JP2914113B2 - Method for manufacturing high strength and high toughness martensitic stainless steel welded steel pipe with excellent corrosion resistance - Google Patents

Method for manufacturing high strength and high toughness martensitic stainless steel welded steel pipe with excellent corrosion resistance

Info

Publication number
JP2914113B2
JP2914113B2 JP20866893A JP20866893A JP2914113B2 JP 2914113 B2 JP2914113 B2 JP 2914113B2 JP 20866893 A JP20866893 A JP 20866893A JP 20866893 A JP20866893 A JP 20866893A JP 2914113 B2 JP2914113 B2 JP 2914113B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
corrosion resistance
content
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20866893A
Other languages
Japanese (ja)
Other versions
JPH0741857A (en
Inventor
龍至 平井
秀途 木村
泰男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP20866893A priority Critical patent/JP2914113B2/en
Publication of JPH0741857A publication Critical patent/JPH0741857A/en
Application granted granted Critical
Publication of JP2914113B2 publication Critical patent/JP2914113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は塩化物、CO 2及び微量
のH2Sを含む腐食環境、ならびに大気中において使用で
きる、耐食性及び溶接性に優れた高強度・高靱性マルテ
ンサイト系ステンレス溶接鋼管の製造方法に関するもの
である。
This invention relates to chloride, CO 2 and trace
HTwoCan be used in corrosive environments including S and in the atmosphere
High strength and high toughness marte with excellent corrosion resistance and weldability
Concerning the method of manufacturing stainless steel welded steel pipes
It is.

【0002】[0002]

【従来技術】近年、エネルギー資源の枯渇から塩化物、
CO2 及び微量のH2S 等の腐食性物質を含んだ石油、天然
ガスを高圧輸送する手段として、高耐食性鋼管の使用が
増加しつつある。一方、橋梁等の土木建築物の大型化に
ともない、その柱材等に高強度鋼管の使用が増加してお
り、今後、耐久性、メイテナンス軽減、美観の面から耐
候性ステンレス鋼管が使用される可能性が高い。中で
も、13Cr鋼等のマルテンサイト系ステンレスは高強度、
且つ安価という特徴を有するが、靱性、溶接性に劣るた
め溶接鋼管としての実績は少ない。また、耐候性の面か
らも13Cr鋼では十分でない。一方、塩化物、CO2 のみを
含む環境において、13Cr鋼は良好な耐食性を有するが、
H2S が0.1atm以下と微量でも存在すると応力腐食割れを
生じる。このため本環境では、強度・靱性・耐応力腐食
割れ性のいずれにも優れたSUS329J3L,J4L等の2相ステ
ンレスが溶接鋼管として使用されている。しかし、2相
ステンレスはMo, Niを多量に含有するため高価である。
2. Description of the Related Art In recent years, chlorides,
BACKGROUND ART As a means for transporting oil and natural gas containing corrosive substances such as CO 2 and a trace amount of H 2 S at high pressure, use of high corrosion resistant steel pipes is increasing. On the other hand, as civil engineering buildings such as bridges have become larger, the use of high-strength steel pipes for pillars and the like has increased, and weather-resistant stainless steel pipes will be used in the future in terms of durability, reduced maintenance and aesthetics. Probability is high. Among them, martensitic stainless steel such as 13Cr steel has high strength,
Although it has the feature of being inexpensive, it is inferior in toughness and weldability, so its performance as a welded steel pipe is small. Also, 13Cr steel is not sufficient from the viewpoint of weather resistance. On the other hand, in an environment containing only chloride and CO 2 , 13Cr steel has good corrosion resistance,
If H 2 S is present even in a trace amount of 0.1 atm or less, stress corrosion cracking occurs. Therefore, in this environment, a duplex stainless steel such as SUS329J3L, J4L, which is excellent in strength, toughness and stress corrosion cracking resistance, is used as a welded steel pipe. However, duplex stainless steel is expensive because it contains a large amount of Mo and Ni.

【0003】マルテンサイト系ステンレスの耐硫化物応
力腐食割れ性(以下、耐SSC性と呼ぶ)を改善する方
法として、特公平3-2227号公報、特開平2-243739号公報
及び特開平3-75335 号公報にはCr, Mo, Ni, Cu等を増加
し、C を低減した鋼種が開示されている。さらに、特開
平2-243739号公報によるNi含有したマルテンサイト単相
ステンレスでは、通常の焼入処理を施さなくても、熱間
成形ままで十分焼きが入ると開示されており、マルテン
サイト系ステンレスの一層の低コスト化に有効と考えら
れる。
[0003] As a method for improving the sulfide stress corrosion cracking resistance (hereinafter referred to as SSC resistance) of martensitic stainless steel, Japanese Patent Publication Nos. 3-2227, 2-243739, and 3 No. 75335 discloses a steel type in which Cr, Mo, Ni, Cu, etc. are increased and C is reduced. Further, it is disclosed that the Ni-containing martensitic single-phase stainless steel disclosed in Japanese Patent Application Laid-Open No. 2-243739 discloses that even without normal quenching treatment, sufficient quenching is performed as it is in a hot-formed state. Is considered to be effective for further cost reduction.

【0004】[0004]

【発明が解決しようとする課題】しかし、前述したよう
にマルテンサイト系ステンレスを溶接鋼管に適用する際
の最大の問題は、溶接時の低温割れと延靱性、特に溶接
部の低温靱性に劣る点にあるが、特公平3-2227号公報、
特開平2-243739号公報及び特開平3-75335 号公報では、
この点が全く考慮されていない。本発明は上記のような
問題点を解決するためになされたもので、塩化物、CO2
及び微量のH2S を含む腐食環境、ならびに大気中で良好
な耐食性を有し、且つ溶接性、延靱性に優れた高強度ス
テンレス溶接鋼管を安価に得ることを目的とする
However, as described above, the biggest problem in applying martensitic stainless steel to a welded steel pipe is that the low-temperature cracking and ductility at the time of welding, particularly the low-temperature toughness of the welded part, are inferior. In Japanese Patent Publication No. 3-2227,
In JP-A-2-243739 and JP-A-3-75335,
This point is not considered at all. The present invention has been made in order to solve the above problems, and chloride, CO 2
The purpose is to obtain inexpensively high-strength stainless steel pipes that have good corrosion resistance in the corrosive environment containing a small amount of H 2 S and the atmosphere, and have excellent weldability and ductility.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前述した
Ni含有のマルテンサイト系ステンレス鋼の靱性及び溶接
性に及ぼす成分の影響を詳細に検討した結果、極低C,N
化及びδフェライトの低減を図り、且つ少量の残留オ−
ステナイトを含有させることにより、焼入ままでも良好
な延靱性が得られることを見出した。さらに、極低C, N
化は同時に加工性向上及び溶接時の低温割れ抑制にも有
効であった。以上の知見に基づくと、前記した課題は以
下に述べる成分限定、製造方法により解決される。
Means for Solving the Problems The present inventors have described the above-mentioned.
As a result of detailed examination of the effects of components on the toughness and weldability of Ni-containing martensitic stainless steel, extremely low C, N
And reduce δ ferrite, and a small amount of residual
It has been found that good ductility can be obtained even in the quenched state by containing the stain. Furthermore, extremely low C, N
At the same time, the formation was effective in improving workability and suppressing low-temperature cracking during welding. Based on the above findings, the above-mentioned problem is solved by the following component limitation and production method.

【0006】第1発明は、重量% で、C:0.03% 以下、S
i:1.0% 以下、Mn:1.0% 以下、Cu:0.05 〜1.0%、Ni:5.0
〜7.0%、Cr:13.0 〜17.0% 、Mo:2.0% 以下、N:0.02% 以
下を含み、且つ前記元素の含有量が(1) 〜(3) 式を満足
し、残部実質的にFe及び不可避的不純物からなる鋼塊ま
たは鋼片を熱間圧延により鋼板とし、前記鋼板を管体に
成形後、シーム溶接により重量% で、C:0.03% 以下、S
i:1.0% 以下、Mn:1.0% 以下、Cu:0.05 〜1.0%、Ni:5.0
〜7.0%、Cr:13.0 〜17.0% 、Mo:2.0% 以下、N:0.02% 以
下、O:0.035%以下を含み、且つ前記元素の含有量が下記
(1) 〜(3) 式を満足し、残部実質的にFe及び不可避的不
純物からなる溶接金属を有する溶接鋼管となし、さらに
前記溶接鋼管を850 〜1000o C の温度域に加熱後、3 ℃
/min以上の冷却速度でMf 点以下の温度域まで冷却し、
かくして溶接鋼管を製造することに特徴を有するもので
ある。 C(%)+N(%)≦0.03 ──── (1) 12×Cr(%) +15×Mo(%) +20×Si(%) −9 ×Ni(%) −2 ×Cu(%) −190 ×C(%)−160 ×N(%)≦154 ──── (2) Cr(%) +1.3 ×Mo(%) +1.5 ×Si(%) +2 ×Ni(%) +0.7 ×Cu(%) +68×C(%)+54×N(%)≧27.6 ──── (3)
In the first invention, C: 0.03% or less by weight,
i: 1.0% or less, Mn: 1.0% or less, Cu: 0.05 to 1.0%, Ni: 5.0
~ 7.0%, Cr: 13.0 to 17.0%, Mo: 2.0% or less, N: 0.02% or less, and the content of the element satisfies the formulas (1) to (3), and the balance is substantially Fe and A steel ingot or slab consisting of unavoidable impurities is formed into a steel sheet by hot rolling, and after forming the steel sheet into a tubular body, by seam welding, by weight%, C: 0.03% or less, S
i: 1.0% or less, Mn: 1.0% or less, Cu: 0.05 to 1.0%, Ni: 5.0
~ 7.0%, Cr: 13.0 ~ 17.0%, Mo: 2.0% or less, N: 0.02% or less, O: 0.035% or less, and the content of the element is as follows:
A welded steel pipe having a weld metal substantially satisfying the formulas (1) to (3), the balance being substantially Fe and unavoidable impurities, and further heating the welded steel pipe to a temperature range of 850 to 1000 ° C. ° C
cooling to a temperature range below the M f point at a cooling rate of at least / min,
Thus, the present invention is characterized in that a welded steel pipe is manufactured. C (%) + N (%) ≦ 0.03 ──── (1) 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) −9 × Ni (%) −2 × Cu (%) − 190 × C (%) − 160 × N (%) ≦ 154 ──── (2) Cr (%) +1.3 × Mo (%) +1.5 × Si (%) +2 × Ni (%) +0. 7 × Cu (%) + 68 × C (%) + 54 × N (%) ≥ 27.6 ──── (3)

【0007】第2発明は、重量% で、C:0.03% 以下、S
i:1.0% 以下、Mn:1.0% 以下、Cu:0.05 〜1.0%、Ni:5.0
〜7.0%、Cr:13.0 〜17.0% 、Mo:2.0% 以下、N:0.02% 以
下を含み、且つ前記元素の含有量が下記(1) 〜(3) 式を
満足し、残部実質的にFe及び不可避的不純物からなる鋼
塊または鋼片を、下記(4) 式で表せるT℃以下の温度域
に加熱後、700 ℃以上の温度域で仕上がる熱間圧延後、
直ちに3 ℃/min以上の冷却速度でMf 点以下の温度域ま
で冷却することにより鋼板とし、前記鋼板を管体に成形
後、シーム溶接により重量% で、C:0.03% 以下、Si:1.0
% 以下、Mn:1.0%以下、Cu:0.05 〜1.0%、Ni:5.0〜7.0
%、Cr:13.0 〜17.0% 、Mo:2.0% 以下、N:0.02% 以下、
O:0.035%以下を含み、且つ前記元素の含有量が下記(1)
〜(3) 式を満足し、残部実質的にFe及び不可避的不純物
からなる溶接金属を有する溶接鋼管を製造することに特
徴を有するものである。 C(%)+N(%)≦0.03 ──── (1) 12×Cr(%) +15×Mo(%) +20×Si(%) −9 ×Ni(%) −2 ×Cu(%) −190 ×C(%)−160 ×N(%)≦154 ──── (2) Cr(%) +1.3 ×Mo(%) +1.5 ×Si(%) +2 ×Ni(%) +0.7 ×Cu(%) +68×C(%)+54×N(%)≧27.6 ──── (3) T=450 ×Ni(%) +100 ×Cu(%) +9500×C(%)+8000×N(%) −600 ×Cr(%) −750 ×Mo(%) −1000×Si(%) +8750──── (4)
In the second invention, C: 0.03% or less by weight,
i: 1.0% or less, Mn: 1.0% or less, Cu: 0.05 to 1.0%, Ni: 5.0
~ 7.0%, Cr: 13.0 to 17.0%, Mo: 2.0% or less, N: 0.02% or less, and the content of the element satisfies the following formulas (1) to (3), with the balance being substantially Fe After ingots or slabs consisting of unavoidable impurities are heated to a temperature range of T ° C or lower expressed by the following equation (4), and then hot-rolled in a temperature range of 700 ° C or higher,
Immediately at a cooling rate of 3 ° C./min or more, the steel sheet was cooled to a temperature range of the Mf point or less, and after forming the steel sheet into a tubular body, C: 0.03% or less, Si: 1.0% by weight by seam welding.
% Or less, Mn: 1.0% or less, Cu: 0.05 to 1.0%, Ni: 5.0 to 7.0
%, Cr: 13.0 to 17.0%, Mo: 2.0% or less, N: 0.02% or less,
O: 0.035% or less, and the content of the element is the following (1)
The present invention is characterized in that a welded steel pipe which satisfies the expressions (3) to (3) and has a weld metal substantially consisting of Fe and unavoidable impurities is produced. C (%) + N (%) ≦ 0.03 ──── (1) 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) −9 × Ni (%) −2 × Cu (%) − 190 × C (%) − 160 × N (%) ≦ 154 ──── (2) Cr (%) +1.3 × Mo (%) +1.5 × Si (%) +2 × Ni (%) +0. 7 × Cu (%) + 68 × C (%) + 54 × N (%) ≧ 27.6 ──── (3) T = 450 × Ni (%) + 100 × Cu (%) + 9500 × C (%) + 8000 × N (%) −600 × Cr (%) −750 × Mo (%) −1000 × Si (%) + 8750──── (4)

【0008】第3発明は、前記第1発明または前記第2
発明の要件を満たした溶接鋼管に対し、さらに、450 〜
650 ℃の温度域に加熱後、冷却することに特徴を有する
ものである。
[0008] The third invention is the first invention or the second invention.
For welded steel pipes that meet the requirements of the invention, 450-
It is characterized by cooling after heating to a temperature range of 650 ° C.

【0009】[0009]

【作用】以下に、この発明の溶接鋼管の母材(原板)及
び溶接金属の成分限定理由を述べる。C は、強度増加に
有効な成分であり、また、オ−ステナイト生成元素であ
るためNi量の低減を図ることができるが、含有量が多く
なると靱性、溶接性、加工性及び耐食性が劣化するた
め、原板及び溶接金属のC 含有量は0.03% 以下とする。
好ましくは0.02% 以下である。
The reasons for limiting the components of the base material (original plate) and the weld metal of the welded steel pipe of the present invention will be described below. C is a component effective for increasing the strength, and can reduce the amount of Ni because it is an austenite-forming element.However, when the content is increased, toughness, weldability, workability, and corrosion resistance deteriorate. Therefore, the C content of the original plate and weld metal should be 0.03% or less.
Preferably it is 0.02% or less.

【0010】 Siは、脱酸作用を有する成分である
が、フェライト生成元素であるため、Si添加量に依存
して同じフェライト生成元素であるCr添加量が制限さ
れる。すなわち、詳細は後述するが、各元素の含有量は
その限定に加え、(2)及び(3)式を満たす範囲とす
るもので、Si添加量が増すと耐食性に有効な元素であ
るCr添加量が制限されるため、上限値は1.0%とす
。また、Siの多量の添加は延靱性の劣化を招くた
め、原板及び溶接金属のSi含有量は1.0%以下とす
る。
[0010] Si is a component having a deoxidizing effect, but is a ferrite-forming element, and thus depends on the amount of Si added.
Therefore, the amount of Cr, which is the same ferrite forming element, is limited. That is, although details will be described later, the content of each element is
In addition to the limitation, the range satisfying the expressions (2) and (3) is set.
It is an element that is effective for corrosion resistance when the added amount of Si increases.
The upper limit is set to 1.0% because the amount of Cr added is limited.
You . Further, since the addition of a large amount of Si causes deterioration of ductility, the Si content of the original plate and the weld metal is set to 1.0% or less.

【0011】Mnは、Siと同様脱酸作用を有する成分であ
り、オ−ステナイト生成元素として知られている。しか
し、この鋼においてはオ−ステナイト生成元素としての
効果は認められず、その含有量が1.0%を超えると耐食性
を低下させることが明らかになった。したがって、原板
及び溶接金属のMn含有量は1.0%以下とする。
Mn is a component having a deoxidizing effect like Si, and is known as an austenite-forming element. However, in this steel, the effect as an austenite-forming element was not recognized, and it was revealed that when the content exceeds 1.0%, the corrosion resistance is reduced. Therefore, the Mn content of the original plate and the weld metal is set to 1.0% or less.

【0012】Cuは、耐食性向上に有効な成分であり、オ
−ステナイト生成元素でもある。しかし、耐食性に及ぼ
す効果は、Cu含有量が0.05% 未満では発揮されず、1.0%
を超えるとその効果が飽和する。また、多量の添加は延
靱性を劣化させるので、原板及び溶接金属のCu含有量は
0.05〜1.0%の範囲とする。
Cu is a component effective for improving corrosion resistance and is also an austenite forming element. However, the effect on corrosion resistance is not exhibited when the Cu content is less than 0.05%,
If it exceeds, the effect is saturated. In addition, since the addition of a large amount deteriorates the toughness, the Cu content of the original sheet and the weld metal is reduced.
The range is 0.05 to 1.0%.

【0013】Niは、オ−ステナイト生成元素であり、延
靱性及び溶接性に優れたマルテンサイトを得るのに必須
の成分である。また、H2S を含む環境中における耐食
性、ならびに耐候性向上にも有効である。ただし、詳細
は後述するがNi含有量が5.0%未満では他の成分を調整し
ても残留オ−ステナイトが生成せず、延靱性が低下す
る。また、7.0%を超える添加は高価になるばかりでな
く、残留オ−ステナイトが過剰となり、強度が低下す
る。したがって、原板及び溶接金属のNi含有量は5.0 〜
7.0%の範囲とする。
Ni is an austenite-forming element and is an essential component for obtaining martensite having excellent ductility and weldability. It is also effective for improving corrosion resistance in an environment containing H 2 S and weather resistance. However, as will be described in detail later, if the Ni content is less than 5.0%, even if other components are adjusted, no residual austenite is formed, and the toughness is reduced. On the other hand, the addition of more than 7.0% not only increases the cost, but also increases the residual austenite and lowers the strength. Therefore, the Ni content of the base plate and the weld metal is 5.0 to
The range is 7.0%.

【0014】Crは、耐食性に最も重要な元素であり、1
3.0% 以上の添加によりその効果が顕著となる。しか
し、フェライト形成元素でもあるため、その含有量が1
7.0% を超えるとδフェライトが増加するとともに、残
留オ−ステナイトも過剰となり、強度、靱性が著しく低
下する。したがって、原板及び溶接金属のCr含有量は1
3.0〜17.0% の範囲とする。
[0014] Cr is the most important element for corrosion resistance.
The effect becomes remarkable by addition of 3.0% or more. However, since it is also a ferrite-forming element, its content is 1%.
If it exceeds 7.0%, the δ ferrite increases and the retained austenite also becomes excessive, and the strength and toughness are remarkably reduced. Therefore, the Cr content of the base plate and weld metal is 1
The range is 3.0 to 17.0%.

【0015】Moは、Crと同様、耐食性向上に有効な元素
でありフェライト形成元素でもあるため置換が可能であ
る。しかし、2.0%を超える添加は靱性を低下させるた
め、原板及び溶接金属のMo含有量は2.0%以下とする。
Mo, like Cr, is an element effective for improving corrosion resistance and also a ferrite-forming element, so that Mo can be substituted. However, the addition of more than 2.0% lowers the toughness, so the Mo content of the original sheet and the weld metal is set to 2.0% or less.

【0016】N は、C と同様オ−ステナイト形成元素で
ありNi含有量の低減が図れるが、強度増加にはほとんど
寄与しない。また、その含有量が増加すると延靱性、溶
接性が劣化するため、原板及び溶接金属のN 含有量は0.
02% 以下とする。
N, like C, is an austenite-forming element and can reduce the Ni content, but hardly contributes to an increase in strength. Also, if its content increases, ductility and weldability will deteriorate, so the N content of the original sheet and weld metal will be 0.
02% or less.

【0017】O 含有量が多くなると靱性が著しく劣化す
る。したがって、原板のO 含有量は通常の製鋼技術によ
り0.01% 以下に低減されている。しかし、鋼管のシーム
溶接は能率向上の観点から、CO2 溶接あるいはサブマー
ジアーク溶接等による場合が多い。この場合、溶接金属
のO含有量の増加は避けられないが、靱性の観点から、
その含有量は0.035%以下に制限する。
As the O content increases, the toughness deteriorates significantly. Therefore, the O content of the original sheet has been reduced to 0.01% or less by ordinary steelmaking technology. However, seam welding of steel pipes is often performed by CO 2 welding or submerged arc welding from the viewpoint of improving efficiency. In this case, an increase in the O content of the weld metal is inevitable, but from the viewpoint of toughness,
Its content is limited to 0.035% or less.

【0018】また、一般にマルテンサイト系ステンレス
鋼ではC,N 量の低減により溶接時の低温割れ感受性が低
下することが知られているが、高強度化を図ったこの鋼
では下記(1) 式を満たすことにより低温割れ感受性が著
しく低下するのみならず、加工成形性も向上することを
発明者らは見出した。したがって、原板及び溶接金属の
(C+N)量は上記の限定に加え、下記(1) 式を満たす範囲
とする。 C(%)+N(%)≦0.03 ──── (1)
In general, it is known that, in a martensitic stainless steel, the low-temperature cracking susceptibility during welding decreases due to a reduction in the amount of C and N. The inventors have found that, by satisfying the above condition, not only the cold cracking susceptibility is significantly reduced, but also the workability is improved. Therefore, the original plate and weld metal
The (C + N) amount is in a range that satisfies the following formula (1) in addition to the above limitation. C (%) + N (%) ≦ 0.03 ──── (1)

【0019】さらに、発明者らはこの鋼のδフェライト
の体積率及び残留オ−ステナイトの体積率と成分との関
係を詳細に検討した結果、δフェライトの体積率及び残
留オ−ステナイトの体積率が各々下記(5) 式の値δ
f (%) と下記(6) 式の値γf (%)で表せることを見出し
た。この鋼ではδフェライトを低減し、少量の残留オ−
ステナイトを有するマルテンサイト組織とすることによ
り焼入ままでも良好な延靱性が得られるが、具体的には
δf が5 を超えると靱性が劣化するばかりでなく、強度
も低下する。一方、γf が1 未満では靱性向上の効果が
発揮されない。したがって、原板及び溶接金属における
前記元素の含有量は上記限定に加え、下記(2) 及び(3)
式を満たす範囲とする。 δf =12×Cr(%) +15×Mo(%) +20×Si(%) −9 ×Ni(%) −2 ×Cu(%) −190 ×C(%)−160 ×N(%)−149 ──── (5) log γf =[Cr(%)+1.3 ×Mo(%) +1.5 ×Si(%) +2 ×Ni(%) +0.7 ×Cu(%) +68×C(%)+54×N(%)] /4 −6.9 ──── (6) 12×Cr(%) +15×Mo(%) +20×Si(%) −9 ×Ni(%) −2 ×Cu(%) −190 ×C(%)−160 ×N(%)≦154 ──── (2) Cr(%) +1.3 ×Mo(%) +1.5 ×Si(%) +2 ×Ni(%) +0.7 ×Cu(%) +68×C(%)+54×N(%)≧27.6 ──── (3)
Further, the present inventors have examined in detail the relationship between the volume fraction of δ-ferrite and the volume fraction of retained austenite and the composition of the steel, and as a result, the volume fraction of δ-ferrite and the volume fraction of retained austenite were found. Are the values δ of the following equation (5)
It found that expressed by f (%) and below (6) of the value gamma f (%). In this steel, δ ferrite is reduced and a small amount of residual
Good extension toughness even while hardening is obtained by a martensite structure with austenite, but in particular not only deteriorates toughness [delta] f is greater than 5, the strength also decreases. On the other hand, if γ f is less than 1, the effect of improving toughness is not exhibited. Therefore, the content of the element in the original sheet and the weld metal, in addition to the above limitations, the following (2) and (3)
The range must satisfy the formula. δ f = 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) −9 × Ni (%) −2 × Cu (%) −190 × C (%) − 160 × N (%) − 149 ──── (5) log γ f = [Cr (%) + 1.3 × Mo (%) + 1.5 × Si (%) + 2 × Ni (%) + 0.7 × Cu (%) + 68 × C (%) + 54 × N (%)] / 4 −6.9 ──── (6) 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) −9 × Ni (%) −2 × Cu (%) −190 × C (%) − 160 × N (%) ≦ 154 ──── (2) Cr (%) +1.3 × Mo (%) +1.5 × Si (%) +2 × Ni ( %) + 0.7 × Cu (%) + 68 × C (%) + 54 × N (%) ≧ 27.6 ──── (3)

【0020】次に、製造方法の限定理由を述べると、前
述した化学成分の鋼塊または鋼片を熱間圧延し原板を製
造する。この原板はプレス成形等により管体に成し、さ
らに、シーム部を溶接して溶接鋼管を製造する。この鋼
は溶接時の割れ感受性と溶接部の靱性に優れるため、シ
ーム溶接には被覆アーク溶接、サブマージアーク溶接、
CO2 溶接、あるいはTIG溶接等の種々の方法が適用可
能である。
Next, the reasons for the limitation of the production method will be described. A steel ingot or a steel slab having the above-mentioned chemical composition is hot-rolled to produce an original sheet. This original plate is formed into a tube by press molding or the like, and the seam is welded to produce a welded steel tube. This steel is excellent in crack susceptibility during welding and toughness of the welded part, so for seam welding, covered arc welding, submerged arc welding,
Various methods such as CO 2 welding or TIG welding can be applied.

【0021】この鋼では600 〜700 ℃の温度域で粒界に
Cr炭化物が析出し、靱性及び耐食性を低下させる。溶接
鋼管に対する焼入処理は、熱間圧延により原板に析出し
たCr炭化物の固溶と靱性に優れたマルテンサイト組織を
得る目的により実施する。しかし、焼入温度が850 ℃未
満になるとCr炭化物が固溶せず、1000℃を超える温度域
で実施すると、結晶粒が粗大化し靱性が劣化する。した
がって、焼入温度は850 〜1000℃の範囲とする。
In this steel, at the temperature range of 600 to 700 ° C.,
Cr carbide precipitates and reduces toughness and corrosion resistance. The quenching treatment for the welded steel pipe is performed for the purpose of obtaining a solid solution of Cr carbide precipitated on the original sheet by hot rolling and a martensite structure excellent in toughness. However, when the quenching temperature is lower than 850 ° C., the Cr carbide does not form a solid solution, and when the quenching temperature is higher than 1000 ° C., the crystal grains become coarse and the toughness deteriorates. Therefore, the quenching temperature is in the range of 850 to 1000 ° C.

【0022】また、焼入時の冷却条件について検討を行
った結果、この鋼では冷却速度が著しく遅くても焼きは
十分に入る。ただし、冷却速度が3 ℃/min未満になる
と、冷却中に前記のCr炭化物が再析出する。さらに、冷
却停止温度がMf 点を超えると残留オ−ステナイトの体
積率が下記(6) 式で表せる値γf よりも著しく大きくな
り、強度が低下する。したがって、焼入時の冷却は3 ℃
/min以上の冷却速度でMf 点以下の温度域まで実施す
る。 log γf =[Cr(%)+1.3 ×Mo(%) +1.5 ×Si(%) +2 ×Ni(%) +0.7 ×Cu(%) +68×C(%)+54×N(%)] /4 −6.9 ──── (6)
Further, as a result of studying the cooling conditions at the time of quenching, this steel can be sufficiently quenched even if the cooling rate is extremely low. However, when the cooling rate is less than 3 ° C./min, the above-mentioned Cr carbide is reprecipitated during cooling. Further, when the cooling stop temperature exceeds the M f point, the volume fraction of retained austenite becomes significantly larger than the value γ f represented by the following equation (6), and the strength decreases. Therefore, cooling during quenching is 3 ° C
The cooling is performed at a cooling rate of at least / min to a temperature range of the Mf point or less. log γ f = [Cr (%) + 1.3 × Mo (%) + 1.5 × Si (%) + 2 × Ni (%) + 0.7 × Cu (%) + 68 × C (%) + 54 × N (% )] / 4 −6.9 ──── (6)

【0023】さらに、焼入性に優れたこの鋼の特徴を活
かし、前述した溶接鋼管への焼入処理を省略した製造方
法を検討した。通常、熱間圧延前の加熱は1100〜1300℃
の温度域で行われるが、この鋼は加熱温度が1050℃を超
えるとδフェライトの体積率が下記(5) 式で表せる値δ
f よりも増加する。また、加熱時のδの体積率はは熱間
圧延後の原板の体積率とほぼ同一の値となることが明ら
かになった。そこで、発明者らはδフェライトの増加に
よる原板の強度、靱性低下を防ぐため、1300℃以下の温
度域における加熱温度及び成分とδの体積率との関係を
詳細に調べた結果、その値が5%以下となる最高温度は下
記(4) 式の値T( ℃) で表せることを見出した。したが
って、再加熱による焼入処理を省略する場合は、熱間圧
延前の加熱温度は(4) 式で表せるT℃以下の温度域とす
る。ただし、加熱温度が1300℃を超えると原板の表面性
状が劣化するため、そのような加熱は望ましくない。 δf =12×Cr(%) +15×Mo(%) +20×Si(%) −9 ×Ni(%) −2 ×Cu(%) −190 ×C(%)−160 ×N(%)−149 ──── (5) T=450 ×Ni(%) +100 ×Cu(%) +9500×C(%)+8000×N(%) −600 ×Cr(%) −750 ×Mo(%) −1000×Si(%) +8750 ──── (4)
Further, by utilizing the characteristics of this steel having excellent hardenability, a manufacturing method in which the above-described quenching treatment to the welded steel pipe was omitted was examined. Usually, heating before hot rolling is 1100-1300 ℃
In this steel, when the heating temperature exceeds 1050 ° C, the volume fraction of δ ferrite becomes a value δ that can be expressed by the following equation (5).
increase than f . In addition, it was found that the volume ratio of δ at the time of heating was almost the same as the volume ratio of the original sheet after hot rolling. Therefore, the inventors examined the relationship between the heating temperature and the component and the volume ratio of δ in a temperature range of 1300 ° C or less in order to prevent the strength and toughness of the original sheet from decreasing due to the increase in δ ferrite. It has been found that the maximum temperature of 5% or less can be represented by the value T (° C.) of the following equation (4). Therefore, when the quenching treatment by reheating is omitted, the heating temperature before hot rolling is set to a temperature range of T ° C. or lower expressed by the equation (4). However, if the heating temperature exceeds 1300 ° C., the surface properties of the original plate deteriorate, and such heating is not desirable. δ f = 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) −9 × Ni (%) −2 × Cu (%) −190 × C (%) − 160 × N (%) − 149 ──── (5) T = 450 × Ni (%) + 100 × Cu (%) + 9500 × C (%) + 8000 × N (%) −600 × Cr (%) −750 × Mo (%) −1000 × Si (%) + 8750 ──── (4)

【0024】また、溶接鋼管への焼入処理を省略した場
合、靱性、耐食性に優れたマルテンサイト組織を得るた
めには、熱間圧延の仕上温度はCr炭化物が析出しない温
度域とする必要があるため、その温度は700 ℃以上とす
る。さらに、熱間圧延後の冷却も焼入処理と同様、3 ℃
/min以上の冷却速度でMf 点以下の温度域まで実施す
る。
Further, when the quenching treatment to the welded steel pipe is omitted, in order to obtain a martensite structure excellent in toughness and corrosion resistance, the finishing temperature of hot rolling must be in a temperature range in which Cr carbide is not precipitated. Therefore, the temperature should be 700 ° C or higher. In addition, cooling after hot rolling is performed at 3 ° C as in the case of quenching.
The cooling is performed at a cooling rate of at least / min to a temperature range of the Mf point or less.

【0025】続く、管体成形後のシーム溶接において、
溶接後の冷却速度は速いため、溶接部には十分焼きが入
り、耐食性にも問題はない。したがって、以上の方法で
得られた溶接鋼管の母材及び溶接金属は、再加熱焼入処
理を施した溶接鋼管と同等の特性を有する。
In the subsequent seam welding after forming the tube,
Since the cooling rate after welding is high, the weld is sufficiently baked and there is no problem in corrosion resistance. Therefore, the base material and weld metal of the welded steel pipe obtained by the above method have the same characteristics as the welded steel pipe subjected to the reheating quenching treatment.

【0026】この溶接鋼管は以上述べた焼入ままの状態
で十分な強度、靱性、耐食性を有する。したがって、焼
入後行われる焼戻処理は、延靱性の一層の改善あるいは
強度調整が必要な場合に行う。しかし、焼戻温度が450
℃未満では延靱性改善効果を得るために長時間の均熱が
必要となり、また、650 ℃を超える温度では再び焼きが
入る。したがって、焼戻温度は450 〜650 ℃の範囲とす
る。ただし、耐食性を重視する場合には、450 ℃以上60
0 ℃未満の温度域が望ましい。
This welded steel pipe has sufficient strength, toughness and corrosion resistance in the as-quenched state described above. Therefore, the tempering treatment performed after quenching is performed when further improvement in toughness or strength adjustment is required. However, tempering temperature is 450
If the temperature is lower than ℃, long-time soaking is required to obtain the effect of improving the toughness. Therefore, the tempering temperature is in the range of 450 to 650 ° C. However, if corrosion resistance is important, the temperature should be between 450 ° C and 60 ° C.
A temperature range below 0 ° C. is desirable.

【実施例】本発明によるものの具体的な実施例について
説明すると、以下の如くである。 ・実施例 1 表1に示す化学成分の50kgインゴットに対して、1250℃
加熱、800 ℃仕上後空冷(冷却速度:50℃/min)の熱間
圧延を行い、板厚15mmの鋼板を製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described as follows.・ Example 1 1250 ° C for 50 kg ingot of chemical components shown in Table 1
After heating and finishing at 800 ° C., air-cooled (cooling rate: 50 ° C./min) hot rolling was performed to produce a steel sheet having a thickness of 15 mm.

【0027】[0027]

【表1】 [Table 1]

【0028】上記鋼板に対して900 ℃×5min加熱後、M
f 点以下の50℃まで空冷する焼入処理を行い、さらに、
550 ℃×5min加熱後、空冷の焼戻処理を施した後、ミク
ロ組織観察用サンプル、X線回折用サンプル、引張試験
片、曲げ試験片、2mm Vノッチ付きシャルピー衝撃試験
片、全面腐食試験片及び孔食電位測定用試験片を採取し
た。また、δフェライトの体積率に及ぼす加熱温度の影
響を調べるため鋼板に対し1050〜1300℃の温度域に加熱
後、ミクロ観察用サンプルを採取した。δフェライトの
体積率はミクロサンプルを20%NaOH 電解エッチングする
ことにより、また、残留γはX線回折法により各々測定
した。その結果を表1に併せて示す。加工性は曲げ半
径:0.5t、曲げ角度:180 o の表曲げ試験による割れの
有無で評価した。また、耐全面腐食性は温度100 ℃、20
atmCO2-0.05atmH2S-5%NaClの条件下で、厚さ3mm ×幅20
mm×長さ30mmの試験片を336hr 浸漬後、腐食速度を測定
し評価した。孔食電位はJIS G0577 により、電流密度が
100 μA/cm2 となる電位を求めた。さらに、溶接性の評
価のため、上記熱処理鋼板からYわれ試験片(JIS Z315
8 )を採取し、市販の被覆アーク溶接棒(0.04C-5Ni-12
Cr鋼)を用いて10o C、RH:60%、入熱:10KJ/cmの条件で
本溶接を行い、断面検鏡法によりルート割れの有無を調
べた。
After heating the above steel sheet at 900 ° C. for 5 minutes, M
Perform a quenching process of air cooling to 50 ° C below the f point,
After heating at 550 ℃ for 5 min and tempering by air cooling, sample for microstructure observation, sample for X-ray diffraction, tensile test specimen, bending test specimen, Charpy impact test specimen with 2 mm V notch, full-surface corrosion test specimen And the test piece for pitting potential measurement was collected. Further, in order to investigate the effect of the heating temperature on the volume ratio of δ-ferrite, the steel plate was heated to a temperature range of 1050 to 1300 ° C, and then a sample for micro observation was collected. The volume fraction of δ ferrite was measured by electrolytically etching the micro sample with 20% NaOH, and the residual γ was measured by X-ray diffraction. The results are shown in Table 1. The workability was evaluated by the presence or absence of cracks in a table bending test with a bending radius of 0.5 t and a bending angle of 180 ° . The overall corrosion resistance is 100 ° C, 20 ° C.
atmCO 2 -0.05atmH 2 S-5% NaCl, 3mm thick x 20 width
After soaking a test piece of mm × 30 mm in length for 336 hours, the corrosion rate was measured and evaluated. Pitting corrosion potential is determined by the current density according to JIS G0577.
The potential to be 100 μA / cm 2 was determined. Further, for the evaluation of weldability, a test piece (JIS Z315
8) Sampled, commercially available coated arc welding rod (0.04C-5Ni-12
(Cr steel), main welding was performed under the conditions of 10 ° C., RH: 60%, and heat input: 10 KJ / cm, and the presence or absence of root cracks was examined by a cross-sectional microscopic method.

【0029】δフェライトの体積率及び0 ℃, -50 ℃で
の吸収エネルギと成分との関係を図1に示す。図1によ
れば本鋼のδフェライトの体積率は下記(7) 式の値Bと
よい対応を示しており、Bの値が154 を超えるとC,N 含
有量が低くても靱性は著しく劣化することがわかる。 B=12×Cr(%) +15×Mo(%) +20×Si(%) −9 ×Ni(%) −2 ×Cu(%) −190 ×C(%)−160 ×N(%) ──── (7)
FIG. 1 shows the relationship between the volume fraction of δ-ferrite, the absorbed energy at 0 ° C. and -50 ° C., and the components. According to FIG. 1, the volume fraction of δ ferrite in this steel shows a good correspondence with the value B of the following equation (7). When the value of B exceeds 154, the toughness is remarkably high even if the C and N contents are low. It turns out that it deteriorates. B = 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) −9 × Ni (%) −2 × Cu (%) −190 × C (%) − 160 × N (%) ── ── (7)

【0030】残留オ−ステナイトの体積率、0 ℃, -50
℃での吸収エネルギと成分との関係を図2に示す。すな
わち、この図2によれば本鋼の残留γの体積率は下記
(8) 式の値Cとよい対応を示しており、Cの値が27.6未
満では靱性が低下することが理解される。 C=Cr(%) +1.3 ×Mo(%) +1.5 ×Si(%) +2 ×Ni(%) +0.7 ×Cu(%) +68×C(%)+54×N(%) ──── (8)
Volume fraction of retained austenite, 0 ° C., -50
FIG. 2 shows the relationship between the absorbed energy at ° C. and the components. That is, according to FIG. 2, the volume ratio of the residual γ of the steel is as follows.
This shows a good correspondence with the value C in the expression (8), and it is understood that when the value of C is less than 27.6, the toughness decreases. C = Cr (%) + 1.3 × Mo (%) + 1.5 × Si (%) + 2 × Ni (%) + 0.7 × Cu (%) + 68 × C (%) + 54 × N (%) ── ── (8)

【0031】加熱時のδフェライトの体積率と成分との
関係を図3に示す。図3によればδフェライトの体積率
が5%以下となる最高温度は下記(4) 式の値Tとよい対応
を示しており、溶接鋼管に対する焼入処理を省略した場
合には、靱性確保のためには、原板の圧延時の加熱温度
をT( ℃) 以下にする必要があることがわかる。 T=450 ×Ni(%) +100 ×Cu(%) +9500×C(%)+8000×N(%) −600 ×Cr(%) −750 ×Mo(%) −1000×Si(%) +8750 ──── (4) 表2には本発明法1〜10、比較法11〜25及び13Cr鋼の引
張特性、曲げ加工性、0℃,-50℃における吸収エネル
ギ、Yわれ試験結果、全面腐食試験での腐食速度及び孔
食電位をまとめて示した。
FIG. 3 shows the relationship between the volume fraction of δ ferrite and the components during heating. According to FIG. 3, the maximum temperature at which the volume fraction of δ ferrite is 5% or less shows a good correspondence with the value T of the following equation (4), and when the quenching treatment for the welded steel pipe is omitted, the toughness is secured. For this purpose, it is understood that the heating temperature during rolling of the original sheet must be T (° C.) or lower. T = 450 × Ni (%) + 100 × Cu (%) + 9500 × C (%) + 8000 × N (%) −600 × Cr (%) −750 × Mo (%) −1000 × Si (%) + 8750 ── ── (4) Table 2 shows the tensile properties, bending workability, absorbed energy at 0 ° C and -50 ° C, the results of the Y-test, and the general corrosion test of the present invention methods 1 to 10, comparative methods 11 to 25 and 13Cr steel. The corrosion rate and the pitting potential in the samples were summarized.

【0032】[0032]

【表2】 [Table 2]

【0033】表2によれば本発明法の化学成分を有する
鋼の強度、延靱性、加工性、溶接性、及び耐全面腐食
性、耐孔食性はいずれも13Cr鋼に比べ優れていることが
わかる。特に、強加工や予熱なしの溶接を行うために
は、(C+N) 含有量を0.03% 以下にする必要があることが
理解される。
According to Table 2, the strength, ductility, workability, weldability, general corrosion resistance and pitting corrosion resistance of the steel having the chemical composition of the present invention are all superior to 13Cr steel. Recognize. In particular, it is understood that the content of (C + N) needs to be 0.03% or less in order to perform welding without strong working or preheating.

【0034】・実施例 2 母材用として表3に示す本発明法の限定内の化学成分を
有する50kgインゴットを、熱間圧延により板厚15mmの鋼
板となした。
Example 2 A 50 kg ingot having a chemical composition within the limits of the method of the present invention shown in Table 3 for a base material was formed into a steel sheet having a thickness of 15 mm by hot rolling.

【0035】[0035]

【表3】 [Table 3]

【0036】この鋼板と表3に併せて示す化学成分の1.
2mm φ溶接ワイヤ1〜6を用いてMIG溶接による突合
せ溶接を行い、溶接継手を作成した。開先形状は表面側
が深さ8mm 、裏面側が深さ5mm 、ベベル角度45o とし、
溶接条件は190A×28V ×25cm/minで、両面多層溶接とし
た。溶接継手は熱処理を行った後、2mm Vノッチ付きシ
ャルピー衝撃試験片及び孔食電位測定用試験片を母材及
び溶接金属より採取した。母材と溶接ワイヤの組合せ及
び得られた溶接金属の化学成分を表4に、鋼板の熱間圧
延条件及び溶接継手の熱処理条件を表5に各々示す。
The steel sheet and the chemical components shown in Table 3
Butt welding by MIG welding was performed using 2 mm φ welding wires 1 to 6 to prepare a welded joint. The groove shape is 8 mm deep on the front side, 5 mm deep on the back side, bevel angle 45 o ,
The welding conditions were 190 A × 28 V × 25 cm / min, and double-sided multilayer welding was performed. After the heat treatment of the welded joint, a Charpy impact test piece with a 2 mm V notch and a test piece for pitting potential measurement were collected from the base metal and the weld metal. Table 4 shows the combination of the base metal and the welding wire and the chemical composition of the obtained weld metal. Table 5 shows the hot rolling conditions of the steel sheet and the heat treatment conditions of the welded joint.

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】なお、溶接金属の化学成分は製造条件に依
存せず、同一の母材、溶接ワイヤを用いたものではほぼ
同じ値であった。また、熱間圧延後、及び溶接継手の焼
入処理は表5に示す冷却速度でMf 点以下の50℃まで冷
却し、焼戻処理の冷却はいずれも空冷(50℃/min程度)
とした。母材及び溶接金属の-50 ℃及び-20 ℃での吸収
エネルギと孔食電位を表6に示す。
The chemical composition of the weld metal did not depend on the manufacturing conditions, and was almost the same when the same base material and welding wire were used. After hot rolling and for the quenching process of the welded joint, it is cooled to 50 ° C below the M f point at the cooling rate shown in Table 5, and the cooling for the tempering process is air cooling (about 50 ° C / min).
And Table 6 shows the absorbed energy and pitting potential at -50 ° C and -20 ° C of the base metal and the weld metal.

【0040】[0040]

【表6】 [Table 6]

【0041】表6によれば本発明法で製造した溶接継手
の靱性及び耐孔食性は、母材、溶接金属ともに優れてい
ることが理解される。
According to Table 6, it is understood that the toughness and the pitting corrosion resistance of the welded joint produced by the method of the present invention are excellent in both the base metal and the weld metal.

【0042】・実施例 3 表7に示す本発明法の限定内の化学成分を有する鋼塊B
を熱間圧延工場で板厚15mmの鋼板に圧延した。この鋼板
と表7及び表8に示す化学成分の4mm φ溶接ワイヤ1及
びフラックス〜を用いて、表9に示す条件の2電極
サブマージアーク溶接による突合せ溶接を行い、溶接継
手を作成した。
Example 3 Ingot B having a chemical composition within the limits of the method of the present invention shown in Table 7
Was rolled into a steel sheet having a thickness of 15 mm at a hot rolling mill. Using this steel sheet and the 4 mm φ welding wire 1 and the flux of the chemical composition shown in Tables 7 and 8, butt welding was performed by two-electrode submerged arc welding under the conditions shown in Table 9 to produce welded joints.

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【表8】 [Table 8]

【0045】[0045]

【表9】 [Table 9]

【0046】開先形状は内面側が深さ5mm 、外面側が深
さ5.5mm 、ベベル角度45o とした。表10に得られた溶接
金属の化学成分を示す。
The groove had a depth of 5 mm on the inner surface, a depth of 5.5 mm on the outer surface, and a bevel angle of 45 ° . Table 10 shows the chemical components of the obtained weld metal.

【0047】[0047]

【表10】 [Table 10]

【0048】溶接継手に対して900 ℃×5min加熱後、M
f 点以下の50℃まで空冷する焼入処理を行い、さらに、
550 ℃×5min加熱後、空冷の焼戻処理を施した後、溶接
金属から2mm Vノッチ付きシャルピー衝撃試験片を採取
した。溶接金属の-20 ℃での吸収エネルギとO 含有量と
の関係を図4に示す。この図4によれば塩基度の低いフ
ラックスを使用し、O 含有量が0.035%を超えると靱性が
著しく劣化することがわかる。
After heating the welded joint at 900 ° C. for 5 minutes, M
Perform a quenching process of air cooling to 50 ° C below the f point,
After heating at 550 ° C. for 5 minutes, an air-cooled tempering treatment was performed, and a Charpy impact test specimen with a 2 mm V notch was collected from the weld metal. FIG. 4 shows the relationship between the absorbed energy of the weld metal at −20 ° C. and the O content. FIG. 4 shows that when a flux having a low basicity is used and the O content exceeds 0.035%, the toughness is significantly deteriorated.

【0049】表7に示す本発明法の限定内の化学成分を
有する鋼塊A,Bを、熱間圧延工場にて板厚15mmの鋼板
となした。この鋼板をUOE加工により管体に成形後、
表7及び表8に示す化学成分の溶接ワイヤ1、2及びフ
ラックスを用いてシーム部を2電極サブマージアーク
溶接により突合せ溶接し、20インチの溶接鋼管を製造し
た。溶接条件、開先形状は上記と同一である。溶接鋼管
は熱処理を施した後、母材及び溶接部より引張試験片、
2mm Vノッチ付きシャルピー衝撃試験片、全面腐食試験
片、孔食電位測定用試験片、及び大気暴露試験片を採取
した。全面腐食、孔食電位測定用、及び大気暴露試験片
は母材と溶接金属の面積がほぼ等しくなるように採取し
た。大気暴露試験は厚さ3mm ×幅70mm×長さ150mm の試
験片を6カ月間暴露し、発銹の有無で耐候性を評価し
た。
Ingots A and B having the chemical components within the limits of the method of the present invention shown in Table 7 were formed into a steel sheet having a thickness of 15 mm in a hot rolling mill. After forming this steel plate into a tube by UOE processing,
A seam portion was butt-welded by two-electrode submerged arc welding using welding wires 1 and 2 and fluxes having the chemical components shown in Tables 7 and 8, to produce a 20-inch welded steel pipe. The welding conditions and the groove shape are the same as above. After the heat treatment of the welded steel pipe, the tensile test specimen from the base metal and the welded part,
A 2 mm V-notched Charpy impact test specimen, a general corrosion test specimen, a pitting potential measurement test specimen, and an atmospheric exposure test specimen were collected. Specimens for general corrosion, pitting potential measurement, and exposure to the atmosphere were collected so that the areas of the base metal and the weld metal were approximately equal. In the air exposure test, a test piece having a thickness of 3 mm, a width of 70 mm, and a length of 150 mm was exposed for 6 months, and weather resistance was evaluated by checking for rust.

【0050】母材と溶接ワイヤの組合せ及び得られた溶
接金属の化学成分を表11に、鋼板の熱間圧延条件及び溶
接鋼管の熱処理条件を表12に各々示す。
Table 11 shows the combination of the base metal and the welding wire and the chemical composition of the obtained weld metal. Table 12 shows the hot rolling conditions of the steel sheet and the heat treatment conditions of the welded steel pipe.

【0051】[0051]

【表11】 [Table 11]

【0052】[0052]

【表12】 なお、溶接金属の化学成分は製造条件に依存せず、同一
の母材、溶接ワイヤを用いたものではほぼ同じ値であっ
た。また、熱間圧延後、及び溶接鋼管の焼入処理は表12
に示す冷却速度でMf 点以下の50℃まで冷却し、焼戻処
理の冷却はいずれも空冷(50℃/min程度)とした。
[Table 12] In addition, the chemical composition of the weld metal did not depend on the manufacturing conditions, and the values using the same base material and welding wire were almost the same. Table 12 shows the quenching process after hot rolling and for quenching of welded steel pipes.
At the cooling rate shown below, and cooled to 50 ° C. below the M f point.

【0053】母材及び溶接部の引張特性、-50 ℃及び-2
0 ℃での吸収エネルギ、全面腐食試験での腐食速度、孔
食電位を表13に示す。
Tensile properties of base metal and weld, -50 ° C and -2
Table 13 shows the absorbed energy at 0 ° C, the corrosion rate in the general corrosion test, and the pitting potential.

【0054】[0054]

【表13】 [Table 13]

【0055】表13によれば本発明法で製造した溶接鋼管
は母材、溶接部ともに強度、延靱性に優れ、また、塩化
物、CO2 及び微量のH2S を含む腐食環境での耐全面腐食
性、塩化物中での耐孔食性、ならびに耐候性も良好であ
ることが理解される。
According to Table 13, the welded steel pipe manufactured by the method of the present invention has excellent strength and ductility in both the base metal and the welded part, and has a high resistance to corrosion in a corrosive environment containing chloride, CO 2 and a small amount of H 2 S. It is understood that overall corrosion resistance, pitting corrosion resistance in chloride, and weather resistance are also good.

【0056】[0056]

【発明の効果】以上のように、この発明によれば塩化
物、CO2 及び微量のH2S を含む腐食環境、ならびに大気
中で良好な耐食性を有し、且つ溶接性、加工性及び延靱
性に優れた高強度ステンレス溶接鋼管を容易に得られる
効果がある。したがって、石油、天然ガスの高圧輸送に
使用する高耐食性鋼管あるいは橋梁等の柱材に使用され
る耐食性鋼管を安価に提供することが可能となる、工業
上、有用な効果がもたらされる。
As described above, according to the present invention, it has good corrosion resistance in a corrosive environment containing chlorides, CO 2 and a trace amount of H 2 S, and in the air, and has good weldability, workability and ductility. There is an effect that a high-strength stainless steel welded pipe excellent in toughness can be easily obtained. Therefore, a highly corrosion-resistant steel pipe used for high-pressure transportation of oil and natural gas or a corrosion-resistant steel pipe used for a pillar material such as a bridge can be provided at a low cost, which brings about an industrially useful effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1による鋼のδフェライトの体
積率及び0 ℃, -50 o C での吸収エネルギと成分との関
係を示すグラフである。
[1] δ volume fraction and 0 ℃ ferrite steel according to Example 1 of the present invention, it is a graph showing the relationship between the absorbed energy and the components at -50 o C.

【図2】実施例1による鋼の残留オ−ステナイトの体積
率、0 ℃, -50 ℃の吸収エネルギと成分との関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between the volume fraction of retained austenite and the absorbed energy at 0 ° C. and -50 ° C. of steel according to Example 1 and components.

【図3】本発明の実施例1による鋼の加熱時のδフェラ
イトの体積率と成分との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the volume fraction of δ ferrite and the components when steel is heated according to Example 1 of the present invention.

【図4】本発明の実施例2による鋼の溶接金属の-20 ℃
での吸収エネルギとO 含有量との関係を示すグラフであ
る。
FIG. 4 shows -20 ° C. of the weld metal of steel according to Example 2 of the present invention.
6 is a graph showing the relationship between the absorbed energy and the O 2 content at the time of FIG.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−264192(JP,A) 特開 平2−232346(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 8/02,8/10,9/08 C22C 38/00 302 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-264192 (JP, A) JP-A-2-232346 (JP, A) (58) Fields investigated (Int.Cl. 6 , DB name) C21D 8 / 02,8 / 10,9 / 08 C22C 38/00 302

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量% で、 C :0.03%以下、 Si:1.0% 以下、 Mn:1.0% 以下、 Cu:0.05 〜1.0%、 Ni:5.0〜7.0%、 Cr:13.0 〜17.0% 、 Mo:2.0% 以下、 N :0.02%以下を含み、 且つ前記元素の含有量が下記(1) 〜(3) 式を満足し、残
部実質的にFe及び不可避的不純物からなる鋼塊または鋼
片を熱間圧延により鋼板とし、前記鋼板を管体に成形
後、シーム溶接により、 重量% で、 C :0.03%以下、 Si:1.0% 以下、 Mn:1.0% 以下、 Cu:0.05 〜1.0%、 Ni:5.0〜7.0%、 Cr:13.0 〜17.0% 、 Mo:2.0% 以下、 N :0.02%以下、 O :0.035% 以下を含み、 且つ前記元素の含有量が下記(1) 〜(3) 式を満足し、残
部実質的にFe及び不可避的不純物からなる溶接金属を有
する溶接鋼管となし、さらに前記溶接鋼管を850 〜1000
o C の温度域に加熱後、3 ℃/min以上の冷却速度でMf
点以下の温度域まで冷却することを特徴とする、耐食性
に優れた高強度・高靱性マルテンサイト系ステンレス溶
接鋼管の製造方法。 C(%)+N(%)≦0.03 ──── (1) 12×Cr(%) +15×Mo(%) +20×Si(%) −9 ×Ni(%) −2 ×Cu(%) −190 ×C(%)−160 ×N(%)≦154 ──── (2) Cr(%) +1.3 ×Mo(%) +1.5 ×Si(%) +2 ×Ni(%) +0.7 ×Cu(%) +68×C(%)+54×N(%)≧27.6 ──── (3)
[Claim 1] By weight%, C: 0.03% or less, Si: 1.0% or less, Mn: 1.0% or less, Cu: 0.05 to 1.0%, Ni: 5.0 to 7.0%, Cr: 13.0 to 17.0%, Mo: 2.0% or less, N: 0.02% or less, and the content of the element satisfies the following formulas (1) to (3), and the remainder is substantially heated to a steel ingot or a slab consisting of Fe and unavoidable impurities. After rolling, the steel sheet is formed into a tube, and then, by seam welding, C: 0.03% or less, Si: 1.0% or less, Mn: 1.0% or less, Cu: 0.05 to 1.0%, Ni: 5.0 to 7.0%, Cr: 13.0 to 17.0%, Mo: 2.0% or less, N: 0.02% or less, O: 0.035% or less, and the content of the element satisfies the following formulas (1) to (3). A welded steel pipe having a weld metal substantially consisting of Fe and unavoidable impurities, and the welded steel pipe is 850 to 1000
After heating to a temperature range of o C, 3 ℃ / min or more cooling rate M f
A method for producing a high-strength, high-toughness martensitic stainless steel welded steel pipe having excellent corrosion resistance, characterized by cooling to a temperature range of not more than the temperature. C (%) + N (%) ≦ 0.03 ──── (1) 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) −9 × Ni (%) −2 × Cu (%) − 190 × C (%) − 160 × N (%) ≦ 154 ──── (2) Cr (%) +1.3 × Mo (%) +1.5 × Si (%) +2 × Ni (%) +0. 7 × Cu (%) + 68 × C (%) + 54 × N (%) ≥ 27.6 ──── (3)
【請求項2】 重量% で、 C :0.03%以下、 Si:1.0% 以下、 Mn:1.0% 以下、 Cu:0.05 〜1.0%、 Ni:5.0〜7.0%、 Cr:13.0 〜17.0% 、 Mo:2.0% 以下、 N :0.02%以下を含み、 且つ前記元素の含有量が下記(1) 〜(3) 式を満足し、残
部実質的にFe及び不可避的不純物からなる鋼塊または鋼
片を、下記(4) 式で表せるTo C 以下の温度域に加熱
後、700 ℃以上の温度域で仕上がる熱間圧延後、直ちに
3 ℃/min以上の冷却速度でMf 点以下の温度域まで冷却
することにより鋼板とし、前記鋼板を管体に成形後、シ
ーム溶接により、 重量% で、 C :0.03%以下、 Si:1.0% 以下、 Mn:1.0% 以下、 Cu:0.05 〜1.0%、 Ni:5.0〜7.0%、 Cr:13.0 〜17.0% 、 Mo:2.0% 以下、 N :0.02%以下、 O :0.035% 以下を含み、 且つ前記元素の含有量が下記(1) 〜(3) 式を満足し、残
部実質的にFe及び不可避的不純物からなる溶接金属を有
することを特徴とする、耐食性に優れた高強度・高靱性
マルテンサイト系ステンレス溶接鋼管の製造方法。 C(%)+N(%)≦0.03 ──── (1) 12×Cr(%) +15×Mo(%) +20×Si(%) −9 ×Ni(%) −2 ×Cu(%) −190 ×C(%)−160 ×N(%)≦154 ──── (2) Cr(%) +1.3 ×Mo(%) +1.5 ×Si(%) +2 ×Ni(%) +0.7 ×Cu(%) +68×C(%)+54×N(%)≧27.6 ──── (3) T=450 ×Ni(%) +100 ×Cu(%) +9500×C(%)+8000×N(%) −600 ×Cr(%) −750 ×Mo(%) −1000×Si(%) +8750─── (4)
2% by weight, C: 0.03% or less, Si: 1.0% or less, Mn: 1.0% or less, Cu: 0.05 to 1.0%, Ni: 5.0 to 7.0%, Cr: 13.0 to 17.0%, Mo: 2.0% or less, N: 0.02% or less, and the content of the element satisfies the following formulas (1) to (3), the remainder substantially ingot or slab consisting of Fe and unavoidable impurities, Immediately after heating to a temperature range of T o C or less expressed by the following formula (4), and then finishing hot rolling at a temperature range of 700 ° C. or more,
A steel sheet is formed by cooling at a cooling rate of 3 ° C./min or more to a temperature range below the M f point, and after forming the steel sheet into a tubular body, by seam welding, C: 0.03% or less, Si: 1.0% by weight. % Or less, Mn: 1.0% or less, Cu: 0.05 to 1.0%, Ni: 5.0 to 7.0%, Cr: 13.0 to 17.0%, Mo: 2.0% or less, N: 0.02% or less, O: 0.035% or less, And high-strength and high-toughness excellent in corrosion resistance, characterized in that the content of the element satisfies the following formulas (1) to (3), and the balance is a weld metal substantially composed of Fe and unavoidable impurities. Manufacturing method of martensitic stainless steel welded steel pipe. C (%) + N (%) ≦ 0.03 ──── (1) 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) −9 × Ni (%) −2 × Cu (%) − 190 × C (%) − 160 × N (%) ≦ 154 ──── (2) Cr (%) +1.3 × Mo (%) +1.5 × Si (%) +2 × Ni (%) +0. 7 × Cu (%) + 68 × C (%) + 54 × N (%) ≧ 27.6 ──── (3) T = 450 × Ni (%) + 100 × Cu (%) + 9500 × C (%) + 8000 × N (%) −600 × Cr (%) −750 × Mo (%) −1000 × Si (%) + 8750─── (4)
【請求項3】 請求項1または2に記載された前記溶接
鋼管に対し、さらに、450 〜650 ℃の温度域に加熱後、
冷却することを特徴とする、耐食性に優れた高強度・高
靱性マルテンサイト系ステンレス溶接鋼管の製造方法。
3. The welded steel pipe according to claim 1, further heated to a temperature range of 450 to 650 ° C.,
A method for producing a high-strength and high-toughness martensitic stainless steel welded steel pipe excellent in corrosion resistance, characterized by cooling.
JP20866893A 1993-07-30 1993-07-30 Method for manufacturing high strength and high toughness martensitic stainless steel welded steel pipe with excellent corrosion resistance Expired - Lifetime JP2914113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20866893A JP2914113B2 (en) 1993-07-30 1993-07-30 Method for manufacturing high strength and high toughness martensitic stainless steel welded steel pipe with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20866893A JP2914113B2 (en) 1993-07-30 1993-07-30 Method for manufacturing high strength and high toughness martensitic stainless steel welded steel pipe with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPH0741857A JPH0741857A (en) 1995-02-10
JP2914113B2 true JP2914113B2 (en) 1999-06-28

Family

ID=16560081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20866893A Expired - Lifetime JP2914113B2 (en) 1993-07-30 1993-07-30 Method for manufacturing high strength and high toughness martensitic stainless steel welded steel pipe with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP2914113B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444008B2 (en) * 1995-03-10 2003-09-08 住友金属工業株式会社 Martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance
JP4763925B2 (en) 2001-06-29 2011-08-31 本田技研工業株式会社 Saddle riding

Also Published As

Publication number Publication date
JPH0741857A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
JP6156609B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JPWO2004001082A1 (en) Stainless steel pipe for oil well and manufacturing method thereof
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP6773020B2 (en) Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
KR102002241B1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JPWO2020004410A1 (en) Clad steel plate and method for manufacturing the same
JP4552268B2 (en) How to connect high strength martensitic stainless steel pipes for oil wells
JP2001179485A (en) Martensitic welded stainless steel pipe and producing method therefor
JP3654194B2 (en) High-strength steel material with excellent strain aging resistance and its manufacturing method
US6464802B1 (en) High Cr steel pipe for line pipe
JP2914113B2 (en) Method for manufacturing high strength and high toughness martensitic stainless steel welded steel pipe with excellent corrosion resistance
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JPH09327721A (en) Production of martensitic stainless steel welded tube excellent in weldability
JP2001098348A (en) High strength martensitic stainless steel oil well pipe
JP2861720B2 (en) Method for producing duplex stainless welded steel pipe excellent in strength, toughness and corrosion resistance
JP4317517B2 (en) High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method
JP2000045042A (en) H SHAPE STEEL FOR TUNNEL SUPPORT, HAVING TENSILE STRENGTH OF 490 N/mm2 AND ABOVE AND EXCELLENT IN BENDABILITY, AND ITS MANUFACTURE
JP2921324B2 (en) High-strength and high-toughness martensitic stainless steel for welded structures and method for producing the same
JP3705161B2 (en) High tensile steel plate
JP3975882B2 (en) High corrosion resistance low strength stainless steel with excellent workability and toughness of welds and its welded joints
JP6747628B1 (en) Duplex stainless steel, seamless steel pipe, and method for producing duplex stainless steel
JP4560994B2 (en) Cr-containing steel sheet for building / civil engineering structure and its manufacturing method
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic