JP2918204B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP2918204B2
JP2918204B2 JP63079582A JP7958288A JP2918204B2 JP 2918204 B2 JP2918204 B2 JP 2918204B2 JP 63079582 A JP63079582 A JP 63079582A JP 7958288 A JP7958288 A JP 7958288A JP 2918204 B2 JP2918204 B2 JP 2918204B2
Authority
JP
Japan
Prior art keywords
battery
electrolyte
acid
sealed lead
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63079582A
Other languages
Japanese (ja)
Other versions
JPH01253154A (en
Inventor
朝比古 三浦
晃二 東本
守 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP63079582A priority Critical patent/JP2918204B2/en
Publication of JPH01253154A publication Critical patent/JPH01253154A/en
Application granted granted Critical
Publication of JP2918204B2 publication Critical patent/JP2918204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池の改良に関するものである。Description: TECHNICAL FIELD The present invention relates to an improvement of a sealed lead-acid battery.

従来の技術 負極吸収式の密閉形鉛蓄電池は、電解液の希硫酸を実
質的に非流動化し、充電時に正極から発生する酸素ガス
を負極活物質で吸収することを特徴とする電池である。
そして電池外部へのガス排出がほどんどなく、補水等の
保守が不必要となり、メインテナンスフリーであり、液
もれしないとによるポジションフリーに加え、さらにコ
ンパクトタイプである。このためOA機器のバックアップ
電源として急速に拡大し、従来の液式鉛蓄電池に比べて
安全性や信頼性を大幅に向上したものである。
2. Description of the Related Art A closed lead storage battery of the negative electrode absorption type is a battery characterized in that dilute sulfuric acid in an electrolytic solution is substantially immobilized and oxygen gas generated from a positive electrode during charging is absorbed by a negative electrode active material.
In addition, the gas is hardly discharged to the outside of the battery, so that maintenance such as water refilling is not required, and it is maintenance-free. In addition to being position-free due to no liquid leakage, it is a more compact type. As a result, it has rapidly expanded as a backup power supply for OA equipment, and has greatly improved safety and reliability compared to conventional liquid lead-acid batteries.

この密閉形鉛蓄電池に使用される電解液保持体及び隔
離体は、正極と負極との電導性を確保し、電池容量に必
要な硫酸を保持すると共に充放電の際に両極との間に硫
酸の供給、吸収をスムーズに行なう特性を備えているこ
とが必要である。さらに充電中に正極で発生する酸素が
負極まで移動可能な空間を保有していること、そして負
極板上での吸収反応が十分に行われることが必要であ
る。
The electrolyte holder and separator used in this sealed lead-acid battery ensure the conductivity between the positive electrode and the negative electrode, hold the sulfuric acid necessary for the battery capacity, and between the two electrodes during charging and discharging. It is necessary to have a characteristic of smoothly supplying and absorbing water. Furthermore, it is necessary that oxygen generated at the positive electrode during charging has a space capable of moving to the negative electrode, and that the absorption reaction on the negative electrode plate is sufficiently performed.

現在、これらの機能を持つ密閉形鉛蓄電池とするた
め、一般に次の電解液保持方法をとっている。
At present, in order to obtain a sealed lead-acid battery having these functions, the following electrolytic solution holding method is generally employed.

(1) ガラス繊維等を混抄して不線布とし、これに電
解液を吸収、保持させる方法(以下「リテーナ式」と称
す)。
(1) A method in which glass fiber or the like is mixed to form a non-woven cloth, and an electrolyte is absorbed and retained in the non-woven cloth (hereinafter, referred to as a “retainer type”).

(2) シリカ等の無機酸化物よりなるゲル状物で電解
液を保持させる方法(以下ゲル式」と称す)。
(2) A method in which the electrolyte is held by a gel made of an inorganic oxide such as silica (hereinafter, referred to as a gel type).

