JP2921324B2 - High-strength and high-toughness martensitic stainless steel for welded structures and method for producing the same - Google Patents
High-strength and high-toughness martensitic stainless steel for welded structures and method for producing the sameInfo
- Publication number
- JP2921324B2 JP2921324B2 JP7858093A JP7858093A JP2921324B2 JP 2921324 B2 JP2921324 B2 JP 2921324B2 JP 7858093 A JP7858093 A JP 7858093A JP 7858093 A JP7858093 A JP 7858093A JP 2921324 B2 JP2921324 B2 JP 2921324B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- less
- temperature range
- steel
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高速船の水中翼等の材
料として利用できる、溶接構造用高強度・高靭性ステン
レス鋼及びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, high-toughness stainless steel for a welded structure which can be used as a material for a hydrofoil of a high-speed ship, and a method for producing the same.
【0002】[0002]
【従来の技術】水力発電用ランナー等の高速流水環境で
は、従来、耐キャビテーションエロージョン性(以下、
耐CE性と呼ぶ)に優れたSCS6等の13%Cr−4
〜6%Ni鋳鋼が用いられてきた。この鋼はNiを含有
させることにより、Cを0.03〜0.05%程度に低
減してもδフェライトがほとんど無く、さらにAc1 点
以上の高温焼戻により残留オーステナイトが数10%生
成するため、マルテンサイト系ステンレス鋼としては比
較的良好な靭性と溶接性を有している。2. Description of the Related Art In a high-speed flowing water environment such as a runner for hydroelectric power generation, conventionally, cavitation erosion resistance (hereinafter, referred to as "cavitation erosion resistance") has been used.
13% Cr-4, such as SCS6, which has excellent CE resistance
66% Ni cast steel has been used. By containing Ni, this steel has almost no δ ferrite even when C is reduced to about 0.03 to 0.05%, and several tens% of retained austenite is formed by high temperature tempering at one or more Ac points. Therefore, the martensitic stainless steel has relatively good toughness and weldability.
【0003】しかし、近年、高速船の大型化、ハイスピ
ード化にともない、水中翼等の部材の軽量化及び耐CE
性の向上が必要とされている。軽量化、ならびに耐CE
性の向上には、いずれも高強度化を図ることが最も有効
な手段であり、現在800MPa以上の0.2%耐力を
有する高強度ステンレス鋼が要求されているが、高温焼
戻を施している13Cr−3〜6Ni鋼の0.2%耐力
は500〜700MPa程度である。800MPa以上
の0.2%耐力を有する高強度ステンレス鋼としては、
SUS630(17−4PH)等の析出硬化型マルテン
サイト系ステンレスが挙げられる。しかし、Cu等によ
り著しく析出強化されたこの鋼は延靭性が不良で、ま
た、δフェライトを含有するため熱間加工性にも劣る。
さらに、溶接時の熱影響でCu析出物が再固溶するた
め、溶接継手の強度が著しく低下する。このため、溶接
後に時効処理を施す必要があり、大型構造物への適用が
困難であった。However, in recent years, with the increase in speed and speed of high-speed ships, weight reduction of components such as hydrofoils and CE resistance have been required.
There is a need for improved sex. Lightweight and CE resistant
In all cases, increasing the strength is the most effective means for improving the properties, and high strength stainless steel having a 0.2% proof stress of 800 MPa or more is currently required. The 0.2% proof stress of the 13Cr-3 to 6Ni steel is about 500 to 700 MPa. As a high-strength stainless steel having a 0.2% proof stress of 800 MPa or more,
A precipitation hardening type martensitic stainless steel such as SUS630 (17-4PH) can be used. However, this steel, which has been significantly strengthened by precipitation with Cu or the like, has poor ductility and is inferior in hot workability since it contains δ ferrite.
Furthermore, since the Cu precipitate re-dissolves under the influence of heat during welding, the strength of the welded joint is significantly reduced. For this reason, it is necessary to perform aging treatment after welding, and it has been difficult to apply the method to large structures.
【0004】これに対し、特公平1−28827号公報
では、前記したNi含有の低Cマルテンサイト系ステン
レス鋼にV、Alを微量添加し低温焼戻を施すことによ
り、微細な針状マルテンサイト組織となり、SUS63
0並の強度を有し、且つ優れた延靭性が得られると開示
されている。また、特開昭62−124218号公報及
び特開平3−188215号公報によれば、このような
微量元素を添加したNi含有の低Cマルテンサイト系ス
テンレス鋼は、Ac1点以上の高温域で焼戻を施すこと
により、前者では微細かつ安定な逆変態オーステナイト
が形成し、後者では逆変態オーステナイトがより微細な
マルテンサイトに変態するため、強度、靭性のみなら
ず、溶接熱影響部の軟化抵抗にも優れると開示されてい
る。[0004] On the other hand, Japanese Patent Publication No. 1-28827 discloses fine Ni by adding a small amount of V and Al to the aforementioned Ni-containing low C martensitic stainless steel and performing low temperature tempering. Acicular martensite structure, SUS63
It is disclosed that it has zero strength and excellent ductility. According to Japanese Patent Application Laid-Open Nos. 62-124218 and 3-188215, Ni-containing low C martensitic stainless steel to which such a trace element is added can be obtained at a high temperature of 1 point or more of Ac. By performing tempering, in the former, fine and stable reverse transformed austenite is formed, and in the latter, reverse transformed austenite is transformed into finer martensite, so that not only strength and toughness, but also softening resistance of the weld heat affected zone Is also disclosed to be excellent.
【0005】[0005]
【発明が解決しようとする課題】しかし、特公平1−2
8827号公報、特開昭62−124218号公報及び
特開平3−188215号公報による鋼の延靭性は、C
u等の析出により著しく強化された析出硬化型ステンレ
ス鋼に比べ優れているものの、いずれも伸びで20%程
度、0℃のシャルピー吸収エネルギーで200J程度が
上限であり、強加工や低温使用を考慮するといまだ問題
があった。また、特公平1−28827号公報及び特開
昭62−124218号公報によるものは、析出硬化型
ステンレス鋼と同様に、1hr以上という長時間焼戻処
理が必要であり、製造効率の向上及びコスト低減の観点
から、熱処理の簡略化が要求されている。本発明は上記
のような問題点を解決するためになされたもので、高速
船の水中翼等の材料として利用できる、800MPa以
上の0.2%耐力を有し、且つ延靭性、加工性、溶接
性、ならびに溶接熱影響部の軟化抵抗に優れたステンレ
ス鋼を安価に得ることを目的とする。Problems to be solved by the Invention
No. 8827, JP-A-62-224218 and JP-A-3-188215, the ductility of steel is C
Despite being superior to precipitation hardened stainless steel significantly strengthened by precipitation of u, etc., each has an upper limit of about 20% in elongation and about 200 J in Charpy absorbed energy at 0 ° C. Considering strong working and low temperature use Then there was still a problem. In addition, Japanese Patent Publication No. 1-28827 and Japanese Patent Application Laid-Open No. Sho 62-124218 require a long tempering treatment of 1 hr or more, like precipitation hardening stainless steel, to improve production efficiency and reduce costs. From the viewpoint of reduction, simplification of heat treatment is required. The present invention has been made to solve the above problems, and has a 0.2% proof stress of 800 MPa or more, and can be used as a material for a hydrofoil of a high-speed ship, and has ductility, workability, and the like. An object of the present invention is to obtain inexpensively stainless steel excellent in weldability and softening resistance of a heat affected zone.
【0006】[0006]
【課題を解決するための手段】本発明者らは、前述した
Ni含有の低Cマルテンサイト系ステンレス鋼の延靭性
劣化因子を検討した結果、微量元素の添加により析出し
た炭窒化物あるいは金属間化合物が延靭性を著しく劣化
させることを見出した。また、特開昭62−12421
8号公報には微量元素を含有しない鋼種も併せて開示さ
れているが、この場合、高強度化のためにC,N、ある
いはSi含有量を増加させる必要があるため、同様に靭
性が劣化した。さらに、いずれの鋼種も最高強度の得ら
れる500℃近傍の低温域で焼戻を行った場合に、延靭
性の低下が最も著しかった。Means for Solving the Problems The present inventors have examined the factors of deterioration of the ductility of the Ni-containing low C martensitic stainless steel described above, and found that carbon nitrides or intermetallics precipitated by the addition of trace elements were added. It has been found that the compound significantly deteriorates ductility. Also, Japanese Patent Application Laid-Open No. 62-12421
No. 8 also discloses a steel type containing no trace element, but in this case, it is necessary to increase the content of C, N, or Si in order to increase the strength, and similarly, the toughness deteriorates. did. Furthermore, when tempering was performed in a low temperature region near 500 ° C. where the highest strength was obtained, the reduction in ductility was most remarkable.
【0007】そこで、本発明者らは析出物を形成するよ
うな微量合金元素を添加しないNi含有のマルテンサイ
ト系ステンレス鋼の成分及び熱処理条件を詳細に検討し
た結果、極低C、N化及びδフェライトの低減を図り、
且つ少量の残留オーステナイトを含有させると、500
℃近傍の温度域で焼戻を施しても良好な延靭性が得られ
ることを見出した。さらに、極低C,N化は同時に加工
性向上及び溶接時の低温割れ抑制にも有効であった。以
上の知見に基づくと、前記した課題は以下に述べる成分
限定、製造方法により解決される。The inventors of the present invention have studied in detail the components and heat treatment conditions of a Ni-containing martensitic stainless steel to which a trace alloying element that forms a precipitate is not added. To reduce δ ferrite,
And when a small amount of retained austenite is contained, 500
It has been found that good ductility can be obtained even when tempering is performed in a temperature range around ℃. Furthermore, the extremely low C and N contents were also effective in improving workability and suppressing low-temperature cracking during welding. Based on the above findings, the above-mentioned problem is solved by the following component limitation and production method.
【0008】第1発明は、重量%で、C:0.03%以
下、Si:1.0%以下、Mn:1.0%以下、Cu:
0.05〜1.0%、Ni:5.0〜7.0%、Cr:
13.0〜17.0%、Mo:2.0%以下、N:0.
02%以下を含み、且つ前記元素の含有量が(1)〜
(3)式を満足し、残部実質的にFe及び不可避的不純
物からなることを特徴とする800MPa以上の0.2
%耐力を有した溶接構造用高靭性マルテンサイト系ステ
ンレス鋼である。 C(%)+N(%)≦0.03 ・・・(1) 12×Cr(%)+15×Mo(%)+20×Si(%) −9×Ni(%)−2×Cu(%)−190×C(%) −160×N(%)≦154 ・・・(2) 27.6≦Cr(%)+1.3×Mo(%)+1.5×Si(%) +2×Ni(%)+0.7×Cu(%)+68×C(%) +54×N(%)≦31.6 ・・・(3)According to the first invention, C: 0.03% or less, Si: 1.0% or less, Mn: 1.0% or less, Cu:
0.05-1.0%, Ni: 5.0-7.0%, Cr:
13.0 to 17.0%, Mo: 2.0% or less, N: 0.
0% or less, and the content of the element is (1) to
0.2 not less than 800 MPa, which satisfies the expression (3) and the balance substantially consists of Fe and unavoidable impurities.
It is a high toughness martensitic stainless steel for welded structures having a% proof stress. C (%) + N (%) ≦ 0.03 (1) 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) − 9 × Ni (%) − 2 × Cu (%) −190 × C (%) −160 × N (%) ≦ 154 (2) 27.6 ≦ Cr (%) + 1.3 × Mo (%) + 1.5 × Si (%) + 2 × Ni ( %) + 0.7 × Cu (%) + 68 × C (%) + 54 × N (%) ≦ 31.6 (3)
【0009】第2発明は、前記第1発明の要件を満たし
た鋼の製造において、熱間加工後、850〜1000℃
の温度域に加熱後、3℃/min以上の冷却速度でMf
点以下の温度域まで冷却し、さらに、450℃〜Ac1
点の温度域に加熱後、冷却することを特徴とする800
MPa以上の0.2%耐力を有した溶接構造用高靭性マ
ルテンサイト系ステンレス鋼の製造方法である。[0009] A second invention provides a method for producing steel satisfying the requirements of the first invention, wherein after hot working, 850-1000 ° C.
After heating to a temperature range of M f
Point is cooled to below the temperature range, furthermore, 450 ° C. to Ac 1
800, characterized by cooling after heating to a point temperature range
This is a method for producing a high toughness martensitic stainless steel for welded structures having a 0.2% proof stress of not less than MPa.
【0010】第3発明は、同じく第1発明の要件を満た
した鋼の製造において、(4)式で表せるT℃以下の温
度域に加熱後、700℃以上の温度域で仕上がる熱間加
工を行い、直ちに3℃/min以上の冷却速度でMf点
以下の温度域まで冷却し、さらに、450℃〜Ac1 点
の温度域に加熱後、冷却することを特徴とする800M
Pa以上の0.2%耐力を有した溶接構造用高靭性マル
テンサイト系ステンレス鋼の製造方法である。 T=450×Ni(%)+100×Cu(%)+9500×C(%) +8000×N(%)−600×Cr(%)−750×Mo(%) −1000×Si(%)+8750 ・・・(4)In a third aspect of the invention, in the production of steel which also satisfies the requirements of the first aspect of the invention, after hot-heating to a temperature range of T.degree. 800 M, characterized by immediately cooling to a temperature range below the M f point at a cooling rate of 3 ° C./min or more, further heating to a temperature range of 450 ° C. to 1 point of Ac, and then cooling.
This is a method for producing a high-toughness martensitic stainless steel for welded structures having a 0.2% proof stress of not less than Pa. T = 450 x Ni (%) + 100 x Cu (%) + 9500 x C (%) + 8000 x N (%)-600 x Cr (%)-750 x Mo (%)-1000 x Si (%) + 8750 ...・ (4)
【0011】[0011]
【作用】以下に、この発明のステンレス鋼の成分限定理
由を述べる。Cは、強度増加に有効な成分であり、ま
た、オーステナイト生成元素であるためNi量の低減を
図ることができるが、含有量が多くなると靭性、溶接性
及び加工性が劣化するため、その上限値は0.03%と
する。好ましくは0.02%以下である。Siは、脱酸
作用を有する成分であるが、フェライト生成元素である
ため、Si添加量により同じフェライト生成元素である
Cr添加量が制限される。すなわち、詳細は後述する
が、各元素の含有量はその限定に加え、(2)及び
(3)式を満たす範囲とするもので、Si添加量が増す
と耐食性に有効な元素であるCr添加量が制限されるた
め、上限値は1.0%とする。また、延靱性の劣化の観
点からも上限値を1.0%とするものである。 The reasons for limiting the components of the stainless steel of the present invention will be described below. C is a component effective for increasing the strength, and can reduce the amount of Ni because it is an austenite-forming element. However, if the content is increased, toughness, weldability and workability are deteriorated. The value is 0.03%. Preferably it is 0.02% or less. Although Si is a component having a deoxidizing action, it is the same ferrite-forming element depending on the amount of Si added because it is a ferrite-forming element.
The amount of Cr added is limited. That is, the details will be described later.
However, the content of each element is in addition to the limitation, (2) and
It is a range satisfying the expression (3), and the amount of added Si increases.
And the amount of Cr, an element effective for corrosion resistance, are limited
Therefore, the upper limit is set to 1.0%. In addition, observation of deterioration of ductility
From the viewpoint, the upper limit is set to 1.0%.
【0012】Mnは、Siと同様脱酸作用を有する成分
であり、オーステナイト生成元素として知られている。
しかし、この鋼においてはオーステナイト生成元素とし
ての効果は認められず、その含有量が1.0%を超える
と耐食性を低下させることが明らかになった。したがっ
て、Mn含有量の上限値は1.0%以下とする。Cu
は、耐食性向上に有効な成分であり、オーステナイト生
成元素でもある。しかし、耐食性に及ぼす効果は、Cu
含有量が0.05%未満では発揮されず、1.0%を超
えるとその効果が飽和する。また、多量の添加は延靭性
を劣化させるので、Cu含有量は0.05〜1.0%と
する。Mn is a component having a deoxidizing effect like Si, and is known as an austenite forming element.
However, in this steel, the effect as an austenite-forming element was not recognized, and it was revealed that if the content exceeds 1.0%, the corrosion resistance is reduced. Therefore, the upper limit of the Mn content is set to 1.0% or less. Cu
Is an effective component for improving corrosion resistance and is also an austenite-forming element. However, the effect on corrosion resistance is Cu
When the content is less than 0.05%, the effect is not exhibited, and when the content exceeds 1.0%, the effect is saturated. Further, since the addition of a large amount deteriorates the ductility, the Cu content is set to 0.05 to 1.0%.
【0013】Niは、オーステナイト生成元素であり、
延靭性及び溶接性に優れたマルテンサイトを得るのに必
須の成分である。ただし、詳細は後述するがNi含有量
が5.0%未満では他の成分を調整しても残留オーステ
ナイトが生成せず、強度、靭性が低下する。また、7.
0%を超える添加は高価になるばかりでなく、残留オー
ステナイトが過剰となり、強度が低下する。したがっ
て、Ni含有量は5.0〜7.0%とする。Crは、耐
食性に最も重要な元素であり、13.0%以上の添加に
よりその効果が顕著となる。しかし、フェライト形成元
素でもあるため、その含有量が17.0%を超えるとδ
フェライトが増加するとともに、残留オーステナイトも
過剰となり、強度、靭性が著しく低下する。したがっ
て、Cr含有量は13.0〜17.0%とする。Ni is an austenite forming element,
It is an essential component for obtaining martensite excellent in ductility and weldability. However, as will be described in detail later, if the Ni content is less than 5.0%, even if other components are adjusted, residual austenite is not generated, and strength and toughness are reduced. Also, 7.
Additions exceeding 0% not only increase the cost, but also increase the residual austenite and decrease the strength. Therefore, the Ni content is set to 5.0 to 7.0%. Cr is the most important element for corrosion resistance, and its effect becomes remarkable when added at 13.0% or more. However, since it is also a ferrite forming element, if its content exceeds 17.0%, δ
As ferrite increases, retained austenite also becomes excessive, and strength and toughness are significantly reduced. Therefore, the Cr content is set to 13.0 to 17.0%.
【0014】Moは、Crと同様、耐食性向上に有効な
元素でありフェライト形成元素でもあるため置換が可能
である。しかし、2.0%を超える添加は靭性を低下さ
せるため、その上限値は2.0%とする。Nは、Cと同
様オーステナイト形成元素でありNi含有量の低減が図
れるが、強度増加にはほとんど寄与しない。また、その
含有量が増加すると延靭性、溶接性が劣化するため、上
限値は0.02%とする。Mo, like Cr, is an element effective for improving corrosion resistance and also a ferrite-forming element, so that it can be substituted. However, since the addition exceeding 2.0% lowers the toughness, the upper limit is set to 2.0%. N is an austenite-forming element like C and can reduce the Ni content, but hardly contributes to the increase in strength. Further, if its content increases, ductility and weldability deteriorate, so the upper limit is made 0.02%.
【0015】また、一般にマルテンサイト系ステンレス
鋼ではC,N量の低減により溶接時の低温割れ感受性が
低下することが知られているが、高強度化を図った本鋼
では(1)式を満たすことにより低温割れ感受性が著し
く低下するのみならず、加工成形性も向上することを発
明者らは見出した。したがって、(C+N)量は上記の
限定に加え、(1)式を満たす範囲とする。 C(%)+N(%)≦0.03 ・・・(1)In general, it is known that the low-temperature cracking susceptibility during welding is reduced by reducing the amounts of C and N in the martensitic stainless steel. The inventors have found that, by satisfying the above, not only the cold cracking susceptibility is significantly reduced, but also the workability is improved. Therefore, the (C + N) amount is in a range that satisfies the expression (1) in addition to the above limitation. C (%) + N (%) ≦ 0.03 (1)
【0016】さらに、本発明者らはこの鋼におけるδフ
ェライトの体積率δf及び残留オーステナイトの体積率
γfと成分との関係を詳細に検討した結果、δf(%)及
びγf(%)が各々(5)及び(6)式で表せることを
見出した。この鋼ではδフェライトを低減し、少量の残
留オーステナイトを有するマルテンサイト組織とするこ
とによりAc1 点以下の低温焼戻を施しても良好な延靭
性が得られるが、具体的にはδfが5%を超えると靭性
が劣化するばかりでなく、強度も低下する。一方、γf
が1%未満では靭性向上の効果が発揮されず、10%を
超えると溶接熱影響部の軟化抵抗が低下する。したがっ
て、前記元素の含有量は上記限定に加え、(2)及び
(3)式を満たす範囲とする。 δf=12×Cr(%)+15×Mo(%)+20×Si(%) −9×Ni(%)−2×Cu(%)−190×C(%) −160×N(%)−149 ・・・(5) logγf=[Cr(%)+1.3×Mo(%)+1.5×Si(%) +2×Ni(%)+0.7×Cu(%)+68×C(%) +54×N(%)]/4−6.9 ・・・(6) 12×Cr(%)+15×Mo(%)+20×Si(%) −9×Ni(%)−2×Cu(%)−190×C(%) −160×N(%)≦154 ・・・(2) 27.6≦Cr(%)+1.3×Mo(%)+1.5×Si(%) +2×Ni(%)+0.7×Cu(%)+68×C(%) +54×N(%)≦31.6 ・・・(3)Furthermore, the present inventors have results of examining the relationship between the volume ratio [delta] f and volume fraction gamma f with components of the residual austenite of [delta] ferrite in the steel in detail, [delta] f (%) and gamma f (% ) Can be expressed by the equations (5) and (6), respectively. This steel reduces [delta] ferrite, a small amount of martensite structure and extending toughness satisfactory subjected to return following low temperature co-Ac 1 point by having residual austenite is obtained, is in particular [delta] f If it exceeds 5%, not only the toughness deteriorates, but also the strength decreases. On the other hand, γ f
If less than 1%, the effect of improving toughness is not exhibited, and if more than 10%, the softening resistance of the heat affected zone decreases. Therefore, the content of the element is in the range satisfying the expressions (2) and (3) in addition to the above-mentioned limitation. δ f = 12 × Cr (% ) + 15 × Mo (%) + 20 × Si (%) -9 × Ni (%) - 2 × Cu (%) - 190 × C (%) -160 × N (%) - 149 (5) logγ f = [Cr (%) + 1.3 × Mo (%) + 1.5 × Si (%) + 2 × Ni (%) + 0.7 × Cu (%) + 68 × C (% ) + 54 × N (%)] / 4-6.9 (6) 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) − 9 × Ni (%) − 2 × Cu ( %) − 190 × C (%) −160 × N (%) ≦ 154 (2) 27.6 ≦ Cr (%) + 1.3 × Mo (%) + 1.5 × Si (%) + 2 × Ni (%) + 0.7 × Cu (%) + 68 × C (%) + 54 × N (%) ≦ 31.6 (3)
【0017】次に、製造方法の限定理由を述べると、こ
の鋼では600〜700℃の温度域で粒界にCr炭化物
が析出し、靭性及び耐食性を低下させる。焼入処理は熱
間加工により析出したCr炭化物の固溶と靭性に優れた
マルテンサイト組織を得る目的により実施する。しか
し、熱間加工後の焼入温度が850℃未満になるとCr
炭化物が固溶せず、1000℃を超える温度域で実施す
ると、結晶粒が粗大化し靭性が劣化する。したがって、
熱間加工後の焼入温度は850〜1000℃の範囲とす
る。また、焼入時の冷却条件について検討を行った結
果、冷却速度が3℃/min未満になると焼きは十分に
入るものの、冷却中に前記のCr炭化物が再析出する。
さらに、冷却停止温度がMf点を超えるとγfが(6)式
で表せる値よりも著しく大きくなり、継手の軟化抵抗が
低下する。したがって、焼入時の冷却は3℃/min以
上の冷却速度でMf点以下の温度域まで実施する。Next, the reasons for the limitation of the production method will be described. In this steel, Cr carbide precipitates at the grain boundary in the temperature range of 600 to 700 ° C., and the toughness and the corrosion resistance are reduced. The quenching treatment is performed for the purpose of obtaining a solid solution of Cr carbide precipitated by hot working and a martensite structure excellent in toughness. However, if the quenching temperature after hot working is less than 850 ° C.,
If the carbide is not formed into a solid solution and the temperature is higher than 1000 ° C., the crystal grains become coarse and the toughness is deteriorated. Therefore,
The quenching temperature after hot working is in the range of 850 to 1000 ° C. Further, as a result of studying cooling conditions at the time of quenching, when the cooling rate is less than 3 ° C./min, although sintering is sufficiently performed, the above-mentioned Cr carbide reprecipitates during cooling.
Further, when the cooling stop temperature exceeds the M f point, γ f becomes significantly larger than the value represented by the equation (6), and the softening resistance of the joint decreases. Therefore, cooling at the time of quenching is performed at a cooling rate of 3 ° C./min or more to a temperature range of Mf point or less.
【0018】焼入後行われる焼戻処理は、一般に、延靭
性改善のため実施される。しかし、この鋼ではAc1 点
を超える高温焼戻を行うとγfが(6)式で表せる値に
比べ著しく増加するため、焼戻はAc1 点以下の低温域
で実施する必要がある。さらに、この鋼では前述したよ
うに極短時間(製品全体が均熱される程度)の低温焼戻
により高強度化を図ることが可能であり、析出硬化型ス
テンレス鋼等に比べ熱処理が容易である。しかし、焼戻
温度が450℃未満、あるいはAc1 点を超えると強度
向上の効果が発揮されない。したがって、焼戻温度は4
50℃〜Ac1点の範囲とする。 logγf=[Cr(%)+1.3×Mo(%)+1.5×Si(%) +2×Ni(%)+0.7×Cu(%)+68×C(%) +54×N(%)]/4−6.9 ・・・(6)The tempering treatment performed after quenching is generally performed to improve ductility. However, in this steel, when high-temperature tempering exceeding the Ac 1 point is performed, γ f is significantly increased as compared with the value represented by the equation (6), so that the tempering must be performed in a low temperature region below the Ac 1 point. Further, as described above, it is possible to increase the strength of this steel by low-temperature tempering for an extremely short time (to the extent that the entire product is soaked), and heat treatment is easier than that of precipitation hardening stainless steel. . However, if the tempering temperature is lower than 450 ° C. or exceeds the Ac 1 point, the effect of improving the strength is not exhibited. Therefore, the tempering temperature is 4
50 ° C. to Ac 1 point. logγ f = [Cr (%) + 1.3 × Mo (%) + 1.5 × Si (%) + 2 × Ni (%) + 0.7 × Cu (%) + 68 × C (%) + 54 × N (%) ] /4-6.9 (6)
【0019】さらに、焼入性に優れたこの鋼の特徴を活
かし、前述した再加熱による焼入処理を省略した製造方
法を検討した。通常、熱間加工前の加熱は1100〜1
300℃の温度域で行われるが、この鋼は加熱温度が1
050℃を超えるとδfが(5)式で表せる値よりも増
加する。また、加熱時のδfは熱間加工後のδfとほぼ同
一の値となり、続く焼戻処理によっても変化しないこと
が明らかになった。そこで、本発明者らはδfの増加に
よる製品の強度、靭性低下を防ぐため、1300℃以下
の温度域における加熱温度及び成分とδfとの関係を詳
細に調べた結果、その値が5%以下となる最高温度T
(℃)は(4)式で表せることを見出した。したがっ
て、熱間加工前の加熱温度は(4)式で表せるT℃以下
の温度域とする。ただし、加熱温度が1300℃を超え
ると製品の表面性状が劣化するため、そのような加熱は
望ましくない。Further, by utilizing the characteristics of this steel having excellent hardenability, a manufacturing method in which the above-mentioned hardening treatment by reheating was omitted was examined. Usually, heating before hot working is 1100-1
It is performed in a temperature range of 300 ° C.
When the temperature exceeds 050 ° C., δ f increases from the value represented by the equation (5). The heating time of the [delta] f becomes substantially the same value as [delta] f after hot working, it was revealed that not changed by subsequent tempering process. Therefore, the strength of the product by increasing the inventors [delta] f, in order to prevent a decrease in toughness, the heating temperature and components and result relationship was examined in detail in the [delta] f in the temperature range of 1300 ° C. or less, the value 5 % Maximum temperature T below
(° C.) was found to be expressed by equation (4). Therefore, the heating temperature before hot working is set to a temperature range of T ° C. or lower which can be expressed by the equation (4). However, if the heating temperature exceeds 1300 ° C., the surface properties of the product deteriorate, and such heating is not desirable.
【0020】また、靭性、耐食性に優れたマルテンサイ
ト組織を得るためには、熱間加工の終了温度はCr炭化
物が析出しない温度域とする必要があるため、その温度
は700℃以上とする。また、熱間加工後の冷却も焼入
処理と同様、3℃/min以上の冷却速度でMf点以下
の温度域まで実施する。以上の熱間加工−直接焼入処理
は、再加熱焼入処理と同等の効果を有するため、続く焼
戻処理も再加熱焼入材と同様の条件で行う。 δf=12×Cr(%)+15×Mo(%)+20×Si(%) −9×Ni(%)−2×Cu(%)−190×C(%) −160×N(%)−149 ・・・(5) T=450×Ni(%)+100×Cu(%)+9500×C(%) +8000×N(%)−600×Cr(%)−750×Mo(%) −1000×Si(%)+8750 ・・・(4)Further, in order to obtain a martensitic structure having excellent toughness and corrosion resistance, the end temperature of the hot working needs to be in a temperature range in which Cr carbide is not precipitated. Cooling after hot working is performed at a cooling rate of 3 ° C./min or more to a temperature range of Mf point or less, similarly to the quenching treatment. Since the above-described hot working-direct quenching treatment has the same effect as the reheating quenching treatment, the subsequent tempering treatment is also performed under the same conditions as the reheating quenching material. δ f = 12 × Cr (% ) + 15 × Mo (%) + 20 × Si (%) -9 × Ni (%) - 2 × Cu (%) - 190 × C (%) -160 × N (%) - 149 (5) T = 450 × Ni (%) + 100 × Cu (%) + 9500 × C (%) + 8000 × N (%) − 600 × Cr (%) − 750 × Mo (%) − 1000 × Si (%) + 8750 (4)
【0021】[0021]
【実施例】本発明によるものの具体的な実施例について
説明すると、以下の如くである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described as follows.
【実施例1】表1に示す化学成分の50kgインゴット
に対して、1250℃加熱、800℃仕上後空冷(冷却
速度:50℃/min)の熱間圧延を行い、15mm厚の
鋼板を製造した。鋼板に対して900℃×5min加熱
後、Mf点以下の50℃まで空冷する焼入処理を行い、
さらに、Ac1 点以下の550℃×5min加熱後、空
冷の焼戻処理を施した後、ミクロ組織観察用サンプル、
X線回析用サンプル、引張試験片、曲げ試験片、2mmV
ノッチ付きシャルピー衝撃試験片及び孔食電位測定用サ
ンプルを採取した。δfはミクロサンプルを20%Na
OH電解エッチングすることにより、また、γfはX線
回析法により各々測定した。その結果を表1に併せて示
す。加工性は曲げ半径:0.5t、曲げ角度:180°
の表曲げ試験による割れの有無で評価した。また、孔食
電位はJIS G0577により、電流密度が100μ
A/cm2 となる電位を求めた。さらに、溶接性の評価の
ため、上記熱処理鋼板からYわれ試験片(JIS Z3
158)を採取し、市販の被覆アーク溶接棒(0.04
C−5Ni−12Cr鋼)を用いて10℃、RH:60
%、入熱:10KJ/cmの条件で本溶接を行い、断面検
鏡法によりルート割れの有無を調べた。一方、溶接熱影
響部の軟化抵抗は、X開先の溶接継手を市販のMIGワ
イヤ(0.02C−5Ni−12Cr鋼)を使用して作
成し、継手引張試験(JIS Z3121)の破断位置
で評価した。なお、MIG溶接は入熱:20KJ/cmの
多層溶接とした。Example 1 A 50 kg ingot having the chemical components shown in Table 1 was heated at 1250 ° C., finished at 800 ° C., and then hot-rolled by air cooling (cooling rate: 50 ° C./min) to produce a steel sheet having a thickness of 15 mm. . After heating the steel sheet at 900 ° C for 5 minutes, quenching is performed by air cooling to 50 ° C below the M f point.
Further, after heating at 550 ° C. × 5 min below Ac 1 point, a tempering treatment of air cooling was performed, and then a sample for microstructure observation,
X-ray diffraction sample, tensile test specimen, bending test specimen, 2 mmV
A notched Charpy impact test specimen and a sample for measuring pitting corrosion potential were collected. [delta] f 20% micro sample Na
OH electrolytic etching and γ f were measured by an X-ray diffraction method. The results are shown in Table 1. Workability: bending radius: 0.5t, bending angle: 180 °
Was evaluated by the presence or absence of cracks in the table bending test. The pitting corrosion potential is 100 μm according to JIS G0577.
A / cm 2 potential was determined. Further, in order to evaluate the weldability, a test piece (JIS Z3) was prepared from the heat-treated steel sheet.
158), and a commercially available coated arc welding rod (0.04
(C-5Ni-12Cr steel) at 10 ° C., RH: 60
%, Heat input: main welding was performed under the conditions of 10 KJ / cm, and the presence or absence of root cracks was examined by a cross-sectional microscopic method. On the other hand, the softening resistance of the weld heat-affected zone was determined by using a commercially available MIG wire (0.02C-5Ni-12Cr steel) for a welded joint with an X-groove, and measuring the fracture position in the joint tensile test (JIS Z3121). evaluated. The MIG welding was a multi-layer welding with a heat input of 20 KJ / cm.
【0022】δf及び0℃、−50℃での吸収エネルギ
ーと成分との関係を図1に示す。図1によればこの鋼の
δfはこれを表す指標Bの値とよい対応を示しており、
Bの値が154を超えるとC,N含有量が低くても靭性
は著しく劣化することが解る。γf、0℃、−50℃で
の吸収エネルギー及び継手引張の破断位置と成分との関
係を図2に示す。すなわち、この図2によればこの鋼の
γfはこれを表す指標Cの値とよい対応を示しており、
Cの値が27.6未満では靭性が低下し、31.6を超
えると溶接熱影響部が軟化することが理解される。FIG. 1 shows the relationship between δ f and the absorbed energy at 0 ° C. and -50 ° C. and the components. According to FIG. 1, δ f of this steel shows a good correspondence with the value of index B representing this,
It can be seen that if the value of B exceeds 154, the toughness is remarkably deteriorated even when the contents of C and N are low. FIG. 2 shows the relationship between γ f , the absorbed energy at 0 ° C. and −50 ° C., and the fracture position and the component of the joint tension. That is, according to FIG. 2, γ f of this steel shows a good correspondence with the value of the index C representing this,
It is understood that when the value of C is less than 27.6, the toughness decreases, and when it exceeds 31.6, the weld heat affected zone softens.
【0023】表2には発明鋼1〜10及び比較鋼11〜
19の引張特性、曲げ加工性、0℃、−50℃における
吸収エネルギー、Yわれ試験結果、継手引張の破断位置
及び孔食電位をまとめて示した。表2によれば本発明鋼
の強度、延靭性、加工性、溶接性、継手特性及び耐食性
はともに優れていることが解る。特に、強加工や予熱な
しの溶接を行うためには、(C+N)含有量を0.03
%以下にする必要があることが理解される。次に表1、
表2を示す。なお表1中の、アンダーラインは本発明鋼
の限定条件外であることを示す。また、表1中の1)、
2)、3)、δf、γfは、 1)A=C(%)+N(%) 2)B=12×Cr(%)+15×Mo(%)+20×
Si(%)−9×Ni(%)−2×Cu(%)−190
×C(%)−160×N(%) 3)C=Cr(%)+1.3×Mo(%)+1.5×S
i(%)+2×Ni(%)+0.7×Cu(%)+68
×C(%)+54×N(%) δf、γfは実測値である。Table 2 shows invention steels 1 to 10 and comparative steels 11 to 11.
The tensile properties, bending workability, absorbed energy at 0 ° C. and −50 ° C., the Y-test results, the fracture position of the joint tensile strength, and the pitting potential of No. 19 were shown together. Table 2 shows that the steel of the present invention has excellent strength, ductility, workability, weldability, joint properties and corrosion resistance. In particular, in order to perform welding without strong working or preheating, the (C + N) content is set to 0.03.
It is understood that it needs to be less than%. Next, Table 1,
Table 2 is shown. Note that the underline in Table 1 indicates that the condition is outside the limited conditions of the steel of the present invention. Also, 1) in Table 1,
2), 3), δ f and γ f are as follows: 1) A = C (%) + N (%) 2) B = 12 × Cr (%) + 15 × Mo (%) + 20 ×
Si (%)-9 × Ni (%)-2 × Cu (%)-190
× C (%)-160 × N (%) 3) C = Cr (%) + 1.3 × Mo (%) + 1.5 × S
i (%) + 2 × Ni (%) + 0.7 × Cu (%) + 68
× C (%) + 54 × N (%) δ f and γ f are measured values.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【実施例2】表3に示す化学成分の50kgインゴット
を、表4に示す条件の熱間圧延及び熱処理により15mm
厚の鋼板となした。なお、直接焼入材の熱間圧延後、あ
るいは再加熱焼入材の焼入処理時は表4に示す冷却速度
でMf点以下の50℃まで冷却し、他行程の冷却はいず
れも空冷(50℃/min程度)とした。サンプルはミ
クロ観察用サンプル、X線回析用サンプル、引張試験
片、2mmVノッチ付きシャルピー衝撃試験片及び孔食電
位測定用サンプルを採取した。また、実施例1と同様の
MIG溶接により溶接継手を作成し、継手引張を併せて
実施した。なお、各種試験は実施例1と同一の方法によ
り行った。表4の方法で製造した鋼板の引張特性、0
℃、−50℃での吸収エネルギー、継手引張の破断位置
及び孔食電位を表5に示す。表5によれば本発明方法で
製造した鋼の0.2%耐力はいずれも800MPa以上
の値を有し、伸び:25%以上、−50℃での吸収エネ
ルギー:230J以上と延靭性にも優れている。また、
溶接部の軟化抵抗及び耐食性も十分であることが理解さ
れる。Example 2 A 50 kg ingot having the chemical composition shown in Table 3 was subjected to hot rolling and heat treatment under the conditions shown in Table 4 to a size of 15 mm.
Made of thick steel plate. After hot rolling of the direct quenched material or during the quenching process of the reheated quenched material, the material is cooled to 50 ° C. below the M f point at the cooling rate shown in Table 4, and all other processes are air cooled. (About 50 ° C./min). As samples, a sample for micro observation, a sample for X-ray diffraction, a tensile test piece, a Charpy impact test piece with a 2 mm V notch, and a sample for pitting potential measurement were collected. Further, a welded joint was prepared by the same MIG welding as in Example 1, and the joint was pulled together. Various tests were performed in the same manner as in Example 1. Tensile properties of the steel sheet manufactured by the method of Table 4
Table 5 shows the absorption energy at -50 ° C, the breaking position of the joint tensile strength and the pitting potential. According to Table 5, the 0.2% proof stress of the steel manufactured by the method of the present invention has a value of 800 MPa or more, and the elongation: 25% or more, the absorbed energy at −50 ° C .: 230 J or more. Are better. Also,
It is understood that the softening resistance and corrosion resistance of the weld are also sufficient.
【0027】[0027]
【表3】 [Table 3]
【0028】[0028]
【表4】 [Table 4]
【0029】[0029]
【表5】 [Table 5]
【0030】[0030]
【発明の効果】以上のように、この発明によれば800
MPa以上の0.2%耐力が微量元素等の添加によらず
簡便な熱処理で達成できるため、延靭性、加工性及び溶
接性に優れるとともに、溶接熱影響部の軟化抵抗及び耐
食性も良好なマルテンサイト系ステンレス鋼が得られる
効果がある。したがって、高速船の水中翼等の材料とし
て利用できる安価なステンレス鋼の提供が可能となる。As described above, according to the present invention, 800
Since the 0.2% proof stress of not less than MPa can be achieved by simple heat treatment without adding a trace element, etc., it is excellent in ductility, workability and weldability, and also has good softening resistance and corrosion resistance of the weld heat affected zone. This has the effect of obtaining a site-based stainless steel. Therefore, it is possible to provide an inexpensive stainless steel that can be used as a material for the hydrofoil of a high-speed ship.
【図1】本発明の実施例1による鋼のδf及び0℃、−
50℃での吸収エネルギーと成分との関係を示す図。FIG. 1 shows δ f of steel according to Example 1 of the present invention and 0 ° C., −
The figure which shows the relationship between the absorption energy at 50 degreeC, and a component.
【図2】同じく実施例1による鋼のγf、0℃、−50
℃での吸収エネルギー及び継手引張の破断位置と成分と
の関係を示す図。FIG. 2 shows γ f of the steel according to Example 1 at 0 ° C. and −50.
The figure which shows the relationship between the absorption energy in ° C, the fracture | rupture position of joint tension, and a component.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/60 C21D 6/00 102 C21D 8/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) C22C 38/00-38/60 C21D 6/00 102 C21D 8/00
Claims (3)
1.0%以下、Mn:1.0%以下、Cu:0.05〜
1.0%、Ni:5.0〜7.0%、Cr:13.0〜
17.0%、Mo:2.0%以下、N:0.02%以下
を含み、且つ前記元素の含有量が(1)〜(3)式を満
足し、残部実質的にFe及び不可避的不純物からなるこ
とを特徴とする800MPa以上の0.2%耐力を有し
た溶接構造用高靭性マルテンサイト系ステンレス鋼。 C(%)+N(%)≦0.03 ・・・(1) 12×Cr(%)+15×Mo(%)+20×Si(%) −9×Ni(%)−2×Cu(%)−190×C(%) −160×N(%)≦154 ・・・(2) 27.6≦Cr(%)+1.3×Mo(%)+1.5×Si(%) +2×Ni(%)+0.7×Cu(%)+68×C(%) +54×N(%)≦31.6 ・・・(3)1. The method according to claim 1, wherein C: 0.03% or less, Si:
1.0% or less, Mn: 1.0% or less, Cu: 0.05 to
1.0%, Ni: 5.0-7.0%, Cr: 13.0-
17.0%, Mo: 2.0% or less, N: 0.02% or less, and the content of the element satisfies the formulas (1) to (3), and the balance is substantially Fe and inevitable. A high-toughness martensitic stainless steel for welded structures having a 0.2% proof stress of 800 MPa or more, comprising an impurity. C (%) + N (%) ≦ 0.03 (1) 12 × Cr (%) + 15 × Mo (%) + 20 × Si (%) − 9 × Ni (%) − 2 × Cu (%) −190 × C (%) −160 × N (%) ≦ 154 (2) 27.6 ≦ Cr (%) + 1.3 × Mo (%) + 1.5 × Si (%) + 2 × Ni ( %) + 0.7 × Cu (%) + 68 × C (%) + 54 × N (%) ≦ 31.6 (3)
て、熱間加工後、850〜1000℃の温度域に加熱
後、3℃/min以上の冷却速度でMf点以下の温度域
まで冷却し、さらに、450℃〜Ac1 点の温度域に加
熱後、冷却することを特徴とする800MPa以上の
0.2%耐力を有した溶接構造用高靭性マルテンサイト
系ステンレス鋼の製造方法。2. In the production of the steel according to claim 1, after hot working, heating to a temperature range of 850 to 1000 ° C., and then at a cooling rate of 3 ° C./min or more to a temperature range of the Mf point or less. A method for producing a high toughness martensitic stainless steel for a welded structure having a 0.2% proof stress of 800 MPa or more, which is cooled, further heated to a temperature range of 450 ° C. to one point Ac, and then cooled.
て、(4)式で表せるT℃以下の温度域に加熱後、70
0℃以上の温度域で仕上がる熱間加工を行い、直ちに3
℃/min以上の冷却速度でMf点以下の温度域まで冷
却し、さらに、450℃〜Ac1 点の温度域に加熱後、
冷却することを特徴とする800MPa以上の0.2%
耐力を有した溶接構造用高靭性マルテンサイト系ステン
レス鋼の製造方法。 T=450×Ni(%)+100×Cu(%)+9500×C(%) +8000×N(%)−600×Cr(%) −750×Mo(%)−1000×Si(%) +8750 ・・・(4)3. In the production of steel according to claim 1, after heating to a temperature range of T.degree.
Perform hot working to finish in a temperature range of 0 ° C or more and immediately
After cooling to a temperature range below the M f point at a cooling rate of at least C ° C./min, and further heating to a temperature range of 450 ° C. to Ac 1 point,
0.2% of 800MPa or more characterized by cooling
Method for producing high toughness martensitic stainless steel for welded structures having proof stress. T = 450 x Ni (%) + 100 x Cu (%) + 9500 x C (%) + 8000 x N (%)-600 x Cr (%)-750 x Mo (%)-1000 x Si (%) + 8750 ...・ (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7858093A JP2921324B2 (en) | 1993-03-15 | 1993-03-15 | High-strength and high-toughness martensitic stainless steel for welded structures and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7858093A JP2921324B2 (en) | 1993-03-15 | 1993-03-15 | High-strength and high-toughness martensitic stainless steel for welded structures and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06264192A JPH06264192A (en) | 1994-09-20 |
JP2921324B2 true JP2921324B2 (en) | 1999-07-19 |
Family
ID=13665851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7858093A Expired - Lifetime JP2921324B2 (en) | 1993-03-15 | 1993-03-15 | High-strength and high-toughness martensitic stainless steel for welded structures and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2921324B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK0864663T3 (en) * | 1995-09-27 | 2003-09-15 | Sumitomo Metal Ind | High strength welded steel structures and excellent corrosion resistance |
JP4144283B2 (en) | 2001-10-18 | 2008-09-03 | 住友金属工業株式会社 | Martensitic stainless steel |
JP5399635B2 (en) * | 2008-01-25 | 2014-01-29 | Jfeスチール株式会社 | Stainless steel pipe for oil well with excellent pipe expandability and method for producing the same |
-
1993
- 1993-03-15 JP JP7858093A patent/JP2921324B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06264192A (en) | 1994-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3514182B2 (en) | Low Cr ferritic heat resistant steel excellent in high temperature strength and toughness and method for producing the same | |
JP4226626B2 (en) | High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same | |
CN112334589B (en) | Clad steel sheet and method for producing same | |
JP4816642B2 (en) | Low alloy steel | |
JP2010132945A (en) | High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same | |
JP4418391B2 (en) | High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same | |
JP2010121191A (en) | High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same | |
JP4823841B2 (en) | High tensile strength steel sheet for super high heat input welding with low acoustic anisotropy and excellent weldability and tensile strength of 570 MPa class or more and method for producing the same | |
JP4998708B2 (en) | Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same | |
JP6277679B2 (en) | High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness | |
JP2007197776A (en) | High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor | |
JP3328967B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance | |
JP4924047B2 (en) | Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less | |
JP2921324B2 (en) | High-strength and high-toughness martensitic stainless steel for welded structures and method for producing the same | |
JP2665009B2 (en) | High strength martensitic stainless steel and method for producing the same | |
JP2002161342A (en) | Structural steel superior in strength, fatigue resistance and corrosion resistance | |
JP2946992B2 (en) | Method for producing duplex stainless steel excellent in strength, toughness and corrosion resistance | |
JP2781000B2 (en) | Method for producing high-strength steel sheet excellent in HIC resistance and SSC resistance | |
JP3201081B2 (en) | Stainless steel for oil well and production method thereof | |
JP2828754B2 (en) | Manufacturing method of low yield ratio 70kg / fmm / mm2 upper grade steel sheet with excellent weldability | |
JP5552967B2 (en) | Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same | |
JP2007277697A (en) | High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method | |
JP2828755B2 (en) | Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability | |
JP3602396B2 (en) | Low yield ratio high strength steel sheet with excellent weldability | |
JPH09272956A (en) | Seawater resistant precipitation hardening type high alloy steel and its production |