JP2917317B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2917317B2
JP2917317B2 JP1267770A JP26777089A JP2917317B2 JP 2917317 B2 JP2917317 B2 JP 2917317B2 JP 1267770 A JP1267770 A JP 1267770A JP 26777089 A JP26777089 A JP 26777089A JP 2917317 B2 JP2917317 B2 JP 2917317B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
fine fibrous
discharge
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1267770A
Other languages
Japanese (ja)
Other versions
JPH03129664A (en
Inventor
政幸 永峰
尚幸 伊達
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17449348&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2917317(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1267770A priority Critical patent/JP2917317B2/en
Publication of JPH03129664A publication Critical patent/JPH03129664A/en
Application granted granted Critical
Publication of JP2917317B2 publication Critical patent/JP2917317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非水電解液二次電池に関し、特に負極材料に
微細繊維状黒鉛を用いた非水電解液二次電池に関する。
Description: TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery using fine fibrous graphite as a negative electrode material.

〔発明の概要〕[Summary of the Invention]

本発明は、負極,正極及び非水電解液よりなる非水電
解液二次電池において、その負極材料に002面の面間隔
に相当するX線回折ピークの半値幅が1゜以下の微細繊
維状黒鉛と炭素質材料の組合せとすることにより、放電
電圧の平坦性の改善を図り、同時に優れた充放電サイク
ル特性を実現しようとするものである。
The present invention relates to a non-aqueous electrolyte secondary battery comprising a negative electrode, a positive electrode, and a non-aqueous electrolyte, wherein the negative electrode material has a fine fibrous shape having a half-value width of an X-ray diffraction peak corresponding to a 002 plane spacing of 1 mm or less. By using a combination of graphite and a carbonaceous material, the flatness of the discharge voltage is improved, and at the same time, excellent charge / discharge cycle characteristics are realized.

〔従来の技術〕[Conventional technology]

近年の電子技術の目覚ましい進歩は電子機器の小型・
軽量化を次々と実現させている。それに伴い、携帯可能
な移動用電源としての電池に対しても、ますます小型・
軽量且つ高エネルギー密度のものが求められている。
The remarkable progress of electronic technology in recent years is
Lightening has been realized one after another. As a result, batteries that can be used as portable power sources are becoming smaller and smaller.
Light weight and high energy density are demanded.

従来、二次電池としては、一般的に鉛電池、ニッケル
カドミウム電池等の水溶液系の電池が主流であるが、こ
れらの電池は優れたサイクル特性を示すものの、電池重
量やエネルギー密度等の点で十分に満足できる特性とは
言えない。
Conventionally, aqueous batteries such as lead batteries and nickel cadmium batteries have been mainly used as secondary batteries, but these batteries exhibit excellent cycle characteristics, but are not suitable in terms of battery weight and energy density. It cannot be said that the characteristics are satisfactory.

このような状況から、リチウムあるいはリチウム合金
を負極に用いた非水電解液二次電池の研究開発が盛んに
行われ、一部商品化され始めている。この電池は、高エ
ネルギー密度を有し、軽量であり、しかも自己放電も少
ないという優れた特徴を持ち、前記移動用電源として広
汎な利用が期待されている。
Under such circumstances, research and development of non-aqueous electrolyte secondary batteries using lithium or a lithium alloy for the negative electrode have been actively carried out, and some of them have begun to be commercialized. This battery has excellent features of high energy density, light weight, and low self-discharge, and is expected to be widely used as the power supply for transportation.

しかしながら、負極にリチウムあるいはリチウム合金
を用いると、充放電サイクルの繰り返しに伴いリチウム
が不活性化して粉末状に堆積すると共に、充電時にリチ
ウムがデンドライト状に結晶成長し、セパレータ膜の微
孔,あるいはセパレータ不織布の繊維間空隙を通過して
正極にまで到達し、内部短絡を引き起こす等の欠点があ
り、実用化への大きな障害になっている。
However, when lithium or a lithium alloy is used for the negative electrode, lithium is inactivated and deposited in a powder form with repetition of a charge / discharge cycle, and lithium grows in a dendrite shape during charging, and micropores or There are drawbacks such as reaching the positive electrode through the inter-fiber voids of the separator non-woven fabric and causing an internal short circuit, which is a major obstacle to practical application.

これに対し、負極に炭素材料を使用した非水電解液二
次電池は、化学的,物理的方法等により予め炭素材料に
担持させたリチウム,正極活物質に用いた化合物の結晶
構造中のリチウム,あるいは電解液中に存在させたリチ
ウム等の、炭素六角網平面間へのインターカレーション
/デインターカレーションを利用するもので、充放電サ
イクルの繰り返しに伴うリチウム金属等のデンドライト
析出は見られず、数百回を越える優れた寿命性能を示
す。
On the other hand, a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode is composed of lithium previously supported on the carbon material by a chemical or physical method, and lithium in the crystal structure of the compound used for the positive electrode active material. Or intercalation / deintercalation between carbon hexagonal mesh planes of lithium or the like present in the electrolytic solution. Dendritic precipitation of lithium metal or the like accompanying repetition of charge / discharge cycles is observed. And shows excellent life performance over several hundred times.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、負極に炭素材料を使用した非水電解液二次
電池においては、使用する炭素材料の種類が電池の特性
に大きく影響を及ぼす。
By the way, in a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode, the type of carbon material used greatly affects the characteristics of the battery.

例えば、ある種の有機高分子化合物や複合物を不活性
ガス雰囲気下で高温焼成したものや、ピッチコークス等
のコークス類を粉砕した炭素質物を使用した場合、前述
の通り優れた寿命特性は示すものの、充放電カーブにお
いて放電深度による電圧変化が大きく、電池容量は放電
終止電圧の設定値に大きく依存することになる。
For example, when a certain type of organic polymer compound or composite is fired at a high temperature under an inert gas atmosphere, or when a carbonaceous material obtained by pulverizing cokes such as pitch coke is used, excellent life characteristics are exhibited as described above. However, the voltage change depending on the depth of discharge is large in the charge / discharge curve, and the battery capacity greatly depends on the set value of the discharge end voltage.

人工黒鉛を使用した場合には、充放電時の電圧平坦性
には優れるが、一般にLi等の軽金属イオンのインターカ
レーション/デインターカレーションできる量が少ない
だけでなく、サイクル毎に不活性化するリチウム量が多
く、非水電解液二次電池用の負極材料としては実用的で
はない。
When artificial graphite is used, the voltage flatness during charge and discharge is excellent, but in general, not only the amount of light metal ions such as Li that can be intercalated / deintercalated is small, but also it is deactivated every cycle. This is not practical as a negative electrode material for non-aqueous electrolyte secondary batteries.

そこで本発明は、かかる従来の実情に鑑みて提案され
たものであり、放電時の電圧平坦性に優れ、しかも充放
電サイクル寿命に優れた非水電解液二次電池を提供する
ことを目的とする。
Therefore, the present invention has been proposed in view of such conventional circumstances, and has an object to provide a non-aqueous electrolyte secondary battery having excellent voltage flatness at the time of discharge and excellent charge-discharge cycle life. I do.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は、非水電解液二次電池用負極材料として
種々の炭素材料について検討した結果、微細繊維状黒鉛
が優れた特性を発揮することを見出した。
The present inventors have studied various carbon materials as negative electrode materials for non-aqueous electrolyte secondary batteries, and have found that fine fibrous graphite exhibits excellent characteristics.

本発明の非水電解液二次電池は、かかる知見に基づい
て完成されたもので、002面の面間隔に相当するX線回
折ピークの半値幅が1゜以下の微細繊維状黒鉛と炭素質
材料を含有してなる負極と、正極と、非水電解液とから
なることを特徴とするものである。
The non-aqueous electrolyte secondary battery of the present invention has been completed on the basis of this finding, and has a fibrous graphite having a half width of an X-ray diffraction peak corresponding to the 002 plane spacing of 1 mm or less, and a carbonaceous material. It comprises a negative electrode containing a material, a positive electrode, and a non-aqueous electrolyte.

本発明において、負極に使用される炭素材料は、種々
の炭化水素化合物を水素,アルゴン等のキャリアガスと
共に800〜1200℃程度に制御された反応管に導入し、触
媒(超微粒子のFe,Fe/Ni合金等)の存在下で管内に設置
された黒鉛,石英ガラス等の基板上に炭素質として形成
させる,いわゆる気相成長法により得られる微細繊維状
炭素を、不活性ガス雰囲気下においてさらに1800〜3000
℃で加熱処理して微細繊維状黒鉛としたものである。前
記加熱処理することにより黒鉛構造となり、002面の面
間隔に相当するX線回折ピークの半値幅が1゜以下とな
る。
In the present invention, the carbon material used for the negative electrode is prepared by introducing various hydrocarbon compounds together with a carrier gas such as hydrogen or argon into a reaction tube controlled at about 800 to 1200 ° C., and forming a catalyst (Fe, Fe / Ni alloy) in the presence of a fibrous carbon obtained by the so-called vapor phase growth method, which is formed as carbonaceous material on a substrate such as graphite or quartz glass placed in a tube in an inert gas atmosphere. 1800-3000
It was heat-treated at ℃ to obtain fine fibrous graphite. By performing the heat treatment, a graphite structure is formed, and the half value width of the X-ray diffraction peak corresponding to the spacing between the 002 faces becomes 1 ° or less.

原料である炭化水素化合物としては、脂肪族炭化水
素,芳香族炭化水素,脂環族炭化水素並びにこれら炭化
水素に置換基の結合したもの、さらにはこれらの混合物
等が挙げられる。具体的には、メタン、プロパン、エチ
レン、ベンゼン、ナフタレン、1,2−ジクロロエチレ
ン、1,2−ジクロロエタン、1,2−ジブロモエタン、エタ
ノール、アントラセン、アセナフチレン、フルフリルア
ルコール、フルフラール、フェノール、ジフェニル等が
挙げられ、なかでもベンゼン等の芳香族炭化水素が好適
である。
Examples of the hydrocarbon compound as a raw material include aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, compounds in which substituents are bonded to these hydrocarbons, and mixtures thereof. Specifically, methane, propane, ethylene, benzene, naphthalene, 1,2-dichloroethylene, 1,2-dichloroethane, 1,2-dibromoethane, ethanol, anthracene, acenaphthylene, furfuryl alcohol, furfural, phenol, diphenyl, etc. Among them, aromatic hydrocarbons such as benzene are preferable.

また、使用する微細繊維状黒鉛は、直径1μm以下,
長さ1mm以下であることが好ましく、直径0.1μm以下,
長さ500μm以下であることがより好ましい。さらに
は、直径と長さの比が1:20を越えるものを主体とするこ
とが望ましい。
The fine fibrous graphite used has a diameter of 1 μm or less,
The length is preferably 1 mm or less, the diameter is 0.1 μm or less,
More preferably, the length is 500 μm or less. Furthermore, it is desirable that the ratio of the diameter to the length exceeds 1:20.

前述の微細繊維状黒鉛は、単独で負極に用いてもよい
が、炭素質材料と併用しても良い。すなわち、微細繊維
状黒鉛の繊維間に炭素質物を担持させた複合材料を負極
に用いることで、放電時の電圧平坦性の良さや充放電サ
イクル寿命の良さに加えて、エネルギー密度を向上する
ことができる。
The fine fibrous graphite described above may be used alone for the negative electrode, or may be used in combination with a carbonaceous material. In other words, by using a composite material in which a carbonaceous material is supported between fibers of fine fibrous graphite for the negative electrode, the energy density can be improved in addition to the good voltage flatness during discharge and the good charge / discharge cycle life. Can be.

前記複合材料は、気相成長法により得た微細繊維状炭
素を不活性ガス雰囲気下,1800〜3000℃に加熱して黒鉛
化した後、液状有機高分子材料あるいは固体有機高分子
材料を溶剤に溶解させた溶液に浸漬してこれを含浸さ
せ、さらに不活性ガス雰囲気下で800〜1700℃に加熱し
て炭素質物として繊維間に固定させたものである。以
下、その製造方法の一例について述べる。
The composite material is obtained by heating the fine fibrous carbon obtained by the vapor phase growth method to graphitize by heating to 1800 to 3000 ° C. in an inert gas atmosphere, and then converting the liquid organic polymer material or the solid organic polymer material into a solvent. It is immersed in a dissolved solution to impregnate it, and further heated to 800 to 1700 ° C. in an inert gas atmosphere to be fixed between fibers as a carbonaceous material. Hereinafter, an example of the manufacturing method will be described.

前記複合材料の製造するに際して、常温において液状
の有機高分子材料を使用する場合には、そのまま,ある
いは溶剤で希釈し適当な粘度に調製したものを含浸させ
る溶液として用いる。また、常温で固体の有機高分子材
料を使用する場合には、適切な溶剤に溶解させるか、適
切な分散媒に均一に粒子を分散させたものを含浸液とし
て用いる。
In the case of using the organic polymer material which is liquid at room temperature when producing the composite material, it is used as it is or as a solution for impregnation with a material prepared by diluting with a solvent to have an appropriate viscosity. When an organic polymer material that is solid at room temperature is used, it is dissolved in an appropriate solvent or a material obtained by uniformly dispersing particles in an appropriate dispersion medium is used as an impregnating liquid.

そして、微細繊維状黒鉛の所定量を有機高分子材料を
含む含浸液中に浸漬する。このとき、必要量の有機高分
子材料を全て繊維間に移動させるため、液濃度を調整し
て含浸液量を黒鉛繊維間に全て吸い上げられる量とする
ことが望ましい。
Then, a predetermined amount of the fine fibrous graphite is immersed in an impregnation liquid containing an organic polymer material. At this time, in order to move all the necessary amount of the organic polymer material between the fibers, it is desirable to adjust the liquid concentration so that the amount of the impregnating liquid can be entirely absorbed between the graphite fibers.

所定量の有機高分子材料を含浸させた微細繊維状黒鉛
は、溶剤あるいは分散媒が十分除去できる温度で乾燥す
る。次いで、不活性ガス雰囲気下で800〜1700℃の温度
に数時間保持し、微細繊維状黒鉛間に存在する有機高分
子材料を炭素質物として固定する。不活性ガス雰囲気の
まま室温付近まで放冷し、微細繊維状黒鉛/炭素質物複
合材料を取り出す。複合材料は、乳鉢,ボールミル,振
動ミル等の粉砕機により粉砕した後、ふるいにより分級
し、粗大粒子を取り除いて負極材料とする。
The fine fibrous graphite impregnated with a predetermined amount of the organic polymer material is dried at a temperature at which the solvent or the dispersion medium can be sufficiently removed. Next, the temperature is kept at 800 to 1700 ° C. for several hours in an inert gas atmosphere to fix the organic polymer material existing between the fine fibrous graphite as a carbonaceous material. The mixture is allowed to cool to around room temperature in an inert gas atmosphere, and the fine fibrous graphite / carbonaceous material composite material is taken out. The composite material is pulverized by a pulverizer such as a mortar, a ball mill, a vibration mill, or the like, and then classified by a sieve to remove coarse particles to obtain a negative electrode material.

炭素質物を得るための有機高分子材料としては、各種
材料が使用可能であるが、例えばポリアクリロニトリル
樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポ
リビニルアセタール樹脂、ABS樹脂、ポリイミド樹脂、
ポリ塩化ビニリデン樹脂、フルフリルアルコール樹脂、
フラン樹脂、フェノール樹脂、ポリアミド樹脂、石油系
ピッチ、石炭系ピッチ等が用いられる。
As the organic polymer material for obtaining the carbonaceous material, various materials can be used, for example, polyacrylonitrile resin, vinyl acetate resin, polyvinyl alcohol resin, polyvinyl acetal resin, ABS resin, polyimide resin,
Polyvinylidene chloride resin, furfuryl alcohol resin,
Furan resin, phenol resin, polyamide resin, petroleum pitch, coal pitch and the like are used.

また、含浸液を得るための溶剤,分散媒は、有機高分
子材料の種類に合わせてそれぞれ適切なものを選べば良
い。
The solvent and the dispersion medium for obtaining the impregnating liquid may be appropriately selected according to the type of the organic polymer material.

上述の複合材料とする場合、複合材料中に占める微細
繊維状黒鉛の割合は、60重量%以上であることが好まし
く、特にかさ密度から考えて容量が許容できる範囲を考
慮した場合、60〜80重量%であることがより好ましい。
In the case of the above-mentioned composite material, the proportion of the fine fibrous graphite in the composite material is preferably 60% by weight or more. More preferably, it is% by weight.

一方、正極材料としては、この種の電池に使用される
ものであれば如何なるものであってもよいが、特に十分
な量のLiを含んだ材料を使用することが好ましい。例え
ば、LiMn2O4や一般式LiMO2(ただし、MはCo,Niの少な
くとも1種を表す。したがって、例えばLiCoO2やLiCo
0.8Ni0.2O2等)で表される複合金属酸化物や、Liを含ん
だ層間化合物等が好適である。
On the other hand, as the positive electrode material, any material may be used as long as it is used for this type of battery, but it is particularly preferable to use a material containing a sufficient amount of Li. For example, LiMn 2 O 4 or the general formula LiMO 2 (where M represents at least one of Co and Ni. Therefore, for example, LiCoO 2 and LiCo
0.8 Ni 0.2 O 2 ), an intercalation compound containing Li, and the like are suitable.

非水電解液としては、有機溶媒と電解質を適宜組み合
わせて調製されるが、これら有機溶媒や電解質もこの種
の電池に用いられるものであればいずれも使用可能であ
る。
The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery.

例示するならば、有機溶媒としてはプロピレンカーボ
ネート、エチレンカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチロラクトン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、1,
3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジ
エチルエーテル、スルホラン、メチルスルホラン、アセ
トニトリル、プロピオニトリル、アニソール等である。
For example, as the organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran,
3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole and the like.

電解質としては、LiClO4、LiAsF6、LiPF6、LiBF4、Li
B(C6H5、CH3SO3Li、CF3SO3Li、LiCl、LiBr等であ
る。
As electrolytes, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , Li
B (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiCl, LiBr and the like.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果に基づいて説明す
る。
Hereinafter, the present invention will be described based on specific experimental results.

先ず、微細繊維状黒鉛を単独で負極に用いた非水電解
液二次電池の実施例について説明する。
First, an example of a nonaqueous electrolyte secondary battery using fine fibrous graphite alone for the negative electrode will be described.

実施例1 炭化水素化合物としてベンゼンを使用し、1000℃で気
相成長させ、得られた微細繊維状炭素材料を不活性ガス
下,2000℃で加熱処理し、微細繊維状黒鉛を得た。
Example 1 Using benzene as a hydrocarbon compound, vapor-phase growth was performed at 1000 ° C., and the obtained fine fibrous carbon material was heated at 2000 ° C. under an inert gas to obtain fine fibrous graphite.

第1図にこの材料の黒鉛化処理前後のX線回折スペク
トルを示す。測定に使用した装置は、理学電機社製,ガ
イガーフレックスRAD II C装置(対陰極:Cu)である。
FIG. 1 shows X-ray diffraction spectra of this material before and after graphitization. The device used for the measurement was a Geigerflex RAD IIC device (anti-cathode: Cu) manufactured by Rigaku Corporation.

この第1図より求められるX線パラメータ値は第1表
の通りである。
The X-ray parameter values obtained from FIG. 1 are as shown in Table 1.

次いで、この微細繊維状黒鉛を用い、第2図に示すよ
うなコイン型非水電解液系負極試験用二次電池を試作し
た。
Next, using this fine fibrous graphite, a secondary battery for a coin-type nonaqueous electrolyte-based negative electrode test as shown in FIG. 2 was prototyped.

先ず、微細繊維状黒鉛80重量部,結着剤であるポリフ
ッ化ビニリデン20重量部よりなる負極合剤0.035gを直径
15mm,線径50μmのステンレス製ネット(5)とともに
加圧成形し、直径15.3mm,厚さ0.2mmの円板状の負極
(4)とした。この負極(4)は、外側にニッケルメッ
キを施したステンレス製負極缶(7)の内側にスポット
溶接された銅製集電体(6)を介して電池外部への電気
的導通がとられている。
First, 0.035 g of a negative electrode mixture consisting of 80 parts by weight of fine fibrous graphite and 20 parts by weight of polyvinylidene fluoride as a binder was used.
Pressure molding was performed together with a stainless steel net (5) having a diameter of 15 mm and a wire diameter of 50 μm to obtain a disk-shaped negative electrode (4) having a diameter of 15.3 mm and a thickness of 0.2 mm. The negative electrode (4) is electrically connected to the outside of the battery through a copper current collector (6) spot-welded to the inside of a stainless steel negative electrode can (7) plated with nickel on the outside. .

一方、正極(1)は、活物質であるLiCoO285重量部,
導電剤であるグラファイト10重量部,結着剤であるポリ
テトラフルオロエチレン5重量部よりなる正極合剤1gを
直径15.3mm,高さ1.7mmの円板状に加圧成形したものであ
る。正極(1)は、外側にニッケルメッキを施したステ
ンレス製正極缶(3)の内側にスポット溶接されたアル
ミニウム製集電体(2)を介して電池外部への電気的導
通がとられている。
On the other hand, the positive electrode (1) is composed of 85 parts by weight of LiCoO 2 as an active material,
1 g of a positive electrode mixture composed of 10 parts by weight of graphite as a conductive agent and 5 parts by weight of polytetrafluoroethylene as a binder was press-formed into a disk having a diameter of 15.3 mm and a height of 1.7 mm. The positive electrode (1) is electrically connected to the outside of the battery via an aluminum current collector (2) spot-welded to the inside of a stainless steel positive electrode can (3) plated with nickel on the outside. .

前記正極(1)並びに負極(4)は、真空乾燥により
残留水分値を300ppm以下に調整した後、微孔性ポリプロ
ピレンセパレータ(8)を介して対向させ設置した。
The positive electrode (1) and the negative electrode (4) were placed facing each other via a microporous polypropylene separator (8) after adjusting the residual moisture value to 300 ppm or less by vacuum drying.

電解液は、プロピレンカーボネートと1,2−ジメトキ
シエタンとの等体積混合溶媒にLiPF6を1モル/の割
合で溶解させたものとし、これを残留水分値20ppm以下
に調整してその200μを注入した。
The electrolytic solution was prepared by dissolving LiPF 6 at a ratio of 1 mol / in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane, adjusting the residual water content to 20 ppm or less, and injecting 200 µ of the solution. did.

なお、正極缶(3)と負極缶(7)との間には、表面
にアスファルトを塗布したポリプロピレン製ガスケット
(9)を配設した。したがって、このガスケット(9)
が正極缶(3)のカシメによって負極缶(7)との間で
圧縮され、電池内部の密閉性を保持している。
In addition, between the positive electrode can (3) and the negative electrode can (7), a polypropylene gasket (9) having asphalt coated on its surface was disposed. Therefore, this gasket (9)
Is compressed between the negative electrode can (7) and the negative electrode can (7) by caulking of the positive electrode can (3), and the airtightness inside the battery is maintained.

上記構成により直径20mm,高さ2.5mmのコイン型負極試
験電池(実施例電池1)を組み立てた。
With the above configuration, a coin-type negative electrode test battery (Example Battery 1) having a diameter of 20 mm and a height of 2.5 mm was assembled.

比較例1 負極材料として市販の人工黒鉛(ロンザ社製,KS−1
5)を用い、他は実施例1と同様の方法でコイン型負極
試験電池(比較例電池1)を組み立てた。
Comparative Example 1 Commercially available artificial graphite (manufactured by Lonza, KS-1) was used as a negative electrode material.
A coin-type negative electrode test battery (Comparative Battery 1) was assembled in the same manner as in Example 1 except for using 5).

比較例2 負極材料として市販の炭素質材料(三菱化成社製,ピ
ッチコークス)を用い、他は実施例1と同様の方法でコ
イン型負極試験電池(比較例電池2)を組み立てた。
Comparative Example 2 A coin-type negative electrode test battery (Comparative Example Battery 2) was assembled in the same manner as in Example 1 except that a commercially available carbonaceous material (pitch coke, manufactured by Mitsubishi Kasei Corporation) was used as the negative electrode material.

比較例3 負極材料として市販の炭素繊維(黒鉛化処理無し)を
用い、他は実施例1と同様の方法でコイン型負極試験電
池(比較例電池3)を組み立てた。
Comparative Example 3 A coin-type negative electrode test battery (Comparative Battery 3) was assembled in the same manner as in Example 1 except that a commercially available carbon fiber (no graphitization treatment) was used as the negative electrode material.

上述の各実施例及び比較例で組み立てた試験電池に対
して、電極面積を基準にして1mA/cm2の電流密度で黒鉛
材料1g当たり充電量210mAHまで定電流充電を行った後、
同じく1mA/cm2の電流密度で2.9Vとなるまで定電流放電
を行うサイクルを繰り返し、充放電効率及びサイクル寿
命を検討した。なお、各サイクルにおける充放電効率
は、(2.9Vまでの放電容量/充電容量)×100なる式よ
り算出した。
To the test cell assembled in the Examples and Comparative Examples described above, after the constant current charging until the graphite material 1g per charged amount 210mAH to the electrode area to the reference at a current density of 1 mA / cm 2,
Similarly, the cycle of performing constant current discharge at a current density of 1 mA / cm 2 until the voltage reached 2.9 V was repeated, and the charge / discharge efficiency and cycle life were examined. Note that the charge / discharge efficiency in each cycle was calculated from the formula of (discharge capacity up to 2.9 V / charge capacity) × 100.

第3図に実施例電池1並びに比較例電池1,比較例電池
2,比較例電池3の50サイクル目の充放電特性を示す。
FIG. 3 shows Example battery 1, Comparative example battery 1, and Comparative example battery.
2 shows the charge and discharge characteristics of the battery of Comparative Example 3 at the 50th cycle.

実施例電池1及び比較例電池1は充放電カーブの電圧
の平坦性が良く、実用的な範囲において終止電圧の設定
値により放電容量が大きく変化することはない。これに
対して、比較例電池2や比較例電池3では、電圧が充放
電深度に依存して連続的に変化しており、終止電圧の設
定値により放電容量は大きく変化する可能性がある。
The battery 1 of the example and the battery 1 of the comparative example have good flatness of the voltage of the charge / discharge curve, and the discharge capacity does not largely change depending on the set value of the end voltage in a practical range. On the other hand, in the comparative example battery 2 and the comparative example battery 3, the voltage continuously changes depending on the charge / discharge depth, and the discharge capacity may greatly change depending on the set value of the end voltage.

また、第4図にこれら電池の充放電サイクルの繰り返
し回数の進行に伴う充放電効率の変化を示す。
FIG. 4 shows the change in charge / discharge efficiency as the number of charge / discharge cycles of these batteries increases.

一般的な人工黒鉛を負極材料に用いた比較例電池1で
は、1サイクル目の充放電効率がほぼ零に近く、ほとん
ど放電できていない。2サイクル目以降は徐々に充放電
効率は上昇し、15サイクル目以降85〜87%で安定した。
比較例電池3においても、初期の充放電効率が低い傾向
が見られる。
In Comparative Example Battery 1 using general artificial graphite as the negative electrode material, the charge / discharge efficiency in the first cycle was almost zero, and almost no discharge was possible. The charge and discharge efficiency gradually increased after the second cycle, and stabilized at 85 to 87% after the 15th cycle.
Also in the comparative example battery 3, the initial charge / discharge efficiency tends to be low.

したがって、一般的な人工黒鉛を負極材料として用い
た場合には、放電カーブの電圧平坦性には優れるもの
の、充放電サイクル劣化が大きく、サイクル寿命の短い
電池しか得られない。
Therefore, when general artificial graphite is used as a negative electrode material, only a battery having a large charge / discharge cycle deterioration and a short cycle life can be obtained although the voltage flatness of the discharge curve is excellent.

一方、一般的な炭素質材料であるピッチコークスを負
極材料として用いた比較例電池2では、充放電効率は高
くサイクル寿命も長いが、第3図に示す結果から放電電
圧の平坦性が要求される用途には使用することができな
い。
On the other hand, Comparative Example Battery 2 using pitch coke, which is a common carbonaceous material, as the negative electrode material has a high charge / discharge efficiency and a long cycle life, but from the results shown in FIG. 3, flatness of the discharge voltage is required. It cannot be used for other purposes.

これらに対して、実施例電池1は、1サイクル目の充
放電効率が67%と比較的高い値を示すばかりでなく、2
サイクル以降の効率の立ち上がりも早く、5〜10サイク
ルで99%以上の高い充放電効率に到達し安定した。充放
電効率が高いことはサイクルの繰り返しで充放電不可能
になる反応活物質量が少ないことを意味し、高容量の実
用電池の設計に有利である。また、実施例電池1は、50
0サイクルを越えても安定して高い充放電効率を維持し
ており、サイクル寿命も長いものであった。
On the other hand, the battery of Example 1 not only showed a relatively high value of 67% in the charge and discharge efficiency in the first cycle, but also
The rise of efficiency after the cycle was fast, reaching a high charge and discharge efficiency of 99% or more in 5 to 10 cycles and stabilized. High charge / discharge efficiency means that the amount of reaction active material that cannot be charged / discharged by repeating the cycle is small, which is advantageous for designing a high-capacity practical battery. The battery 1 of the embodiment has a capacity of 50
High charge / discharge efficiency was stably maintained even after 0 cycles, and the cycle life was long.

次に、微細繊維状黒鉛と炭素質材料からなる複合材料
を負極に用いた非水電解液二次電池の実施例について説
明する。
Next, an example of a nonaqueous electrolyte secondary battery using a composite material composed of fine fibrous graphite and a carbonaceous material for a negative electrode will be described.

先ず、以下に示す方法により微細繊維状黒鉛と炭素質
材料からなる複合材料を作成した。
First, a composite material composed of fine fibrous graphite and a carbonaceous material was prepared by the following method.

<複合材料A> 微細繊維状黒鉛として、昭和電工社製,気相法炭素繊
維(商品名VGCF)を用いた。
<Composite Material A> Vapor-grown carbon fiber (trade name VGCF) manufactured by Showa Denko KK was used as the fine fibrous graphite.

酢酸ビニル系樹脂(電気化学工業社製,商品名サクノ
ール)18gをN−メチルピロリドン42gに溶解させた溶液
に前記微細繊維状黒鉛3gを浸漬し、よく混合して繊維間
に吸液させた。混合物は自然対流式乾燥器内で140℃,24
時間の乾燥を行った。
3 g of the fine fibrous graphite was immersed in a solution of 18 g of vinyl acetate resin (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Sakunol) in 42 g of N-methylpyrrolidone, mixed well, and allowed to absorb between the fibers. The mixture is placed in a natural convection dryer at 140 ° C for 24 hours.
Time drying was performed.

次いで、混合物を石英ガラス製のボートに移し、内径
90mmの石英ガラス製焼成管内に設置した。焼成管内を高
純度窒素ガスで十分置換した後、さらに流量1/分の
割合で高純度窒素ガスを流しながら横型管状炉により加
熱を開始した。炭化反応は先ず500℃で3時間保持した
後、さらに昇温させ1000℃で1時間行った。高純度窒素
ガスを流しながら室温まで冷却してから取り出したとこ
ろ、微細繊維状黒鉛/炭素質物複合材料4.3gが得られ
た。
The mixture was then transferred to a quartz glass boat,
It was installed in a 90 mm quartz glass firing tube. After the inside of the firing tube was sufficiently replaced with high-purity nitrogen gas, heating was started by a horizontal tubular furnace while flowing high-purity nitrogen gas at a flow rate of 1 / min. After the carbonization reaction was first maintained at 500 ° C. for 3 hours, the temperature was further increased and the reaction was performed at 1000 ° C. for 1 hour. After cooling to room temperature while flowing high-purity nitrogen gas, the mixture was taken out to obtain 4.3 g of a fine fibrous graphite / carbonaceous material composite material.

これをメノウ乳鉢で十分粉砕した後、250メッシュの
ふるいによりふるい分け、通過分を複合材料Aとした。
After sufficiently pulverized in an agate mortar, the mixture was sieved with a 250-mesh sieve to obtain a composite material A.

<複合材料B> 使用した微細繊維状黒鉛は、先の複合材料Aと同じで
ある。
<Composite material B> The fine fibrous graphite used was the same as the above-mentioned composite material A.

ポリイミド樹脂(日本ポリイミド社製,商品名ケルイ
ミド)0.75gをN−メチルピロリドン4.25gに均一に懸濁
させた分散液に前記微細繊維状黒鉛3gを浸漬し、よく混
合して十分に吸液させた。混合物は自然対流式乾燥器内
で140℃,24時間の乾燥を行った。
3 g of the fine fibrous graphite was immersed in a dispersion liquid in which 0.75 g of a polyimide resin (manufactured by Nippon Polyimide Co., Ltd., trade name Kelimide) was uniformly suspended in 4.25 g of N-methylpyrrolidone, mixed well, and allowed to absorb sufficiently. Was. The mixture was dried at 140 ° C. for 24 hours in a natural convection dryer.

次いで、この混合物を石英ガラス製のボートに移し、
内径90mmの石英ガラス製焼成管内に設置した。焼成管内
を高純度窒素ガスで十分置換した後、さらに流量1/
分の割合で高純度窒素ガスを流しながら横型管状炉によ
り加熱を開始した。炭化反応は先ず500℃で3時間保持
した後、さらに昇温させ1000℃で1時間行った。高純度
窒素ガスを流しながら室温まで冷却してから取り出した
ところ、微細繊維状黒鉛/炭素質物複合材料3.5gが得ら
れた。
The mixture was then transferred to a quartz glass boat,
It was set in a firing tube made of quartz glass with an inner diameter of 90 mm. After sufficiently replacing the inside of the firing tube with high-purity nitrogen gas, the flow rate
The heating was started by a horizontal tubular furnace while flowing high-purity nitrogen gas at a rate of 1 minute. After the carbonization reaction was first maintained at 500 ° C. for 3 hours, the temperature was further increased and the reaction was performed at 1000 ° C. for 1 hour. After cooling to room temperature while flowing high-purity nitrogen gas, the mixture was taken out to obtain 3.5 g of a fine fibrous graphite / carbonaceous material composite material.

これをメノウ乳鉢で十分粉砕した後、250メッシュの
ふるいによりふるい分け、通過分を複合材料Bとした。
This was sufficiently pulverized in an agate mortar and then sieved with a 250-mesh sieve to obtain a composite material B.

<複合材料C> 使用した微細繊維状黒鉛は、先の複合材料Aと同じで
ある。
<Composite material C> The fine fibrous graphite used is the same as the above-mentioned composite material A.

ポリイミド樹脂(日本ポリイミド社製,商品名ケルイ
ミド)5gをN−メチルピロリドン28.3gに均一に懸濁さ
せた分散液に前記微細繊維状黒鉛3gを浸漬し、よく混合
して十分に吸液させた。混合物は自然対流式乾燥器内で
140℃,24時間の乾燥を行った。
3 g of the fine fibrous graphite was immersed in a dispersion liquid in which 5 g of a polyimide resin (manufactured by Nippon Polyimide Co., Ltd., trade name Kelimide) was uniformly suspended in 28.3 g of N-methylpyrrolidone, mixed well, and sufficiently absorbed. . The mixture is placed in a natural convection dryer.
Drying was performed at 140 ° C. for 24 hours.

次いで、この混合物を石英ガラス製のボートに移し、
内径90mmの石英ガラス製焼成管内に設置した。焼成管内
を高純度窒素ガスで十分置換した後、さらに流量1/
分の割合で高純度窒素ガスを流しながら横型管状炉によ
り加熱を開始した。炭化反応は先ず500℃で3時間保持
した後、さらに昇温させ1000℃で1時間行った。高純度
窒素ガスを流しながら室温まで冷却してから取り出した
ところ、微細繊維状黒鉛/炭素質物複合材料5.3gが得ら
れた。
The mixture was then transferred to a quartz glass boat,
It was set in a firing tube made of quartz glass with an inner diameter of 90 mm. After sufficiently replacing the inside of the firing tube with high-purity nitrogen gas, the flow rate
The heating was started by a horizontal tubular furnace while flowing high-purity nitrogen gas at a rate of 1 minute. After the carbonization reaction was first maintained at 500 ° C. for 3 hours, the temperature was further increased and the reaction was performed at 1000 ° C. for 1 hour. After cooling to room temperature while flowing high-purity nitrogen gas, the mixture was taken out to obtain 5.3 g of a fine fibrous graphite / carbonaceous material composite material.

これをメノウ乳鉢で十分粉砕した後、250メッシュの
ふるいによりふるい分け、通過分を複合材料Cとした。
This was sufficiently pulverized in an agate mortar and then sieved with a 250-mesh sieve to obtain a composite material C.

微細繊維状黒鉛単独並びに上述の方法で得た微細繊維
状黒鉛/炭素質物複合材料(複合材料A〜複合材料C)
の粉末X線回折スペクトルを第5図に示す。測定に使用
したX線回折装置は、理学電機社製,ガイガーフレック
スRAD II C(ターゲット:Cu)である。
Fine fibrous graphite alone and fine fibrous graphite / carbonaceous material composite material obtained by the above method (composite material A to composite material C)
The powder X-ray diffraction spectrum of is shown in FIG. The X-ray diffractometer used for the measurement is Geigerflex RAD IIC (target: Cu) manufactured by Rigaku Corporation.

この第5図より求めた炭素六角網面の面間距離は4種
の材料共3.40Åと等しく、複合材料の製造過程において
基本となる微細繊維状黒鉛の結晶構造はほぼ変化しない
ことが確認された。
The interplanar distance of the carbon hexagonal net plane determined from FIG. 5 is equal to 3.40 ° for all four materials, and it has been confirmed that the crystal structure of fine fibrous graphite which is fundamental in the production process of the composite material is hardly changed. Was.

上述の複合材料を負極材料に用いて、先の実施例1と
同様に第2図に示すようなコイン型非水電解液二次電池
を試作した。なお、各電池の構成は、電池容量とサイク
ル寿命特性がバランス良く優れた二次電池特性を示すよ
うそれぞれの材料に対し最も最適なものとした。
A coin-type non-aqueous electrolyte secondary battery as shown in FIG. 2 was prototyped in the same manner as in Example 1 except that the above-described composite material was used as a negative electrode material. The configuration of each battery was optimized for each material so that the battery capacity and the cycle life characteristics exhibited excellent secondary battery characteristics in a well-balanced manner.

実施例2 複合材料A90重量部,結着剤であるポリフッ化ビニリ
デン10重量部よりなる負極合剤0.16gを直径15mmに打ち
抜いた線径0.05mmのステンレス製ネット(5)とともに
加圧成形し、直径15.5mm,厚さ0.83mmの円板状の負極
(4)を作製した。この負極(4)は、外側にニッケル
メッキを施したステンレス製負極缶(7)の内側にスポ
ット溶接された銅製集電体(6)を介して電池外部への
電気的導通がとられている。
Example 2 0.16 g of a negative electrode mixture composed of 90 parts by weight of a composite material A and 10 parts by weight of polyvinylidene fluoride as a binder was press-formed together with a stainless steel net (5) having a wire diameter of 0.05 mm punched out to a diameter of 15 mm. A disk-shaped negative electrode (4) having a diameter of 15.5 mm and a thickness of 0.83 mm was produced. The negative electrode (4) is electrically connected to the outside of the battery through a copper current collector (6) spot-welded to the inside of a stainless steel negative electrode can (7) plated with nickel on the outside. .

正極(1)は、活物質であるLiCoO285重量部,導電剤
であるグラファイト10重量部,結着剤であるポリテトラ
フルオロエチレン5重量部よりなる正極合剤0.71gを直
径15.5mm,高さ104mmの円板状に加圧成形したものであ
る。正極(1)は、外側にニッケルメッキを施したステ
ンレス製正極缶(3)の内側にスポット溶接されたアル
ミニウム製集電体(2)を介して電池外部への電気的導
通がとられている。
The positive electrode (1) was composed of 85 parts by weight of LiCoO 2 as an active material, 10 parts by weight of graphite as a conductive agent, and 5 parts by weight of polytetrafluoroethylene as a binder. It is formed by pressing into a disk having a length of 104 mm. The positive electrode (1) is electrically connected to the outside of the battery via an aluminum current collector (2) spot-welded to the inside of a stainless steel positive electrode can (3) plated with nickel on the outside. .

前記正極(1)並びに負極(4)は、真空乾燥により
残留水分値を300ppm以下に調整した後、微孔性ポリプロ
ピレンセパレータ〔ポリプラスチックス社製,商品名ジ
ュラガード#2502〕(8)を介して対向させ設置した。
The positive electrode (1) and the negative electrode (4) were adjusted to a residual moisture value of 300 ppm or less by vacuum drying, and then passed through a microporous polypropylene separator (manufactured by Polyplastics, trade name: DURAGARD # 2502) (8). And set it facing.

電解液は、プロピレンカーボネートと1,2−ジメトキ
シエタンとの等体積混合溶媒にLiPF6を1モル/の割
合で溶解させたものとし、これを残留水分値20ppm以下
に調整してその120μを注入した。
The electrolytic solution was prepared by dissolving LiPF 6 at a ratio of 1 mol / in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in an equal volume, adjusting this to a residual moisture value of 20 ppm or less, and injecting 120 μm thereof. did.

なお、正極缶(3)と負極缶(7)との間には、表面
にアスファルトを塗布したポリプロピレン製ガスケット
(9)を配設した。したがって、このガスケット(9)
が正極缶(3)のカシメによって負極缶(7)との間で
圧縮され、電池内部の密閉性を保持している。
In addition, between the positive electrode can (3) and the negative electrode can (7), a polypropylene gasket (9) having asphalt coated on its surface was disposed. Therefore, this gasket (9)
Is compressed between the negative electrode can (7) and the negative electrode can (7) by caulking of the positive electrode can (3), and the airtightness inside the battery is maintained.

上記構成により直径20mm,高さ2.5mmのコイン型非水電
解液二次電池(実施例電池2)を組み立てた。
With the above configuration, a coin-type nonaqueous electrolyte secondary battery (Example Battery 2) having a diameter of 20 mm and a height of 2.5 mm was assembled.

実施例3 複合材料B90重量部,ポリフッ化ビニリデン10重量部
よりなる負極合剤0.15gをステンレス製ネットと共に直
径15.5mm,高さ0.74mmに加工成型した負極(2)と、実
施例2と同じ正極合剤0.77gを直径15.5mm,高さ1.3mmに
加圧成型した正極(1)を用いたこと以外は実施例2と
同様の方法で直径20mm,高さ2.5mmのコイン型非水電解液
二次電池(実施例電池3)を組み立てた。
Example 3 Same as Example 2, except that 0.15 g of a negative electrode mixture composed of 90 parts by weight of the composite material B and 10 parts by weight of polyvinylidene fluoride was worked and formed into a diameter of 15.5 mm and a height of 0.74 mm together with a stainless steel net. A coin-type non-aqueous electrolytic solution having a diameter of 20 mm and a height of 2.5 mm was prepared in the same manner as in Example 2 except that a positive electrode (1) obtained by press-molding 0.77 g of the positive electrode mixture to a diameter of 15.5 mm and a height of 1.3 mm was used. A liquid secondary battery (Example Battery 3) was assembled.

実施例4 複合材料C90重量部,ポリフッ化ビニリデン10重量部
よりなる負極合剤0.15gをステンレス製ネットと共に直
径15.5mm,高さ0.65mmに加工成型した負極(2)と、実
施例2と同じ正極合剤0.83gを直径15.5mm,高さ1.22mmに
加圧成型した正極(1)を用いたこと以外は実施例2と
同様の方法で直径20mm,高さ2.5mmのコイン型非水電解液
二次電池(実施例電池4)を組み立てた。
Example 4 Same as Example 2 except that 0.15 g of a negative electrode mixture composed of 90 parts by weight of the composite material C and 10 parts by weight of polyvinylidene fluoride was worked and formed into a 15.5 mm diameter and 0.65 mm height together with a stainless steel net. A coin-shaped non-aqueous electrolytic solution having a diameter of 20 mm and a height of 2.5 mm in the same manner as in Example 2 except that a positive electrode (1) obtained by press-molding 0.83 g of the positive electrode mixture to a diameter of 15.5 mm and a height of 1.22 mm was used. A liquid secondary battery (Example Battery 4) was assembled.

実施例5 負極(2)として微細繊維状黒鉛/炭素質物複合材料
である昭和電工社製,SGカーボン円板状成形品(直径15.
5mm,高さ0.6mm)をそのまま使用した。正極(1)は実
施例2と同じ正極合剤0.82gを直径15.5mm,高さ1.21mmに
加圧成型したものである。それ以外は実施例2と同様の
方法で直径20mm,高さ2.5mmのコイン型非水電解液二次電
池(実施例電池5)を組み立てた。
Example 5 As a negative electrode (2), an SG carbon disk-shaped molded product (diameter 15.3) manufactured by Showa Denko KK, which is a fine fibrous graphite / carbonaceous material composite material.
(5 mm, height 0.6 mm) was used as it was. The positive electrode (1) was obtained by press-molding 0.82 g of the same positive electrode mixture as in Example 2 to a diameter of 15.5 mm and a height of 1.21 mm. Except for this, a coin-type nonaqueous electrolyte secondary battery (Example Battery 5) having a diameter of 20 mm and a height of 2.5 mm was assembled in the same manner as in Example 2.

比較例4 微細繊維状黒鉛である昭和電工社製,気相法炭素繊維
(商品名VGCF)90重量部及びポリフッ化ビニリデン10重
量部よりなる負極合剤0.14gをステンレス製ネットと共
に直径15.5mm,高さ1.03mmに加圧成型した負極(2)
と、実施例2と同じ正極合剤0.57gを直径15.5mm,高さ0.
84mmに加圧成型した正極(1)を用いたこと以外は実施
例2と同様の方法で直径20mm,高さ2.0mmのコイン型非水
電解液二次電池(比較例電池4)を組み立てた。
Comparative Example 4 0.14 g of a negative electrode mixture composed of 90 parts by weight of vapor-grown carbon fiber (trade name: VGCF) and 10 parts by weight of polyvinylidene fluoride, which is a fine fibrous graphite, manufactured by Showa Denko K.K. Negative electrode pressed to 1.03mm height (2)
And 0.57 g of the same positive electrode mixture as in Example 2 having a diameter of 15.5 mm and a height of 0.
A coin-type non-aqueous electrolyte secondary battery (comparative battery 4) having a diameter of 20 mm and a height of 2.0 mm was assembled in the same manner as in Example 2 except that the positive electrode (1) pressed to 84 mm was used. .

なお、本例は微細繊維状黒鉛を単独で負極に用いた場
合の実施例に相当するものであるが、ここでは複合材料
を負極とした場合と対比するために比較例とした。
Although this example corresponds to an example in which fine fibrous graphite is used alone for the negative electrode, it is a comparative example in order to compare with a case where the composite material is used as the negative electrode.

先ず、実施例電池2〜5並びに比較例電池4に用いた
負極の合剤充填密度を第2表に示す。
First, Table 2 shows the mixture filling densities of the negative electrodes used in the batteries of Examples 2 to 5 and the battery of Comparative Example 4.

微細繊維状黒鉛と結着剤だけからなるの負極の合剤充
填密度に対し、繊維間に炭素質物を固定させた複合材料
を使用した負極の合剤充填密度が高く、同じ容積内に収
納可能な炭素材料の量が大きいことを示している。
Compared to the packing density of the negative electrode consisting of fine fibrous graphite and binder only, the packing density of the negative electrode using a composite material in which a carbonaceous material is fixed between fibers is high and can be stored in the same volume This indicates that the amount of the various carbon materials is large.

次に、実施例電池2〜5並びに比較例電池4に対し
て、定電流充放電試験を行った。充電は上限電圧を4.0V
に設定し6mAで24時間行い、放電2mAで2.9Vまでとし、こ
の充放電サイクルを繰り返し行った。
Next, constant current charge / discharge tests were performed on the batteries 2 to 5 of the examples and the battery 4 of the comparative example. Charges up to 4.0V
The charge / discharge cycle was repeated, with the current being set to 6 mA for 24 hours and the discharge being 2 mA to 2.9 V.

第6図に各電池のエネルギー密度のサイクル変化を示
す。それによると、複合材料を用いた各実施例電池は、
微細繊維状黒鉛を単独で用いた電池と比べて1〜5割程
度高いエネルギー密度を示し、またサイクル劣化は殆ど
遜色のないものであった。例えば、50サイクル経過時点
のエネルギー密度は、比較例電池4では70Wh/であっ
たのに対して、実施例電池2では81Wh/で比較例電池
4に比べて約16%増、実施例電池3では8Wh/で約26%
増、実施例電池4ではやはり88Wh/で約26%増、実施
例電池5では103Wh/で約47%増であった。
FIG. 6 shows the cycle change of the energy density of each battery. According to this, each example battery using the composite material,
The energy density was about 10 to 50% higher than that of the battery using the fine fibrous graphite alone, and the cycle deterioration was almost comparable. For example, the energy density at the time of 50 cycles has elapsed was 70 Wh / in Comparative Example Battery 4, whereas the energy density in Example Battery 2 was 81 Wh /, an increase of about 16% as compared with Comparative Example Battery 4. At 8Wh / about 26%
In the case of the battery 4 of the embodiment, the increase was about 26% at 88 Wh /, and in the case of the battery 5 of the embodiment, the increase was about 47% at 103 Wh /.

また、第7図に各電池(実施例電池2〜4並びに比較
例電池4)の10サイクル目の放電カーブを示したが、各
実施例電池はいずれも比較例電池4の放電電圧を全領域
に亘って上回っている。
FIG. 7 shows the discharge curve of the tenth cycle of each battery (Example batteries 2 to 4 and Comparative example battery 4). Over.

ところで、微細繊維状黒鉛/有機高分子材料混合物を
焼成して微細繊維状黒鉛/炭素質物複合材料としたとき
の重量減少量から推定すると、複合材料中に占める微細
繊維状黒鉛の重量比は、複合材料Aで70%,複合材料B
で90%,複合材料Cで57%である。実施例電池4の放電
量は実施例電池3の放電量とほぼ等しいが、放電カーブ
の平坦性では第7図で明らかなように劣っている。した
がって、放電電圧の平坦性を重視する場合には、複合材
料中に占める微細繊維状黒鉛の重量比はより高い方が良
く、60%以上であることが望ましいと言える。
By the way, the weight ratio of the fine fibrous graphite in the composite material is estimated from the weight loss when the fine fibrous graphite / organic polymer material mixture is fired to obtain a fine fibrous graphite / carbonaceous material composite material. 70% for composite material A, composite material B
Is 90% and that of composite material C is 57%. The discharge amount of Example Battery 4 was almost equal to the discharge amount of Example Battery 3, but the flatness of the discharge curve was inferior as clearly shown in FIG. Therefore, when importance is attached to the flatness of the discharge voltage, it is preferable that the weight ratio of the fine fibrous graphite in the composite material be higher, and it is desirable that the weight ratio be 60% or more.

また、実施例電池5として記載したように、微細繊維
状黒鉛/炭素質物複合材料に市販の材料を使用した場合
にも良好な結果が得られた。例えば、第2表に示したよ
うに充填性が高いばかりでなく、円板状負極の全てが炭
素材料であり電池反応に関与できるので第6図に示した
ようにエネルギー密度も高い。さらに、微細繊維状黒鉛
を使用しているので、第8図に示すように放電電圧の平
坦性も比較的良い。この市販の材料は、円板状の成形体
であり、硬度も高く電池組み立て時の作業性にも優れる
ものであった。
Also, as described in Example Battery 5, good results were obtained when a commercially available material was used for the fine fibrous graphite / carbonaceous material composite material. For example, not only the filling property is high as shown in Table 2, but also the energy density is high as shown in FIG. 6 because all of the disc-shaped negative electrode is a carbon material and can participate in the battery reaction. Further, since the fine fibrous graphite is used, the flatness of the discharge voltage is relatively good as shown in FIG. This commercially available material was a disk-shaped compact, had high hardness, and was excellent in workability during battery assembly.

以上、コイン型非水電解液二次電池を例に挙げて説明
したが、これに限定されるものではなく、電池形状,寸
法等は任意である。例えば、ボタン型電池、円筒型電
池、渦巻式円筒型電池等においても先の実施例と同様良
好な結果が得られた。
The coin-type non-aqueous electrolyte secondary battery has been described above as an example. However, the present invention is not limited to this, and the battery shape and dimensions are arbitrary. For example, a button type battery, a cylindrical type battery, a spiral type cylindrical type battery, and the like also showed good results as in the previous embodiment.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明において
は、負極に微細繊維状黒鉛と炭素質材料とからなる複合
材料を用いているので、放電電圧の平坦性に優れ、しか
もサイクル劣化が少なく長寿命の二次電池を提供するこ
とができる。放電電圧の平坦性に優れることは、電池使
用機器の回路設計上有利であり、実用的な範囲において
終止電圧の設定値が多少変動しても得られる放電容量に
大きな差が生ずることもない。
As is clear from the above description, in the present invention, since the composite material composed of fine fibrous graphite and carbonaceous material is used for the negative electrode, the flatness of the discharge voltage is excellent, and the cycle deterioration is small with a long time. A long-life secondary battery can be provided. The excellent flatness of the discharge voltage is advantageous in terms of circuit design of equipment using a battery. Even if the set value of the final voltage slightly fluctuates within a practical range, there is no large difference in the obtained discharge capacity.

また、特に負極に微細繊維状黒鉛と炭素質材料とから
なる複合材料を用いることで、加工成形時の充填性を改
善することができ、エネルギー密度を向上することがで
きる。
In particular, by using a composite material including fine fibrous graphite and a carbonaceous material for the negative electrode, the filling property at the time of working and molding can be improved, and the energy density can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は微細繊維状炭素の黒鉛化処理前と黒鉛処理後の
X線回折スペクトルを示す特性図である。 第2図は組み立てたコイン型電池の構成を示す概略断面
図である。 第3図は微細繊維状黒鉛を単独で負極に用いた電池の50
サイクル目の充放電特性を他の炭素材料を負極に用いた
電池と比較して示す特性図であり、第4図は充放電サイ
クルの繰り返し回数による充放電効率の変化を示す特性
図である。 第5図は微細繊維状黒鉛/炭素質物複合材料のX線回折
スペクトルを微細繊維状黒鉛単独のX線回折スペクトル
と対比して示す特性図である。 第6図は微細繊維状黒鉛/炭素質物複合材料を負極に用
いた電池のエネルギー密度のサイクル変化を微細繊維状
黒鉛を単独で負極に用いた電池のそれと比較して示す特
性図であり、第7図は10サイクル目の放電カーブを示す
特性図である。 第8図は市販の微細繊維状黒鉛/炭素質物複合材料を負
極に用いた電池の10サイクル目の放電カーブを示す特性
図である。
FIG. 1 is a characteristic diagram showing X-ray diffraction spectra before and after graphitization of fine fibrous carbon. FIG. 2 is a schematic sectional view showing the configuration of the assembled coin-type battery. FIG. 3 shows a battery using only fibrous graphite as a negative electrode.
FIG. 4 is a characteristic diagram showing the charge / discharge characteristics at the cycle in comparison with a battery using another carbon material for the negative electrode, and FIG. 4 is a characteristic diagram showing a change in the charge / discharge efficiency depending on the number of repetitions of the charge / discharge cycle. FIG. 5 is a characteristic diagram showing the X-ray diffraction spectrum of the fine fibrous graphite / carbonaceous material composite material in comparison with the X-ray diffraction spectrum of the fine fibrous graphite alone. FIG. 6 is a characteristic diagram showing a cycle change of the energy density of the battery using the fine fibrous graphite / carbonaceous material composite material for the negative electrode in comparison with that of the battery using the fine fibrous graphite alone for the negative electrode. FIG. 7 is a characteristic diagram showing a discharge curve at the tenth cycle. FIG. 8 is a characteristic diagram showing a discharge curve at the 10th cycle of a battery using a commercially available fine fibrous graphite / carbonaceous material composite material for a negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永浦 亨 福島県郡山市日和田町高倉字下杉下1― 1 株式会社ソニー・エナジー・テック 郡山工場内 (56)参考文献 特開 昭62−90863(JP,A) 特開 平2−82466(JP,A) 特開 昭63−24555(JP,A) シャープ技報 第40号(1988−10)P 29−32 (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 H01M 4/58 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Nagaura 1-1 Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture 1 Inside Sony Energy Tech Koriyama Plant (56) References JP-A-62-90863 JP, A) JP-A-2-82466 (JP, A) JP-A-63-24555 (JP, A) Sharp Technical Report No. 40 (1988-10) P29-32 (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/02 H01M 4/58 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】002面の面間隔に相当するX線回折ピーク
の半値幅が1゜以下の微細繊維状黒鉛と炭素質材料とを
含有してなる負極と、正極と、非水電解液とからなる非
水電解液二次電池。
1. A negative electrode comprising fine fibrous graphite having a half-width of an X-ray diffraction peak corresponding to a spacing between 002 planes of 1 ° or less and a carbonaceous material, a positive electrode, and a nonaqueous electrolyte. A non-aqueous electrolyte secondary battery comprising:
【請求項2】負極中の微細繊維状黒鉛の割合が60重量%
以上であることを特徴とする請求項1記載の非水電解液
二次電池。
2. The composition according to claim 1, wherein the proportion of the fine fibrous graphite in the negative electrode is 60% by weight.
The non-aqueous electrolyte secondary battery according to claim 1, wherein:
JP1267770A 1989-10-13 1989-10-13 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2917317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267770A JP2917317B2 (en) 1989-10-13 1989-10-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267770A JP2917317B2 (en) 1989-10-13 1989-10-13 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03129664A JPH03129664A (en) 1991-06-03
JP2917317B2 true JP2917317B2 (en) 1999-07-12

Family

ID=17449348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267770A Expired - Lifetime JP2917317B2 (en) 1989-10-13 1989-10-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2917317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447946B1 (en) 1999-04-28 2002-09-10 Shin-Kobe Electric Machinery Co., Ltd. Lithium-ion battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
JP3540478B2 (en) 1995-11-24 2004-07-07 鹿島石油株式会社 Anode material for lithium ion secondary battery
JP4395925B2 (en) * 1999-06-29 2010-01-13 ソニー株式会社 Non-aqueous electrolyte battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
シャープ技報 第40号(1988−10)P29−32

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447946B1 (en) 1999-04-28 2002-09-10 Shin-Kobe Electric Machinery Co., Ltd. Lithium-ion battery

Also Published As

Publication number Publication date
JPH03129664A (en) 1991-06-03

Similar Documents

Publication Publication Date Title
CN110885083B (en) Negative active material, method of preparing the same, negative electrode and rechargeable lithium battery
KR101461220B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP5082207B2 (en) Method for producing negative electrode material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery using the same
KR101479320B1 (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
KR101666878B1 (en) Negative active material for rechargeable lithium battery, method prepareing the same and rechargeable lithium battery including the same
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20160088181A (en) Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR102542649B1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JPH06243867A (en) Nonaqueous secondary battery
KR101775539B1 (en) Negative active material for rechargeable lithium battery, and negative electrode and rechargeable lithium battery including same
KR20140121450A (en) Carbonaceous material for non-aqueous electrolyte secondary battery
KR20170025136A (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same, and negative electrode and rechargeable lithium battery including same
JP6297746B2 (en) Carbonaceous molded body for battery electrode and method for producing the same
KR101992668B1 (en) Method for producing mixed negative electrode material for non-aqueous electrolyte secondary battery and mixed negative electrode material for non-aqueous electrolyte secondary battery obtained by the method
JPH03252053A (en) Nonaqueous electrolyte secondary battery
JPH09204918A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous secondary battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JPS63121265A (en) Nonaqueous battery
JP2917317B2 (en) Non-aqueous electrolyte secondary battery
CN112424118A (en) Method for producing monolithic mesophase graphitized article
JPH0589879A (en) Lithium secondary battery
KR20150089209A (en) Negative electrode active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JPH09326254A (en) Negative electrode material for lithium ion secondary battery and manufacture therefor
JPH09306489A (en) Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JPH06231766A (en) Negative electrode for non-aqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11