(3) 耐酸性の無機粉体をガラス繊維や合成繊維に含
有させる方法(以下「粉体式」と称す) リテーナ式の電解液保持体は微細なガラス繊維、合成
繊維そしてパインダーなどの混抄された不織布である。
電解液保持体の構成は、例えば70〜80Vol%の電解液、
5〜10Vol%のガラス繊維そして15〜20Vol%の空間から
成っている。従って、液の移動も容易であり電池特性も
良く、かつ負極での酸素ガス吸収も十分におこなわれて
おり、現在の負極吸収式鉛蓄電池の多くがこのリテーナ
式となっている。
(3) A method in which an acid-resistant inorganic powder is contained in glass fibers or synthetic fibers (hereinafter referred to as "powder type"). A retainer-type electrolytic solution holder is a mixture of fine glass fibers, synthetic fibers, and binders. Nonwoven fabric.
The configuration of the electrolyte holder is, for example, an electrolyte of 70 to 80% by volume,
Consists of 5-10Vol% glass fiber and 15-20Vol% space. Therefore, the movement of the liquid is easy, the battery characteristics are good, and the oxygen gas is sufficiently absorbed by the negative electrode. Most of the present negative electrode absorption type lead-acid batteries are of the retainer type.

一方、ゲル式では、シリカ粒子を希硫酸と混合してゲ
ル化させているため、酸素ガスの移動と負極でのガス吸
収を阻害しがちであり、さらに振動によるゾル化によっ
て極板からゲルが離れてしまうなど電池特性に悪影響を
与えがちである。また製造する工程が複雑となりコスト
アップにつながる。
On the other hand, in the gel method, silica particles are mixed with dilute sulfuric acid to form a gel, which tends to hinder the movement of oxygen gas and gas absorption at the negative electrode. It tends to adversely affect battery characteristics such as separation. In addition, the manufacturing process becomes complicated, leading to an increase in cost.

ところで、リテーナ式の密閉形鉛蓄電池においては、
特に大容量仕様では極板が大きくなり、充電・放電によ
って電池の上部の電解液濃度が低くそして底部の電解液
濃度が高くなる、いわゆる成層化現象が生じる。この解
消はむづかしく、電池性能を低下させ、短寿命とする大
きな原因となっている。このためゲル式の大容量電池が
考えられているが、上記のごとく特性上と製造上の問題
のため、高性能な電池になっていない。
By the way, in the sealed type lead-acid storage battery,
In particular, in the case of a large-capacity specification, the electrode plate becomes large, and a so-called stratification phenomenon occurs in which the concentration of the electrolyte at the top of the battery is low and the concentration of the electrolyte at the bottom is high due to charging and discharging. This is difficult to solve, and is a major cause of lowering battery performance and shortening the service life. For this reason, a gel-type large-capacity battery has been considered, but as described above, it has not been a high-performance battery due to characteristics and manufacturing problems.

これに対して、粉体式の電解液保持体は電解液の成層
化を抑制でき、そして密閉形鉛蓄電池として十分な特性
を示す電池になることが判っており、種々使用される条
件に合致する密閉形鉛蓄電池として、急速に研究が進み
製品化への展開がなされている。
On the other hand, it has been found that the powder-type electrolyte holder can suppress the stratification of the electrolyte, and is a battery showing sufficient characteristics as a sealed lead-acid battery. Research is progressing rapidly as a sealed lead-acid battery that is being developed, and it is being developed for commercialization.

発明が解決しようとする課題 無機粉体と種々繊維を主体とする電解液保持体では、
成層化を防止するため各々の含有量十種類を検討し、電
池に適した仕様を決めている。
Problems to be Solved by the Invention In the electrolyte holding body mainly composed of inorganic powder and various fibers,
In order to prevent stratification, the content of each type is examined, and specifications suitable for batteries are determined.

従来はリテーナ式の電解液保持体が高価であったた
め、無機粉体を含有させることでコストダウンを主眼に
置いて検討されていた。さらにガラス繊維を太くするこ
とで、コストダウンをねらっていた。
Conventionally, since a retainer-type electrolytic solution holder is expensive, it has been studied with a primary focus on cost reduction by including an inorganic powder. The aim was to reduce costs by making the glass fiber thicker.

ところが、取扱い上の問題として、電解液保持体の割
れや粉体の脱落が起こり、その対策としてフィブリル状
の合成繊維の添加や合成繊維自体の増加が行われてき
た。このことはコストアップと硫酸と新和性の低い素材
の増加による電池性能の低下となって現われてきてい
る。
However, as a problem in handling, cracking of the electrolytic solution holder and falling off of the powder have occurred, and as a countermeasure, the addition of fibril-like synthetic fibers and the increase of the synthetic fibers themselves have been performed. This has been manifested as an increase in cost and a decrease in battery performance due to an increase in materials having low renewability with sulfuric acid.

