料。  22. A photocatalytically active nanoporous material produced by the production method according to claim 20 or 21.
2 3 . 請求項 1 4〜1 9のいずれかに記載の光触媒活性ナノ多孔質材料を含有 するフィルター。 23. Contains the photocatalytically active nanoporous material according to any one of claims 14 to 19. Filter to do.
2 4. 請求項 1 4〜1 9及び 2 2のいずれかに記載の ¾M媒活性ナノ多孔質材 料を含有する壁材。  24. A wall material containing the ¾M medium-active nanoporous material according to any one of claims 14 to 19 and 22.
2 5 . 請求項 2 2に記載の光触媒活性ナノ多孔質材料を含有する繊維。  25. A fiber containing the photocatalytically active nanoporous material according to claim 22.
PCT/JP2004/009784 2003-07-04 2004-07-02 Photocatalytically active nanoporous material and method for producing same WO2005002727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/566,524 US20080153438A1 (en) 2003-08-08 2004-07-02 Transmission Device, Transmission Power Control Method, and Radio Communication Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003270877 2003-07-04
JP2003-270877 2003-07-04

Publications (1)

Publication Number Publication Date
WO2005002727A1 true WO2005002727A1 (en) 2005-01-13

Family

ID=33562630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009784 WO2005002727A1 (en) 2003-07-04 2004-07-02 Photocatalytically active nanoporous material and method for producing same

Country Status (1)

Country Link
WO (1) WO2005002727A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299897C (en) * 2005-07-13 2007-02-14 南京林业大学 Method for mfg. nano self-cleaning type wood composite material
CN103722856A (en) * 2013-12-05 2014-04-16 杭州汉居家居有限公司 Preparation method of wallpaper capable of purifying indoor air
CN110937610A (en) * 2019-11-14 2020-03-31 中国科学院金属研究所 Method for improving efficiency of preparing ammonia by reducing nitrogen with photocatalytic material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218160A (en) * 1999-02-02 2000-08-08 Sintokogio Ltd Silica gel highly carrying titanium oxide photocatalyst and its preparation
JP2000317315A (en) * 1999-05-11 2000-11-21 Agency Of Ind Science & Technol Phototransmittable porous film containing dispersed photocatalyst
JP2000329904A (en) * 1999-05-18 2000-11-30 Hoya Corp Article for having antireflection film having photocatalyst function and production therefor
JP2001046883A (en) * 1999-08-06 2001-02-20 Sintokogio Ltd Silica gel molded object having photocatalytic function and its production
JP2001246261A (en) * 2000-03-08 2001-09-11 Mitsubishi Heavy Ind Ltd Photocatalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218160A (en) * 1999-02-02 2000-08-08 Sintokogio Ltd Silica gel highly carrying titanium oxide photocatalyst and its preparation
JP2000317315A (en) * 1999-05-11 2000-11-21 Agency Of Ind Science & Technol Phototransmittable porous film containing dispersed photocatalyst
JP2000329904A (en) * 1999-05-18 2000-11-30 Hoya Corp Article for having antireflection film having photocatalyst function and production therefor
JP2001046883A (en) * 1999-08-06 2001-02-20 Sintokogio Ltd Silica gel molded object having photocatalytic function and its production
JP2001246261A (en) * 2000-03-08 2001-09-11 Mitsubishi Heavy Ind Ltd Photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OZAWA T.: "Kankyo joka no tame no nano saikoseimaku hikari shokubai no kaihatsu", DAI 92 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 18 September 2003 (2003-09-18), pages 101, XP002985320 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299897C (en) * 2005-07-13 2007-02-14 南京林业大学 Method for mfg. nano self-cleaning type wood composite material
CN103722856A (en) * 2013-12-05 2014-04-16 杭州汉居家居有限公司 Preparation method of wallpaper capable of purifying indoor air
CN110937610A (en) * 2019-11-14 2020-03-31 中国科学院金属研究所 Method for improving efficiency of preparing ammonia by reducing nitrogen with photocatalytic material

Similar Documents

Publication Publication Date Title
Kishimoto et al. Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD)
US5712037A (en) Substituted silica gel
Wark et al. Photocatalytic activity of hydrophobized mesoporous thin films of TiO2
JP2007528454A (en) Large surface area ceramic coated fiber
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
US20130153483A1 (en) Photocatalytic composite material
JP4614196B2 (en) Method for producing spherical porous silica or silica metal composite particles
WO2011145385A1 (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
EP1205243A1 (en) Preparation of firmly-anchored photocatalitically-active titanium dioxide coating films with non-gelled organic-doped precursors
JPWO2004063431A1 (en) Titanium oxide particles, manufacturing method thereof, manufacturing apparatus, and processing method using the titanium oxide
JP2002253975A (en) Oxide photocatalytic material using organometallic compound and its application article
JPWO2007039985A1 (en) Inorganic sintered body containing photocatalyst coated with silicon oxide film
JPWO2007105705A1 (en) Visible light responsive photocatalyst, production method thereof, photocatalyst coating agent and photocatalyst dispersion using the same
JP3005678B2 (en) Method for producing mesoporous silica material
JP5447177B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP2004035362A (en) Tubular titanium oxide particle and method for manufacturing tubular titanium oxide particle
WO2014098641A1 (en) Photocatalytic element for purification and disinfection of air and water and method for the production thereof
JP2001233615A (en) MESO-POROUS TiO2 THIN MEMBRANE HAVING THREE-DIMENSIONAL STRUCTURE AND METHOD FOR PRODUCING THE SAME
JP4631013B2 (en) Acicular titanium oxide fine particles, production method thereof and use thereof
WO2005002727A1 (en) Photocatalytically active nanoporous material and method for producing same
JP2003299965A (en) Photocatalyst material and production method of the same
JP3978636B2 (en) Coating composition for photocatalyst film formation
WO2017157328A1 (en) Linear titanium-oxide polymer, titanium dioxide coating, photocatalyst coating and preparation method therefor
US6803023B1 (en) Composite structure for deodorization or wastewater treatment
JP2005329360A (en) Cleaning material and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10566524

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP