JP2926277B2 - Multi-component quantitative analysis method using FTIR - Google Patents

Multi-component quantitative analysis method using FTIR

Info

Publication number
JP2926277B2
JP2926277B2 JP4416491A JP4416491A JP2926277B2 JP 2926277 B2 JP2926277 B2 JP 2926277B2 JP 4416491 A JP4416491 A JP 4416491A JP 4416491 A JP4416491 A JP 4416491A JP 2926277 B2 JP2926277 B2 JP 2926277B2
Authority
JP
Japan
Prior art keywords
concentration
wave number
measurement sample
ftir
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4416491A
Other languages
Japanese (ja)
Other versions
JPH04262236A (en
Inventor
香 井上
豊 山岸
正之 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HORIBA SEISAKUSHO KK
Original Assignee
HORIBA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HORIBA SEISAKUSHO KK filed Critical HORIBA SEISAKUSHO KK
Priority to JP4416491A priority Critical patent/JP2926277B2/en
Priority to DE4203587A priority patent/DE4203587C2/en
Priority to US07/837,235 priority patent/US5351198A/en
Priority claimed from US07/837,235 external-priority patent/US5351198A/en
Publication of JPH04262236A publication Critical patent/JPH04262236A/en
Application granted granted Critical
Publication of JP2926277B2 publication Critical patent/JP2926277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、測定試料に対して赤外
光を照射し、そのとき得られる吸収スペクトル中の複数
の指定された波数ポイントにおける吸光度に基づいて測
定試料中に含まれる多成分を定量分析するFTIR(フ
ーリエ変換赤外分光計)を用いた多成分定量分析方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating a measurement sample with infrared light, and measuring the amount of light contained in the measurement sample based on the absorbance at a plurality of designated wave number points in an absorption spectrum obtained at that time. The present invention relates to a multi-component quantitative analysis method using FTIR (Fourier transform infrared spectrometer) for quantitatively analyzing components.

【0002】[0002]

【従来の技術】上記FTIRは、例えば図1に示すよう
に構成されている。すなわち、この図において、1は分
析部、2はこの分析部1の出力であるインターフェログ
ラムを処理するデータ処理部である。分析部1は平行な
赤外光を発するように構成された赤外光源3と、ビーム
スプリッタ4,固定ミラー5,図外の駆動機構によって
例えばX−Y方向に平行移動する可動ミラー6からなる
干渉機構7と、測定試料などを収容し、干渉機構7を介
して赤外光源3からの赤外光が照射されるセル8と、半
導体検出器9とから構成されている。そして、データ処
理部2は例えばコンピュータよりなり、インターフェロ
グラムを加算平均し、その加算平均出力を高速でフーリ
エ変換し、さらに、このフーリエ変換出力に基づいて測
定対象成分に関するスペクトル演算を行うように構成さ
れている。
2. Description of the Related Art The FTIR is constructed, for example, as shown in FIG. That is, in this figure, 1 is an analysis unit, and 2 is a data processing unit that processes an interferogram output from the analysis unit 1. The analysis unit 1 includes an infrared light source 3 configured to emit parallel infrared light, a beam splitter 4, a fixed mirror 5, and a movable mirror 6 that moves in parallel in the X-Y direction by a driving mechanism (not shown). It comprises an interference mechanism 7, a cell 8 that accommodates a measurement sample and the like, and is irradiated with infrared light from the infrared light source 3 via the interference mechanism 7, and a semiconductor detector 9. The data processing unit 2 is composed of, for example, a computer. The data processing unit 2 adds and averages the interferograms, Fourier-transforms the added-average output at high speed, and further performs a spectrum operation on the measurement target component based on the Fourier transform output. It is configured.