また粉体量をさらに多くすることで、コストダウンを
おこなっているが、電解液保持体自体が硬くなりまた粉
体も脱落すること、そして保持体内部の粉体が大きな塊
として存在するようになり、電解液の保持と供給が低下
すること等の問題が起こった。
In addition, the cost is reduced by further increasing the amount of powder.However, the electrolyte holder itself becomes harder and the powder drops off, and the powder inside the holder exists as a large lump. As a result, problems such as a decrease in retention and supply of the electrolytic solution occurred.

このように種々問題を解決して安い電解液保持体を作
ろうとしているが、組成が複雑になり予想された効果が
表われにくく、逆に製造仕様の複雑化によりコストアッ
プさえなっている。
As described above, attempts are being made to solve the various problems to make a cheap electrolyte solution holder, but the composition is complicated and the expected effect is unlikely to appear, and conversely, the cost is even increased due to complicated manufacturing specifications.

課題を解決するための手段 本発明は上記の課題を解決するためになされたもの
で、平均直径が1.0μm未満のみのガラス繊維に、耐酸
性の珪酸粉体と珪藻土を原料とする無機粉体を40〜70重
量%含有した多孔体を電解液保持体として使用したこと
を特徴とするものである。
Means for Solving the Problems The present invention has been made in order to solve the above-mentioned problems, and an inorganic powder made of acid-resistant silicate powder and diatomaceous earth as raw materials for glass fibers having an average diameter of only less than 1.0 μm. Is used as an electrolyte holder.

作用 本発明は上記の特徴を有することにより、ガラス繊維
の種類を平均直径1.0μm未満に限定することで単純化
し、かつ40〜70重量%と多量の珪酸粉体と珪藻土を原料
とする無機粉体を使用することで、材料の面さらに製造
上よりコストダウンすると共に、電解液の成層化問題を
改善できる電解液保持体を備えた密閉形鉛蓄電池を提供
するものである。
Action The present invention has the above-mentioned features, simplifies the process by limiting the type of glass fiber to an average diameter of less than 1.0 μm, and uses a large amount of 40 to 70% by weight of silica powder and inorganic powder made from diatomaceous earth. An object of the present invention is to provide a sealed lead-acid battery provided with an electrolytic solution holding body that can reduce the cost of the material and the manufacturing cost and improve the problem of stratification of the electrolytic solution.

実施例 本発明の一実施例を説明する。Example An example of the present invention will be described.

第1表の電解液保持体の組成のように、ガラス繊維と
して平均直径0.7μm、4μm、16μm、無機粉体とし
て珪酸粉体と珪藻土を原料として、純水にて撹拌混合
し、抄造後乾燥して厚さ2.4mmの多孔体からなる電解液
保持体を作成した。
As shown in the composition of the electrolyte holder in Table 1, glass fibers have an average diameter of 0.7 μm, 4 μm, and 16 μm, and inorganic powders such as silicate powder and diatomaceous earth are mixed and stirred with pure water, and then dried after papermaking. Thus, an electrolyte holder made of a porous body having a thickness of 2.4 mm was prepared.

また、これらの電解液保持体と高さ250mm極板とを用
いて200Ah密閉形鉛蓄電池を製作した。比重1.300の電解
液を注入し、電池容量を確認した後、「放電40A(0.2C
A)、8時間;充電60A(0.3CA)、充電電圧2.45V/セ
ル、8時間;温度20℃」の条件でサイクル試験した。そ
して10サイクル後に解体し、電池の極板上部と下部の比
重を測定し、その比重差を測定した。
A 200 Ah sealed lead-acid battery was manufactured using these electrolyte holders and a 250 mm-high electrode plate. After injecting an electrolytic solution with a specific gravity of 1.300 and checking the battery capacity, "Discharge 40A (0.2C
A), 8 hours; charge test 60 A (0.3 CA), charge voltage 2.45 V / cell, 8 hours; temperature 20 ° C. " After 10 cycles, the battery was disassembled, the specific gravity of the upper and lower parts of the battery electrode plate was measured, and the specific gravity difference was measured.

第1表で示した結果により、平均直径が1.0μm未満
のガラス繊維の場合、無機粉体量が40〜70重量%の時に
電解液の成層化が抑制されている。一般的に成層化とし
て問題になるのは、比重差が0.05以上の時であり、0.03
から0.05の間は注意するレベルと考えている。
According to the results shown in Table 1, in the case of glass fibers having an average diameter of less than 1.0 μm, stratification of the electrolytic solution is suppressed when the amount of the inorganic powder is 40 to 70% by weight. Generally, the problem of stratification is when the specific gravity difference is 0.05 or more,
Between 0.05 and 0.05 is considered a cautionary level.

