JP2918559B2 - Manufacturing method of hydrogen storage electrode - Google Patents

Manufacturing method of hydrogen storage electrode

Info

Publication number
JP2918559B2
JP2918559B2 JP1055943A JP5594389A JP2918559B2 JP 2918559 B2 JP2918559 B2 JP 2918559B2 JP 1055943 A JP1055943 A JP 1055943A JP 5594389 A JP5594389 A JP 5594389A JP 2918559 B2 JP2918559 B2 JP 2918559B2
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
binder
paste
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1055943A
Other languages
Japanese (ja)
Other versions
JPH02236956A (en
Inventor
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP1055943A priority Critical patent/JP2918559B2/en
Publication of JPH02236956A publication Critical patent/JPH02236956A/en
Application granted granted Critical
Publication of JP2918559B2 publication Critical patent/JP2918559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属酸化物を正極とし、水素の吸蔵、排出
を繰り返す水素吸蔵電極を負極とする蓄電池における水
素吸蔵電極の製造法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hydrogen storage electrode in a storage battery using a metal oxide as a positive electrode and a negative electrode as a hydrogen storage electrode that repeatedly stores and discharges hydrogen.

〔従来の技術〕[Conventional technology]

従来の水素吸蔵電極の製造法は、水素吸蔵合金粉を主
体とし、これに繊維化性結着剤としてPTFE(ポリテトラ
フルオロエチレン)と導電剤とを添加し、粘性剤液と共
に充分混練してPTFEを充分繊維化させて成るペースト
を、発泡ニッケル基板に充填、乾燥し、次で充填板をプ
レスした後焼成して製造していた。
The conventional method of manufacturing a hydrogen storage electrode is mainly composed of a hydrogen storage alloy powder, a PTFE (polytetrafluoroethylene) as a fibrous binder and a conductive agent added thereto, and the mixture is sufficiently kneaded with a viscous liquid. A paste formed by sufficiently fibrous PTFE is filled in a foamed nickel substrate, dried, and then the filled plate is pressed and fired to produce the paste.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来の水素吸蔵電極の製造法は、水素吸蔵合金粉
の脱落を防止し、寿命を向上するため、その結着剤とし
て、剪断応力を加えると繊維化するPTFEを添加し、充分
な混練により、該PTFEを全て繊維化しその三次元ネット
ワークを形成し、この網目内に該水素吸蔵合金粉を結着
保持して上記の目的を達成するものであるが、反面、該
PTFEの繊維化によりペーストの粘性が著しく高くなり、
該発泡金属基板中へのペーストの充填性が劣り、従っ
て、充分な量の水素吸蔵合金粉の充填が困難となり、容
量の大きい水素吸蔵電極が得られない不都合をもたら
す。
The conventional method for producing a hydrogen storage electrode described above is to prevent the hydrogen storage alloy powder from falling off and to improve the service life. All of the PTFE is fiberized to form a three-dimensional network, and the hydrogen storage alloy powder is bound and held in the mesh to achieve the above object.
Due to the fiberization of PTFE, the viscosity of the paste becomes extremely high,
The filling property of the paste into the foamed metal substrate is inferior, so that it is difficult to fill a sufficient amount of the hydrogen-absorbing alloy powder, resulting in a disadvantage that a large-capacity hydrogen-absorbing electrode cannot be obtained.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、かゝる従来の水素吸蔵電極の製造法の不都
合を除去し、ペースト、即ち水素吸蔵合金粉の充填量が
増大すると共にその脱落防止が確保された水素吸蔵電極
の製造法を提供するもので、水素吸蔵合金粉を主体と
し、これに繊維化性結着剤と粘性剤液を配合したものを
混練しペーストを調整するに当たり、その混練を該結着
剤が殆ど繊維化しない程度にとゞめ、そのペーストを多
孔性金属基板に充填し、乾燥後、その充填基板を圧延し
て該結着剤の繊維化を充分行うことを特徴とする。
The present invention eliminates the disadvantages of the conventional method for manufacturing a hydrogen storage electrode, and provides a method for manufacturing a hydrogen storage electrode in which the filling amount of paste, that is, the hydrogen storage alloy powder is increased and the falling-off prevention of the powder is ensured. In preparing a paste by kneading a mixture of a hydrogen storage alloy powder as a main component and a fibrous binder and a viscous agent liquid, the kneading is performed to such an extent that the binder hardly becomes fibrous. The method is characterized in that the paste is filled in a porous metal substrate, dried, and then the filled substrate is rolled to sufficiently convert the binder into fibers.

〔作 用〕(Operation)

本発明によれば、前記の配合物の混練を、その混練に
より該結着剤の繊維化を殆ど生じない程度にとゞめるの
で、ペーストの粘性を低くおさえられる。而して低粘性
の該ペーストを該多孔性金属基板に充填するので、該基
板の中心まで容易且つ充分にペーストが充填できる。即
ち、基板全体に亘り均一に多量の該水素吸蔵合金粉と未
繊維化の該結着剤とを含有せしめることができる。次で
この充填乾燥基板を圧延するときは、基板中に均一に分
散している該結着剤粒子は圧延による剪断応力を受けて
均一な繊維化が行われてその三次元ネットワークが基板
内全体に形成される。かくして、このネットワーク全体
に張りめぐらされた網目内に水素吸蔵合金粉が結着保持
されるので、その脱落のない寿命特性の良い電極が得ら
れ、該電極内の水素吸蔵合金粉の充填量は増大するの
で、容量の大きい電極が得られる。
According to the present invention, the kneading of the compound is reduced to such an extent that the kneading hardly causes fiberization of the binder, so that the viscosity of the paste can be kept low. Since the porous metal substrate is filled with the low-viscosity paste, the paste can be easily and sufficiently filled up to the center of the substrate. That is, a large amount of the hydrogen-absorbing alloy powder and the unfibrillated binder can be uniformly contained throughout the entire substrate. Next, when the filled and dried substrate is rolled, the binder particles uniformly dispersed in the substrate are subjected to a shearing stress by rolling to form a uniform fiber, and the three-dimensional network is formed in the entire substrate. Formed. Thus, the hydrogen-absorbing alloy powder is bound and held in the network stretched over the entire network, so that an electrode having good life characteristics without falling off is obtained, and the filling amount of the hydrogen-absorbing alloy powder in the electrode is reduced. Because of the increase, an electrode having a large capacity can be obtained.

〔実施例〕〔Example〕

次に本発明の実施例を説明する。 Next, examples of the present invention will be described.

一般に使用される水素吸蔵合金粉は、水素化物の生成
熱が正である金属(Fe,Ni,Cu,Cr,Coなど)と、負である
金属(Ti,Zr,La,Ce,Vなど)を適当な原子比により溶解
炉で混合し合金とし、これを直ちに或いは水素脆化を経
て粉砕し粉末として得られる。かゝる各種の水素吸蔵合
金粉より適宜選択して使用する。例えば、LaNi4.7Al0.3
などの水素吸蔵合金粉100重量部に対し、導電剤としてN
i粉を20重量部、繊維化性結着剤としてPTFE粉を5重量
部、粘性剤液として3%メチルセルロース水溶液80重量
部を添加し、その配合物を約10分間混練し、低粘度のペ
ーストを調整した。この短時間の混練では、ペースト中
のPTFE粒子の大部分は繊維化されないので、ペーストは
低粘度にとゞめられる。而して、この低粘度のペースト
を、多孔性金属基板、例えば、発泡ニッケル基板に充填
し、次で、これを80℃で1時間乾燥した。上記のように
該ペーストは低粘度であるため、その基板の内部中心ま
で容易に充填することができ、従って全体として均一且
つ多量にペーストの充填が得られた。次で、この充填乾
燥基板を圧延機にかけ圧延した。該基板の圧延前の厚さ
は約1.6mmであったものを圧延により約0.35mmの圧延板
とした。かゝる圧延は、複数回に分けて行うことが一般
であり好ましい。例えば、第一段目の圧延で1.6mmの基
板を0.8mmに、次で第二段階の圧延で0.35mmとする。こ
の圧延により、該基板中に均一に分散している結着剤粒
子は、剪断力を受けて、その全ては繊維化してその三次
元ネットワークを圧延板内に形成し、その網目中に均一
に水素吸蔵合金粉を抱持固定することができた。
Commonly used hydrogen storage alloy powders are metals with positive heat of hydride generation (Fe, Ni, Cu, Cr, Co, etc.) and negative metals (Ti, Zr, La, Ce, V, etc.) Are mixed in a melting furnace with an appropriate atomic ratio to obtain an alloy, which is pulverized immediately or through hydrogen embrittlement to obtain a powder. It is appropriately selected and used from such various kinds of hydrogen storage alloy powder. For example, LaNi 4.7 Al 0.3
100 parts by weight of hydrogen storage alloy powder such as N
Add 20 parts by weight of powder, 5 parts by weight of PTFE powder as a fibrous binder, and 80 parts by weight of a 3% aqueous solution of methylcellulose as a viscous liquid, and knead the mixture for about 10 minutes to obtain a low-viscosity paste. Was adjusted. In this short-time kneading, most of the PTFE particles in the paste are not fiberized, so that the paste has a low viscosity. The low-viscosity paste was filled in a porous metal substrate, for example, a foamed nickel substrate, and then dried at 80 ° C. for 1 hour. As described above, since the paste has a low viscosity, it can be easily filled up to the inner center of the substrate, and therefore, the paste can be uniformly and abundantly filled as a whole. Next, the filled and dried substrate was rolled in a rolling mill. The thickness of the substrate before rolling was about 1.6 mm, which was then rolled into a rolled plate of about 0.35 mm. Such rolling is generally and preferably performed a plurality of times. For example, a 1.6 mm substrate is reduced to 0.8 mm in the first rolling, and then 0.35 mm in the second rolling. By this rolling, the binder particles uniformly dispersed in the substrate are subjected to a shearing force, and all of them are fiberized to form the three-dimensional network in the rolled plate, and are uniformly formed in the mesh. The hydrogen storage alloy powder could be held and fixed.

次で、これに常法によると同様に焼成する。例えば、
300℃、1時間焼成することにより、繊維化PTFEの三次
元ネットワークを固定し、これにより充填水素吸蔵合金
粉がそのネットワークの網内に結着保持されて良好な脱
落防止をもたらす。
Next, it is fired in the same manner as in the conventional method. For example,
By baking at 300 ° C. for 1 hour, the three-dimensional network of fibrous PTFE is fixed, whereby the filled hydrogen-absorbing alloy powder is bound and retained in the network network, thereby providing good prevention of falling off.

かくして、本発明の水素吸蔵電極の製造は終了する
が、該極板には約2g/cm2の水素吸蔵合金粉が含有してい
た。
Thus, the production of the hydrogen storage electrode of the present invention was completed, but the electrode plate contained about 2 g / cm 2 of the hydrogen storage alloy powder.

比較として、従来法に従い上記配合物の混練時間を90
分充分に行い、その混練による剪断応力を結着剤粒にか
けてその含有量の全てを繊維化した高粘度のペーストを
調整した後、これを発泡ニッケル基板に充填したが、充
填性が悪く、その後常法に従って、乾燥、プレス、焼成
工程を経て得られた水素吸蔵電極には約1g/cm2しか水素
吸蔵合金粉が含有していなかった。而も、その基板の深
い中心部には、殆どペースト充填がみられなかった。こ
れから明らかなように、本法によれば、水素吸蔵合金粉
の充填量は、従来法に比し増大することが容易にでき
る。
As a comparison, the kneading time of the above compound was set to 90 according to the conventional method.
Performed enough, the shear stress due to the kneading was applied to the binder particles to prepare a high-viscosity paste in which all of the content was fibrillated, and then this was filled in a foamed nickel substrate, but the filling property was poor. According to a conventional method, the hydrogen-absorbing electrode obtained through the drying, pressing, and firing steps contained only about 1 g / cm 2 of the hydrogen-absorbing alloy powder. Also, almost no paste was filled in the deep center of the substrate. As is clear from this, according to the present method, the filling amount of the hydrogen storage alloy powder can be easily increased as compared with the conventional method.

更に、対照例として、本発明の前記の製造工程に従っ
て、低粘度のペーストを基板に充填、乾燥した後、その
充填乾燥基板を圧延に代えて従来法に従ってプレスして
水素吸蔵電極を作製した。
Further, as a control example, a low-viscosity paste was filled in a substrate and dried according to the above-described production process of the present invention, and the filled and dried substrate was pressed according to a conventional method instead of rolling to produce a hydrogen storage electrode.

而して、上記の本発明法による水素吸蔵電極と比較と
して上記の従来法による水素吸蔵電極及び上記の追加の
対照例による水素吸蔵電極を夫々負極とし、これらの極
板より容量の十分に大きい公知のNi極板を正極として組
み合わせて本発明電池Aと従来電池Bと対照電池Cを夫
々作製し、これら電池につき充放電サイクル試験を行っ
た。この時の充電は0.2Cで130%行い、放電は0.5Cで水
素極の−0.75VvsHg/HgOまで行った。この結果を第1図
に示す。図面中、Aは本発明電極を組み込んだ電池の複
数個を測定した結果の充放電サイクル特性域、Bは従来
電極を組み込んだ電池の同様の充放電サイクル特性域、
Cは前記の比較例電極を組み込んだ電池の同様の充放電
サイクル特性域を示す。
Thus, in comparison with the hydrogen storage electrode according to the present invention, the hydrogen storage electrode according to the conventional method described above and the hydrogen storage electrode according to the additional control example described above are each used as a negative electrode, and the capacity is sufficiently larger than these electrode plates. A battery A of the present invention, a conventional battery B, and a control battery C were each fabricated by combining a known Ni electrode plate as a positive electrode, and a charge / discharge cycle test was performed on these batteries. At this time, the charging was performed at 0.2 C at 130%, and the discharging was performed at 0.5 C up to −0.75 V vs Hg / HgO at the hydrogen electrode. The result is shown in FIG. In the drawings, A is a charge / discharge cycle characteristic area obtained by measuring a plurality of batteries incorporating the electrode of the present invention, B is a similar charge / discharge cycle characteristic area of a battery incorporating the conventional electrode,
C shows the same charge / discharge cycle characteristic region of the battery incorporating the comparative example electrode.

これから明らかなように、本発明電極を使用した場合
の特性域Aが、従来電極を使用した場合の充放電サイク
ル特性域Bと異ならないことは、本法で採用した圧延工
程によって結着剤の繊維化三次元ネットワークの形成が
従来法の混練による結着剤の繊維化三次元ネットワーク
の形成と同じように達成できることが確認された。又、
その充放電サイクル特性域Cが示すように、プレス工程
によっては、結着剤の充分な繊維化三次元ネットワーク
が形成されていないため、電極中の水素吸蔵合金粉の結
着保持が得られず、充放電サイクル工程において、それ
だけ該水素吸蔵合金粉の剥離、脱落が増大することを意
味し、換言すれば、プレスでは十分な剪断応力が結着剤
に加わらないことを意味し、圧延が結着剤の繊維化に著
しく有効であることを意味する。
As is clear from this, the fact that the characteristic area A when the electrode of the present invention is used is not different from the charge / discharge cycle characteristic area B when the conventional electrode is used is due to the rolling process employed in the present method. It was confirmed that formation of a fibrous three-dimensional network can be achieved in the same manner as formation of a fibrous three-dimensional network of a binder by conventional kneading. or,
As shown by the charge / discharge cycle characteristic region C, in some pressing processes, a sufficient fibrous three-dimensional network of the binder is not formed, so that the binding and holding of the hydrogen storage alloy powder in the electrode cannot be obtained. This means that in the charge / discharge cycle process, the peeling and falling off of the hydrogen-absorbing alloy powder increases accordingly, in other words, it means that sufficient shear stress is not applied to the binder by the press, and the rolling is completed. It means that it is extremely effective for fiberizing the adhesive.

而して、本発明によれば、上記したように、低粘度ペ
ーストは基板内の充填量を従来法の高粘度ペーストの充
填に比し倍増することができるので、それだけ容量の増
大した水素吸蔵電極を得ることができる点で特に従来法
による場合に比し有利である。
Thus, according to the present invention, as described above, the filling amount of the low-viscosity paste in the substrate can be doubled as compared with the filling of the high-viscosity paste according to the conventional method. It is particularly advantageous in that an electrode can be obtained as compared with the conventional method.

〔発明の効果〕〔The invention's effect〕

このように本発明によるときは、水素吸蔵合金粉を主
体とし、繊維化性結着剤を配合したペーストの混練を、
結着剤の繊維化が殆ど行われない程度にとゞめてペース
トの粘性が低い状態で多孔金属基板に充填するので、従
来の繊維化性結着剤を充分混練により繊維化して高粘度
のペーストを該多孔金属基板に充填するに比し、著しく
多量に且つ内部まで充填でき、次にこの充填乾燥基板に
圧延処理を施したので、この圧延により、含有する結着
剤は剪断応力を受けて繊維化しその三次元ネットワーク
を形成し得るので、従来法による電極に比し著しく大き
い容量を有し且つ水素吸蔵合金粉の脱落の防止された寿
命性の良い優れた水素吸蔵電極を製造し得る効果を有す
る。
Thus, when according to the present invention, based on the hydrogen storage alloy powder, kneading of a paste containing a fibrous binder,
Filling the porous metal substrate in a state where the viscosity of the paste is low while the binder is hardly fibrillated, so that the conventional fibrous binder is sufficiently kneaded into fibers to form a high-viscosity binder. As compared with filling the paste into the porous metal substrate, the paste can be filled in a much larger amount and up to the inside. Then, the filled dry substrate is subjected to a rolling treatment. And a three-dimensional network can be formed. Thus, it is possible to manufacture an excellent hydrogen-absorbing electrode having a remarkably large capacity as compared with an electrode according to a conventional method, and having a long life and preventing the hydrogen-absorbing alloy powder from falling off. Has an effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の製造法で得た1例の電極を組み込ん
だ電池と、従来法で得た1例の電極を組み込んだ電池
と、対照例で得た1例の電極を組み込んだ電池の夫々の
充放電サイクル特性の比較図である。
FIG. 1 shows a battery incorporating one example of the electrode obtained by the production method of the present invention, a battery incorporating one example of the electrode obtained by the conventional method, and one example of the electrode obtained by the control example. FIG. 4 is a comparison diagram of charge / discharge cycle characteristics of each battery.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金粉を主体とし、これに繊維化
性結着剤と粘性剤液とを配合したものを混練しペースト
を調整するに当たり、その混練を該結着剤が殆ど繊維化
しない程度にどゞめ、そのペーストを多孔性金属基板に
充填し、乾燥後、その充填基板を圧延して該結着剤の繊
維化を充分行うことを特徴とする水素吸蔵電極の製造
法。
A kneaded mixture of a hydrogen storage alloy powder, a fibrous binder and a viscous agent liquid, and the kneading of the binder, the binder is almost completely fibrous. A method for producing a hydrogen-absorbing electrode, characterized in that the paste is filled in a porous metal substrate, dried, and then the filled substrate is rolled to sufficiently convert the binder into fibers.
【請求項2】該圧延は、複数段に分けて行うことを特徴
とする請求項1記載の水素吸蔵電極の製造法。
2. The method according to claim 1, wherein said rolling is performed in a plurality of stages.
JP1055943A 1989-03-08 1989-03-08 Manufacturing method of hydrogen storage electrode Expired - Lifetime JP2918559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055943A JP2918559B2 (en) 1989-03-08 1989-03-08 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055943A JP2918559B2 (en) 1989-03-08 1989-03-08 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH02236956A JPH02236956A (en) 1990-09-19
JP2918559B2 true JP2918559B2 (en) 1999-07-12

Family

ID=13013157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055943A Expired - Lifetime JP2918559B2 (en) 1989-03-08 1989-03-08 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP2918559B2 (en)

Also Published As

Publication number Publication date
JPH02236956A (en) 1990-09-19

Similar Documents

Publication Publication Date Title
GB1603716A (en) Method of producing self-supporting and fully activated iron electrodes
US5464654A (en) Hydrogen-occlusion electrode and a method of manufacturing the electrode
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH01649A (en) Hydrogen storage alloy electrode and its manufacturing method
JP2918559B2 (en) Manufacturing method of hydrogen storage electrode
JPH0350384B2 (en)
US3615833A (en) Battery electrode and method of making the same
US5334226A (en) Method of manufacturing a sealed-type nickel-hydrogen cell
JP2918560B2 (en) Manufacturing method of hydrogen storage electrode
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3098940B2 (en) Method for producing hydrogen storage alloy powder for electrode
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JP2942637B2 (en) Method for producing paste-type nickel electrode
JP3374995B2 (en) Manufacturing method of nickel electrode
JPH0992271A (en) Hydrogen storage alloy electrode
JP3369824B2 (en) Hydrogen storage alloy electrode
JP2986816B2 (en) Hydrogen storage electrode and its manufacturing method
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPS60140657A (en) Production of hydrogen-occluding electrode
JPH0462753A (en) Hydrogen absorbing alloy pole
JP3146014B2 (en) Method for producing paste-type nickel electrode
JPH04262367A (en) Hydrogen storage electrode
JP2004111131A (en) Paste type nickel electrode and its manufacturing method