【0003】このように構成されたFTIRにおいて
は、次のようにして多成分を定量分析することができ
る。すなわち、セル8に比較試料または測定試料をそれ
ぞれ収容して赤外光源3からの赤外光をセル8に照射
し、比較試料または測定試料のインターフェログラムを
測定する。これらのインターフェログラムをデータ処理
部2において、それぞれフーリエ変換してパワースペク
トルを得た後、比較試料のパワースペクトルに対する測
定試料のパワースペクトルの比を求め、これを吸光度ス
ケールに変換することにより吸収スペクトルを得た後、
この吸収スペクトル中の複数の波数ポイントにおける吸
光度に基づいて測定試料中に含まれる多成分を定量分析
するのである。
In the FTIR configured as described above, multiple components can be quantitatively analyzed as follows. That is, the comparison sample or the measurement sample is stored in the cell 8 and the cell 8 is irradiated with infrared light from the infrared light source 3 to measure the interferogram of the comparison sample or the measurement sample. These interferograms are Fourier-transformed in the data processing unit 2 to obtain power spectra, and then the ratio of the power spectrum of the measurement sample to the power spectrum of the comparison sample is obtained. After obtaining the spectrum,
The multiple components contained in the measurement sample are quantitatively analyzed based on the absorbances at a plurality of wavenumber points in the absorption spectrum.

【0004】上記多成分を定量分析する方法として、例
えは本願出願人に係る平成2年6月28日付けの特許出
願(特願平2−171038号)があり、その概要は、
吸収スペクトル中の複数の波数ポイントにおける局所的
ピーク値と局所的バレー値との差である相対吸光度の和
を求め、この和に基づいて各成分の濃度を各別に得ると
云うものであり、FTIRによれば、吸収スペクトルに
おける波数ポイント群を適宜選ぶことにより測定試料中
の多成分を定量分析することができる。
As a method of quantitatively analyzing the above-mentioned multi-components, there is, for example, a patent application filed on Jun. 28, 1990 (Japanese Patent Application No. 2-171038) by the present applicant.
The sum of relative absorbance, which is the difference between the local peak value and the local valley value at a plurality of wavenumber points in the absorption spectrum, is obtained, and the concentration of each component is separately obtained based on this sum. According to the method, by appropriately selecting the wave number point group in the absorption spectrum, the multicomponent in the measurement sample can be quantitatively analyzed.

【0005】[0005]

【発明が解決しようとする課題】ところで、FTIRを
用いて測定試料中の多成分を定量分析する場合、計算に
使える波数ポイントは測定試料に含まれる化合物及びそ
の濃度の範囲を予測して決められているのが普通である
ため、測定試料中に予測外の成分が多量に含まれている
と、測定対象としているそれ以外の成分の濃度計算値に
対して干渉が生ずることがある。一方、測定試料に殆ど
含まれないものを高濃度に存在すると予測して、波数ポ
イント群を指定することは、実際に測定試料中に存在し
ている他の成分の分析精度に対して不利となる。このた
め、従来は、構成成分の大きく異なる複数種類の測定試
料を簡便にしかも精度よく定量分析することが困難であ
った。
In the case of quantitative analysis of multiple components in a measurement sample using FTIR, the wave number points that can be used for calculation are determined by predicting the range of the compound contained in the measurement sample and the concentration thereof. Therefore, if a large amount of unexpected components is contained in the measurement sample, interference may occur with the calculated values of the concentrations of other components to be measured. On the other hand, it is disadvantageous for the analysis accuracy of the other components actually present in the measurement sample to specify that the wave number point group is assumed to exist at a high concentration, which is hardly contained in the measurement sample. Become. For this reason, conventionally, it has been difficult to simply and accurately analyze a plurality of types of measurement samples having greatly different components.

【0006】本発明は、上述の事柄に留意してなされた
もので、その目的とするところは、構成成分が大きく異
なる複数種類の測定試料を、一式のFTIRで簡便にし
かも精度よく定量分析することができる多成分定量分析
方法を提供することにある。
The present invention has been made in consideration of the above-mentioned matters, and an object of the present invention is to easily and accurately quantitatively analyze a plurality of types of measurement samples having greatly different constituent components by using a set of FTIR. To provide a method for quantitative analysis of multiple components.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るFTIRを用いた多成分定量分析方法
は次のように構成されている。
Means for Solving the Problems In order to achieve the above-mentioned object, a multi-component quantitative analysis method using FTIR according to the present invention is configured as follows.

【0008】すなわち、測定試料に対して赤外光を照射
し、そのとき得られる吸収スペクトル中の複数の指定さ
れた波数ポイントにおける吸光度に基づいて測定試料中
に含まれる多成分を定量分析するFTIRを用いた多成
分定量分析方法において、構成成分とその濃度範囲がほ
ぼ予測できる複数種類の測定試料に対しそれぞれ適切な
測定対象成分群と濃度レンジとを設定してその組合せに
する濃度計算用の波数ポイント群を予め指定し、これ
らの濃度計算用の波数ポイント群のうちの一つを選択的
に用いることによって各測定試料の構成成分の濃度計算
を行うようにしている。
That is, the measurement sample is irradiated with infrared light.
And then specify multiple designations in the resulting absorption spectrum.
In the sample based on the absorbance at the given wavenumber point
Using FTIR for quantitative analysis of multicomponents contained in water
In the quantitative analysis method, an appropriate measurement target component group and a concentration range are set for each of a plurality of types of measurement samples whose constituent components and their concentration ranges can be almost predicted, and the combination is determined.
Specifies the wave number points set for density calculations pairs in advance, so that the density calculation of the constituents of the sample by using one of the wavenumber point group for these concentrations calculated selectively .

【0009】[0009]

【作用】[Action] 上記いずれの方法によっても、測定対象成分群By any of the above methods, the target component group
に対応した波数ポイント群が予め指定されるので、簡便Point group corresponding to
に、しかも、干渉影響を効果的に排除できることから多And the effect of interference can be effectively eliminated.
成分を精度よく定量分析することができる。The components can be quantitatively analyzed with high accuracy.

【0010】た、測定対象成分群と濃度レンジとを設
定し、その組合せに対する濃度計算用波数ポイント群を
指定した場合は、より精度よく分析を行うことができ
る。
[0010] Also, to set a measurement target component group and density range, if specified concentration calculation wavenumber point group with respect to the combination, can be more accurately analyzed.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】本発明に係るFTIRを用いた多成分定量
分析方法が従来の方法と大きく異なる点は、構成成分
(複数の)とその濃度範囲がほぼ予測できるある測定試
料に対し、適切な測定対象成分群と濃度レンジとを設定
し、その組合せに対する専用の複数の波数ポイントより
なる濃度計算用波数ポイント群を指定すると共に、他の
異なる構成成分の予測される測定試料についてもそれぞ
れ専用の濃度計算用の波数ポイント群を指定し、これら
をデータ処理部2のメモリ内に登録しておき、分析に際
しては、測定試料に適合した測定対象成分群と濃度レン
ジとの組合せに対応する濃度計算用波数ポイント群を選
択的に使用して濃度計算を行うようにしたことである。
[0012] The multi-component quantitative analysis method using FTIR according to the present invention is significantly different from the conventional method in that a component (plurality) and its concentration range can be almost predicted. A component group and a concentration range are set, a wave number point group for concentration calculation consisting of a plurality of wave number points dedicated to the combination is designated, and a concentration calculation is also performed for each of predicted measurement samples of other different components. The number of wavenumber points for the measurement is designated and these are registered in the memory of the data processing unit 2, and at the time of analysis, the wavenumber for concentration calculation corresponding to the combination of the measurement target component group and the concentration range suitable for the measurement sample is used. The point calculation is performed by selectively using the point group.

【0013】この場合、測定対象として同一成分・同一
濃度レンジのものが含まれていても、その成分に対して
濃度計算に同一の波数ポイントを使用するとは限らな
い。
In this case, even if the measurement target includes the same component and the same concentration range, the same wave number point is not always used for the concentration calculation for the component.

【0014】今、図2に示すような吸収スペクトルをも
つ化合物A,B,Cがあるものとする。この場合におけ
る化合物A,B,Cの組成の異なる測定試料に対する専
用の濃度計算用の波数ポイントの選び方の一例を表1に
示す。
Now, it is assumed that there are compounds A, B, and C having absorption spectra as shown in FIG. In this case, Table 1 shows an example of how to select a wave number point for concentration calculation exclusively for measurement samples having different compositions of compounds A, B, and C.

【0015】[0015]

【表1】 [Table 1]

【0016】この表1に示すように、化合物Cを測定対
象として含むパターン,では、化合物Cの大きな吸
収を避けているため、化合物Cを考慮しないパターン
とは、化合物Bの濃度計算用の波数ポイントが異なる。
そして、化合物A,Bの濃度レンジは同一で、化合物C
の濃度のみ異なるパターンとパターンとにおいて
も、予測している化合物Cの濃度が違うため、化合物A
の濃度計算用の波数ポイントの指定に差がある。また、
パターンとパターン、あるいは、パターンとパタ
ーンのように、測定対象成分またはその濃度レンジに
違いがあっても一部同じ波数ポイントを用いてもよい。
なお、この例では、パターン,の化合物Cの濃度計
算用の波数ポイント群は同一であるが、実際には濃度レ
ンジによって使い分けるようにしてもよい。
As shown in Table 1, in the pattern containing the compound C as a measurement target, a large absorption of the compound C is avoided, so that the pattern not considering the compound C is a wave number for calculating the concentration of the compound B. The points are different.
Compounds A and B have the same concentration range and compound C has the same concentration range.
Since the predicted concentration of the compound C is different between the patterns which differ only in the concentration of the compound A,
There is a difference in the designation of wave number points for the concentration calculation of. Also,
Even if there is a difference between the components to be measured or their concentration ranges, such as patterns and patterns, or patterns and patterns, the same wave number point may be used.
In this example, the wave number point group for calculating the concentration of the compound C of the pattern is the same, but it may be actually used depending on the concentration range.

【0017】このように、測定対象成分、または、測定
対象成分と濃度レンジの組み合わせに対して、それぞれ
専用の濃度計算用の波数ポイントのパターンを指定し、
これをコンピュータ2のメモリに記憶させておき、任意
に、または、随時入替えできるようにする。
In this way, for each component to be measured or a combination of the component to be measured and the concentration range, a dedicated pattern of the wave number points for the concentration calculation is designated,
This is stored in the memory of the computer 2 so that it can be replaced arbitrarily or as needed.

【0018】上述の説明から理解されるように、本発明
方法においては、化合物Aは波数ポイントA,A
化合物Bは波数ポイントB,B,化合物Cは波数ポ
イントC,Cと云うように、各成分の濃度計算に用
いる波数ポイントを測定対象としているそれ以外の成分
を考慮せずに固定しておいて、それらを測定試料の構成
成分に応じて組み合わせるのとは異なり、干渉成分に対
して必要かつ十分な配慮がなされるため、構成成分が大
きく異なる複数の測定試料を、一式のFTIRを用いる
だけで精度よく定量分析することができる。
As will be understood from the above description, in the method of the present invention, the compound A has the wave number points A 1 , A 2 ,
The compound B is fixed without considering the other components whose wave number points used for the concentration calculation of each component are considered as the wave number points B 1 and B 2 and the compound C is called the wave number points C 1 and C 2. Unlike the case where these components are combined in accordance with the constituent components of the measurement sample, a necessary and sufficient consideration is given to the interference component. Quantitative analysis can be performed with high accuracy simply by using.

【0019】図3は、化合物Cを含む測定試料を、化合
物Cを考慮しない化合物A,B2成分用の濃度計算用波
数ポイント群で濃度計算すると干渉が出るが、これを、
化合物A,B,C3成分用の濃度計算用波数ポイント群
に時間Tで入れ替えれば、それ以降は正しい測定値が得
られる連続出力例を示しており、この図において、
,C,Cは、化合物A,B,Cの実際の濃度
(但し、Cはゼロ)をそれぞれ示している。
FIG. 3 shows that when the concentration of a measurement sample containing compound C is calculated by using a group of concentration calculation wave points for the two components of compounds A and B without considering compound C, interference occurs.
A continuous output example in which correct measurement values can be obtained after replacing the wave number points for concentration calculation for the compounds A, B, and C with the time T for the three components is shown in FIG.
C a , C b , and C c indicate the actual concentrations of compounds A, B, and C (where Ca is zero), respectively.

【0020】なお、本発明方法を実施する場合、各測定
対象成分の濃度の計算は、前述の特願平2−17103
8号に記載された以外の手法によって行うようにしても
よいことは勿論である。
When the method of the present invention is carried out, the concentration of each component to be measured is calculated according to the above-mentioned Japanese Patent Application No. Hei 2-17103.
As a matter of course, it may be performed by a method other than that described in No. 8.

【0021】[0021]

【発明の効果】以上説明したように、本発明は、干渉影
響を効果的に除去して精度の高い定量分析を行うことが
できる。
As described in the foregoing, the present onset Ming can perform accurate quantitative analysis to effectively remove the interference effect.

【0022】すなわち、濃度計算用の波数ポイント群を
指定するのに、測定対象成分群とそれらの濃度レンジと
の組み合わせに対して専用の濃度計算用の波数ポイント
群を指定する方法によれば、各測定対象成分(および濃
度レンジ)毎に個別に指定しておいた濃度計算用の波数
ポイント群を測定対象成分群に応じて組み合わせる方法
に比べ、干渉・精度に関してきめ細かな配慮ができる。
That is, according to the method of designating a wave number point group for concentration calculation for designating a combination of a component group to be measured and their concentration range, a wave number point group for concentration calculation is designated. Compared to a method in which wave number points for concentration calculation individually designated for each measurement target component (and concentration range) are combined in accordance with the measurement target component group , finer consideration can be given to interference and accuracy.

【0023】そして、前記予め複数個指定されている濃
度計算用の波数ポイント群をコンピュータのメモリに登
録しておけばよく、濃度計算にどの波数ポイント群を用
いるかは、コンピュータの演算処理上の設定だけの問題
で、FTIR干渉計自体の動作・構成の変更を伴わない
ので、濃度計算用の波数ポイント群の入れ替えは連続分
析中においてもキー操作だけで容易に行なえる。つま
り、出力を見ながら適切な濃度計算用の波数ポイント群
(測定対象成分群)を探すことも可能である。
Then, the plurality of wave number points for density calculation designated in advance may be registered in the memory of the computer, and which wave number point group is to be used for the density calculation is determined by the arithmetic processing of the computer. Since only the setting problem does not involve a change in the operation or configuration of the FTIR interferometer itself, the wave number point group for concentration calculation can be easily replaced by key operation even during continuous analysis. That is, it is also possible to search for an appropriate wave number point group (measurement target component group) for concentration calculation while observing the output.

【0024】従って、本発明によれば、構成成分の異な
る複数種類の測定試料について、一式のFTIRを用い
るだけでその成分を精度よく簡便に定量分析することが
できる。
Therefore, according to the present invention, for a plurality of types of measurement samples having different constituent components, the components can be quantitatively analyzed accurately and simply by using a set of FTIRs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するための装置の一例を概略
的に示す図である。
FIG. 1 is a diagram schematically showing an example of an apparatus for carrying out the method of the present invention.

【図2】吸収スペクトルの一例を示す図である。FIG. 2 is a diagram showing an example of an absorption spectrum.

【図3】出力波形の一例を示す図である。FIG. 3 is a diagram illustrating an example of an output waveform.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 21/00-21/01 G01N 21/17-21/61

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定試料に対して赤外光を照射し、その
とき得られる吸収スペクトル中の複数の指定された波数
ポイントにおける吸光度に基づいて測定試料中に含まれ
る多成分を定量分析するFTIRを用いた多成分定量分
析方法において、構成成分とその濃度範囲がほぼ予測で
きる複数種類の測定試料に対しそれぞれ適切な測定対象
成分群と濃度レンジとを設定してその組合せに対する濃
度計算用の波数ポイント群を予め指定し、これらの濃度
計算用の波数ポイント群のうちの一つを選択的に用いる
ことによって各測定試料の構成成分の濃度計算を行うよ
うにしたことを特徴とするFTIRを用いた多成分定量
分析方法。
1. An FTIR for irradiating a measurement sample with infrared light and quantitatively analyzing multicomponents contained in the measurement sample based on absorbances at a plurality of designated wavenumber points in an absorption spectrum obtained at that time. in multicomponent quantitative analysis method using the, for density calculations pair to the combination set and respective suitable measurement target component group and a concentration range to a plurality of types of measurement sample components and their concentration ranges can be substantially predicted FTIR is characterized in that the wave number point group is designated in advance and the concentration of the component of each measurement sample is calculated by selectively using one of these wave number point groups for calculating the concentration. Multi-component quantitative analysis method using
JP4416491A 1991-02-15 1991-02-16 Multi-component quantitative analysis method using FTIR Expired - Lifetime JP2926277B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4416491A JP2926277B2 (en) 1991-02-16 1991-02-16 Multi-component quantitative analysis method using FTIR
DE4203587A DE4203587C2 (en) 1991-02-15 1992-02-07 Quantitative spectral analysis method
US07/837,235 US5351198A (en) 1991-02-15 1992-02-14 Quantitative analytical method and apparatus for determining a plurality of ingredients with spectrometric analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4416491A JP2926277B2 (en) 1991-02-16 1991-02-16 Multi-component quantitative analysis method using FTIR
US07/837,235 US5351198A (en) 1991-02-15 1992-02-14 Quantitative analytical method and apparatus for determining a plurality of ingredients with spectrometric analysis

Publications (2)

Publication Number Publication Date
JPH04262236A JPH04262236A (en) 1992-09-17
JP2926277B2 true JP2926277B2 (en) 1999-07-28

Family

ID=26384020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4416491A Expired - Lifetime JP2926277B2 (en) 1991-02-15 1991-02-16 Multi-component quantitative analysis method using FTIR

Country Status (1)

Country Link
JP (1) JP2926277B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027074B4 (en) * 1999-06-04 2005-11-24 Horiba Ltd. Method of analyzing multi-component gas mixtures using FTIR spectroscopy
EP3428620A1 (en) 2017-07-14 2019-01-16 Horiba, Ltd. Gas analysis apparatus, program for gas analysis apparatus, and gas analysis method
US11360020B2 (en) 2017-07-14 2022-06-14 Horiba, Ltd. Gas analysis device, program for gas analysis device, and gas analysis method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815253A (en) * 1994-06-24 1996-01-19 Horiba Ltd Exhaust gas weight measuring method using trace gas
JP3783766B2 (en) * 2000-09-06 2006-06-07 セイコーエプソン株式会社 Greenhouse gas measurement method using infrared absorption spectrometer
JP4203762B2 (en) * 2005-06-13 2009-01-07 セイコーエプソン株式会社 Greenhouse gas measurement method using infrared absorption spectrometer
JP4528673B2 (en) * 2005-06-13 2010-08-18 セイコーエプソン株式会社 Greenhouse gas measurement method using infrared absorption spectrometer
JP4863022B2 (en) * 2008-05-19 2012-01-25 セイコーエプソン株式会社 Infrared spectrometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027074B4 (en) * 1999-06-04 2005-11-24 Horiba Ltd. Method of analyzing multi-component gas mixtures using FTIR spectroscopy
EP3428620A1 (en) 2017-07-14 2019-01-16 Horiba, Ltd. Gas analysis apparatus, program for gas analysis apparatus, and gas analysis method
JP2019020230A (en) * 2017-07-14 2019-02-07 株式会社堀場製作所 Gas analyzer, program for gas analyzer, and gas analysis method
US11099124B2 (en) 2017-07-14 2021-08-24 Horiba, Ltd. Gas analysis apparatus, program for gas analysis apparatus, and gas analysis method
US11360020B2 (en) 2017-07-14 2022-06-14 Horiba, Ltd. Gas analysis device, program for gas analysis device, and gas analysis method

Also Published As

Publication number Publication date
JPH04262236A (en) 1992-09-17

Similar Documents

Publication Publication Date Title
JP4079404B2 (en) Multi-component gas analysis method by FTIR method
JP2725791B2 (en) Method for measuring multiple components of exhaust gas flow component, gas sampling device and gas measuring device
JP2926277B2 (en) Multi-component quantitative analysis method using FTIR
JP2000346801A5 (en)
US5305076A (en) Quantitative analytical method and apparatus for spectrometric analysis using wave number data points
Bingham et al. Accuracy of analysis by electrical detection in spark source mass spectrometry
JP3004747B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JPH07151677A (en) Densitometer
JP3004748B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JP3004750B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JPS6140928B2 (en)
JP3099898B2 (en) Multi-component quantitative analysis method using FTIR
JP2000283933A (en) Fluorescent x-ray analyzer
JP2649667B2 (en) Multi-component analysis method in spectroscopic analysis
JPH0765932B2 (en) Multicomponent quantification method in spectroscopic analysis
JP3020626B2 (en) Engine exhaust gas analyzer using Fourier transform infrared spectrometer
JPH0727703A (en) Quantitative analysis of multiple component substance
JPH09101259A (en) Method for determining components using spectrophotometer
JPH07128260A (en) Fluorescent x-ray analyzing device
JPH07120391A (en) Spectrofluorophotometer and method for quantitative measurement
JPH02290537A (en) Method for estimating eating taste value by near infrared ray
JPH04262240A (en) Quantitative analysis method for multiple components in spectrochemical analysis
JPS6052727A (en) Spectrum processing method
JPH01219529A (en) Method and device for stress measurement
JPH03285127A (en) Fourier transform infrared analyser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12