ガラス繊維の太さについては、例えば平均直径4.0μ
mを混抄すると、比重差がおおきくなり電池の機種によ
っては注意すべきレベルとなる。また1.0μm未満のガ
ラス繊維が含まれない場合は、明らかに比重差が大きく
なる。このように、平均直径1.0μm以上のガラス繊維
を含むと、成層化を大きくすることが判った。
About the thickness of the glass fiber, for example, average diameter 4.0μ
When m is mixed, the difference in specific gravity becomes large, and it becomes a level to be noted depending on the type of battery. When no glass fiber of less than 1.0 μm is contained, the difference in specific gravity is obviously large. As described above, it was found that when glass fibers having an average diameter of 1.0 μm or more were included, stratification was increased.

発明の効果 上述したように、本発明によれば、平均直径が1.0μ
m未満のみのガラス繊維に耐酸性の珪酸粉体と珪藻土を
原料とする無機粉体を40〜70重量%含有した多孔体を電
解液保持体として用いたため、密閉形鉛蓄電池の電解液
成層化を抑制できると共に、無機粉体を多く使うことに
よるコストダウンが可能となる効果がある。
As described above, according to the present invention, the average diameter is 1.0 μm.
Because a porous body containing 40 to 70% by weight of acid-resistant silicate powder and diatomaceous earth-based inorganic powder in glass fiber of less than m is used as the electrolyte holder, the electrolyte is layered in a sealed lead-acid battery. And the cost can be reduced by using a large amount of inorganic powder.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−221954(JP,A) 特開 昭61−80750(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-221954 (JP, A) JP-A-61-80750 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均直径が1.0μm未満のみのガラス繊維
に、耐酸性の珪酸粉体と珪藻土を原料とする無機粉体を
40〜70重量パーセント含有してなる多孔体を電解液保持
体として用いたことを特徴とする密閉形鉛蓄電池。
1. An acid-resistant silicic acid powder and an inorganic powder made from diatomaceous earth are mixed with glass fibers having an average diameter of less than 1.0 μm.
A sealed lead-acid battery using a porous body containing 40 to 70% by weight as an electrolyte holder.
JP63079582A 1988-03-31 1988-03-31 Sealed lead-acid battery Expired - Lifetime JP2918204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079582A JP2918204B2 (en) 1988-03-31 1988-03-31 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079582A JP2918204B2 (en) 1988-03-31 1988-03-31 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH01253154A JPH01253154A (en) 1989-10-09
JP2918204B2 true JP2918204B2 (en) 1999-07-12

Family

ID=13693979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079582A Expired - Lifetime JP2918204B2 (en) 1988-03-31 1988-03-31 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2918204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699383B2 (en) * 2016-06-15 2020-05-27 日立化成株式会社 Lead acid battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221954A (en) * 1984-04-09 1985-11-06 Nippon Sheet Glass Co Ltd Separator for storage battery
JPS6180750A (en) * 1984-09-28 1986-04-24 Nippon Muki Kk Separator for sealed type lead storage battery

Also Published As

Publication number Publication date
JPH01253154A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
JP2918204B2 (en) Sealed lead-acid battery
JPS6237882A (en) Closed type lead storage battery
JP2004055323A (en) Control valve type lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
JP2001102027A (en) Enclosed lead battery
US3716412A (en) Electric storage batteries
JP3114419B2 (en) Sealed storage battery
JPS6319772A (en) Lead-acid battery
JPS63152868A (en) Lead-acid battery
JPH02109263A (en) Lead-acid battery
JPH01248459A (en) Sealed lead-acid battery
JPH01253155A (en) Sealed lead-acid battery
JP2862178B2 (en) Sealed lead-acid battery
JPH01253153A (en) Sealed lead-acid battery
JPH06283191A (en) Sealed lead-acid battery
JPH06140046A (en) Sealed lead-acid battery
JPH01248458A (en) Sealed lead-acid battery
JPS62170173A (en) Sealed lead-acid battery
JP2995780B2 (en) Sealed lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPH06243888A (en) Closely sealed battery
JPH06223863A (en) Sealed lead-acid battery
JPS62193060A (en) Sealed lead storage battery
JPS63148564A (en) Sealed lead acid battery
JPS6319764A (en) Lead-acid battery