JP2907415B2 - Manufacturing method of ultra-thin soft copper foil - Google Patents

Manufacturing method of ultra-thin soft copper foil

Info

Publication number
JP2907415B2
JP2907415B2 JP27615793A JP27615793A JP2907415B2 JP 2907415 B2 JP2907415 B2 JP 2907415B2 JP 27615793 A JP27615793 A JP 27615793A JP 27615793 A JP27615793 A JP 27615793A JP 2907415 B2 JP2907415 B2 JP 2907415B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
temperature
ultra
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27615793A
Other languages
Japanese (ja)
Other versions
JPH07109552A (en
Inventor
達夫 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17565545&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2907415(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP27615793A priority Critical patent/JP2907415B2/en
Publication of JPH07109552A publication Critical patent/JPH07109552A/en
Application granted granted Critical
Publication of JP2907415B2 publication Critical patent/JP2907415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電線等のシールド材と
して好適に使用しうる極薄軟質銅箔の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-thin soft copper foil which can be suitably used as a shielding material for electric wires and the like.

【0002】[0002]

【従来の技術】従来より、電線を被覆するためのシール
ド材として、厚さ10μm以下の銅箔が使用されている。
この銅箔を電線に被覆する工程では、電線に緊密に銅箔
を密着させて被覆させるため、銅箔に高張力が負荷され
る。しかるに、銅箔の厚さが10μm以下と極薄であるた
め、銅箔の引張強さ及び伸びが低く、銅箔が切断すると
いうことがあった。また、厚さ10μm以下の銅箔と合成
樹脂製フィルムとを貼合する場合にも、銅箔に高張力が
負荷され、クラックが発生するということもあった。
2. Description of the Related Art Conventionally, a copper foil having a thickness of 10 μm or less has been used as a shielding material for covering an electric wire.
In the step of covering the electric wire with the copper foil, a high tension is applied to the copper foil because the copper foil is closely adhered to the electric wire to cover the electric wire. However, since the thickness of the copper foil is as thin as 10 μm or less, the tensile strength and elongation of the copper foil are low, and the copper foil may be cut. Also, when laminating a copper foil having a thickness of 10 μm or less and a synthetic resin film, high tension is applied to the copper foil and cracks may occur.

【0003】銅箔の厚さが薄くなるにしたがって、銅箔
の伸びが低くなり、またその引張強さが低くなること
は、当業者にとって自明である。従って、電線を被覆す
る場合等において、当業者は、銅箔に高張力が負荷され
ないような試みをすることが一般的である。例えば、銅
箔に合成樹脂製シート等を積層して、銅箔自体に高張力
が負荷されないようにする試みがなされている。
It is obvious to those skilled in the art that as the thickness of the copper foil becomes thinner, the elongation of the copper foil becomes lower and its tensile strength becomes lower. Therefore, in the case of covering an electric wire, a person skilled in the art generally makes an attempt to prevent high tension from being applied to the copper foil. For example, an attempt has been made to laminate a synthetic resin sheet or the like on a copper foil so that high tension is not applied to the copper foil itself.

【0004】ところで、従来、使用されている銅箔は、
以下のような方法によって製造されているものである。
即ち、厚さ50〜300mmのタフピッチ銅や無酸素銅の鋳塊
に、熱間圧延を施し、次いで冷間圧延と中間焼鈍を繰り
返して、厚さ10μm以下の箔とし、その後、箔を軟化さ
せるために、再結晶温度以上の温度で仕上焼鈍を施し
て、銅箔を得ているのである。そして、タフピッチ銅や
無酸素銅は、冷間圧延による加工度を高くすることがで
きるため、最後の中間焼鈍を終えたのち、冷間加工度が
95%を超える程度に冷間圧延を施し、その後仕上焼鈍を
施している。
[0004] By the way, conventionally used copper foils are:
It is manufactured by the following method.
That is, a 50-300 mm thick tough pitch copper or oxygen-free copper ingot is subjected to hot rolling, and then cold rolling and intermediate annealing are repeated to form a foil having a thickness of 10 μm or less, and then the foil is softened. For this reason, finish annealing is performed at a temperature equal to or higher than the recrystallization temperature to obtain a copper foil. And, since tough pitch copper and oxygen-free copper can increase the workability by cold rolling, after the final intermediate annealing, the cold workability is reduced.
Cold rolling is performed to an extent exceeding 95%, and then finish annealing is performed.

【0005】[0005]

【発明が解決しようとする課題】以上のような技術状況
下において、本発明者は、厚さが10μm以下になっても
高い引張強さを保持する銅箔を得るべく、種々研究を重
ねた。その結果、上記した従来法によらずに、ある特定
の方法で極薄銅箔を得ると、厚さが10μm以下となって
も、当業者の常識に反して、比較的高い伸び及び比較的
高い引張強さを保持することを見出したのである。即
ち、タフピッチ銅や無酸素銅は、一般的に冷間加工にお
ける加工度が非常に高く(95%を超える程度に)設定さ
れるが、本発明においては、特定の冷間圧延工程におけ
る加工度を低く設定すると、厚さが10μm以下となって
も、比較的高い伸び及び比較的高い引張強さを保持する
ことを見出したのである。
Under the above technical situation, the present inventor has conducted various studies in order to obtain a copper foil which maintains a high tensile strength even when the thickness becomes 10 μm or less. . As a result, when the ultra-thin copper foil is obtained by a specific method without using the above-described conventional method, even if the thickness becomes 10 μm or less, a relatively high elongation and a relatively high They have found that they retain high tensile strength. That is, tough pitch copper or oxygen-free copper is generally set to a very high degree of cold working (to about 95% or more) in the cold working. It has been found that, when the thickness is set to be low, relatively high elongation and relatively high tensile strength are maintained even when the thickness becomes 10 μm or less.

【0006】[0006]

【課題を解決するための手段】即ち、本発明は、タフピ
ッチ銅又は無酸素銅の鋳塊に、熱間圧延,冷間圧延及び
中間焼鈍,仕上焼鈍を施して、厚さ10μm以下の極薄軟
質銅箔を製造する方法において、最後の中間焼鈍と仕上
焼鈍との間において施される冷間圧延による冷間加工度
が95%以下であり、且つ仕上焼鈍温度(T℃)が、再結
晶温度≦T℃≦(再結晶温度+80℃)であることを特徴
とする極薄軟質銅箔の製造方法に関するものである。
That is, the present invention provides an ingot of tough pitch copper or oxygen-free copper which is subjected to hot rolling, cold rolling, intermediate annealing, and finish annealing to obtain an ultrathin film having a thickness of 10 μm or less. In the method for producing a soft copper foil, the degree of cold working by cold rolling performed between the final intermediate annealing and the finish annealing is 95% or less, and the finish annealing temperature (T ° C) is recrystallized. The present invention relates to a method for producing an ultrathin soft copper foil, wherein the temperature ≤ T 属 C ≤ (recrystallization temperature + 80 属 C).

【0007】本発明においては、まずタフピッチ銅又は
無酸素銅の鋳塊を準備する。タフピッチ銅は、酸素をCu
2Oの形で0.02〜0.05重量%程度が含有している純銅のこ
とである。また、無酸素銅は、酸素の含有量が極端に少
ない純銅のことである。
In the present invention, an ingot of tough pitch copper or oxygen-free copper is first prepared. Tough pitch copper, oxygen Cu
About 0.02 to 0.05 wt% in the form of 2 O is that of pure copper containing. Oxygen-free copper is pure copper having an extremely low oxygen content.

【0008】このタフピッチ銅又は無酸素銅の鋳塊に、
従来公知の条件で熱間圧延を施し、その後、数回に亙っ
て冷間圧延及び中間焼鈍を施す。そして、最後の中間焼
鈍を施して、厚さ0.02〜0.2mm程度の銅板を得る。最後
の中間焼鈍の後、仕上焼鈍を施す前に、この銅板を冷間
圧延工程に通す。本発明の特徴は、この冷間圧延工程に
おける冷間加工度を95%以下に設定したことにある。こ
の冷間加工度が95%を超えると、得られる極薄銅箔の伸
びが低下し、且つ引張強さも低下するので、好ましくな
い。なお、ここで言う冷間加工度(%)は、次の式で定
義されるものである。即ち、最後の中間焼鈍後における
銅板の厚さをt0とし、冷間圧延工程を終えた銅箔の厚
さをt1としたとき、[(t0−t1)/t0]×100で定
義されるものである。
The ingot of tough pitch copper or oxygen-free copper is
Hot rolling is performed under conventionally known conditions, and then cold rolling and intermediate annealing are performed several times. Then, a final intermediate annealing is performed to obtain a copper plate having a thickness of about 0.02 to 0.2 mm. After the final intermediate anneal, the copper plate is subjected to a cold rolling step before the finish anneal. A feature of the present invention resides in that the degree of cold working in this cold rolling step is set to 95% or less. If the degree of cold work exceeds 95%, the elongation of the resulting ultra-thin copper foil decreases, and the tensile strength also decreases, which is not preferable. The degree of cold working (%) here is defined by the following equation. That is, assuming that the thickness of the copper plate after the final intermediate annealing is t 0 and the thickness of the copper foil after the cold rolling step is t 1 , [(t 0 −t 1 ) / t 0 ] × 100. Is defined by

【0009】最後の中間焼鈍のあと、冷間加工度を95%
以下に設定して冷間圧延工程を通すことによって、厚さ
10μm以下の銅箔を得る。そして、この銅箔に仕上焼鈍
を施す。仕上焼鈍の温度条件(T℃)は、再結晶温度≦
T℃≦(再結晶温度+80℃)で行なう。再結晶温度未満
で仕上焼鈍を施しても、得られる銅箔が十分に軟化せ
ず、伸びが高くならないので好ましくない。また、(再
結晶温度+80℃)を超える温度で仕上焼鈍を施した場
合、伸びが高くならず、且つ引張強さも低下するので、
好ましくない。なお、本発明で言う再結晶温度とは、加
熱時間を30分としたとき、再結晶の完了する加熱温度の
ことである。再結晶温度の具体的な温度は、材質及び冷
間加工度によって変わるものであるが、一般的に130〜2
20℃程度であるため、仕上焼鈍の具体的条件は、以下の
ようになる。即ち、銅箔を平板の状態で仕上焼鈍する場
合には、温度160〜180℃で1時間程度が一般的であり、
銅箔をコイルの状態で仕上焼鈍する場合には、170〜200
℃で5時間程度が一般的である。
After the final intermediate annealing, the degree of cold working is 95%
Through the cold rolling process set below, the thickness
A copper foil of 10 μm or less is obtained. Then, the copper foil is subjected to finish annealing. The temperature condition of finish annealing (T ° C.) is as follows: recrystallization temperature ≦
Performed at T ° C ≦ (recrystallization temperature + 80 ° C). Even if the finish annealing is performed at a temperature lower than the recrystallization temperature, the obtained copper foil is not sufficiently softened and the elongation is not increased. Also, when the finish annealing is performed at a temperature exceeding (recrystallization temperature + 80 ° C), the elongation does not increase and the tensile strength decreases,
Not preferred. The recrystallization temperature referred to in the present invention means a heating temperature at which recrystallization is completed when the heating time is 30 minutes. The specific temperature of the recrystallization temperature varies depending on the material and the degree of cold work, but is generally 130 to 2
Since the temperature is about 20 ° C., the specific conditions of the finish annealing are as follows. That is, when the copper foil is flat-annealed in the state of a flat plate, the temperature is generally about 1 hour at a temperature of 160 to 180 ° C.,
If the copper foil is to be annealed in the state of a coil, 170-200
Generally about 5 hours at ℃.

【0010】仕上焼鈍前或いは仕上焼鈍後に、銅箔に脱
脂処理を施してもよい。脱脂処理は、銅箔を冷間圧延す
る際、銅箔表面に圧延油が施されるため、この圧延油を
除去するために行なわれるものである。一般的には、仕
上焼鈍前に脱脂処理を施すのが好ましい。
[0010] Before or after the finish annealing, the copper foil may be subjected to a degreasing treatment. The degreasing treatment is performed to remove the rolling oil because the rolling oil is applied to the surface of the copper foil when the copper foil is cold-rolled. Generally, it is preferable to perform a degreasing treatment before the finish annealing.

【0011】以上の方法で得られた銅箔は、高い伸び及
び高い引張強さを保持している。具体的には、従来技術
で得られた銅箔の伸び(3.0〜4.5%)よりも高く、また
従来技術で得られた銅箔の引張強さ(12〜14kgf/mm2
よりも高いものである。従って、電線を被覆する際のシ
ールド材として使用した場合、電線に被覆しやすく、且
つ高張力を負荷しても切断されにくいものである。な
お、以上の説明では、電線被覆用のシールド材として使
用した場合を、主として説明したが、本発明に係る方法
で得られた極薄軟質銅箔は、合成樹脂製フィルムとの貼
合用等としても、好適に使用しうるものである。
The copper foil obtained by the above method has high elongation and high tensile strength. Specifically, it is higher than the elongation (3.0-4.5%) of the copper foil obtained by the prior art, and the tensile strength (12-14 kgf / mm 2 ) of the copper foil obtained by the prior art
Is more expensive. Therefore, when used as a shield material when coating an electric wire, it is easy to coat the electric wire and is hard to be cut even when a high tension is applied. In the above description, the case of using as a shielding material for covering electric wires has been mainly described, but the ultra-thin soft copper foil obtained by the method according to the present invention is used for bonding with a synthetic resin film or the like. Can be suitably used.

【0012】[0012]

【実施例】【Example】

実施例1〜6及び比較例1〜6 溶解・鋳造により、厚さ30mm×巾200mm×長さ300mmのタ
フピッチ銅の鋳塊を準備した。この鋳塊に熱間圧延を施
した後、冷間圧延と中間焼鈍を数回繰り返して、最後の
中間焼鈍を終えて、表1に示した厚さの銅板を得た。そ
して、この銅箔に、冷間加工度が表1に示した値となる
ようにして冷間圧延を施し、最終厚さ9μm又は7μmの
極薄銅箔を得た。そして、表1に記載した条件で仕上焼
鈍を施し、極薄軟質銅箔を得た。なお、各例で使用した
極薄銅箔の再結晶温度は、表1に記載したとおりであっ
た。
Examples 1 to 6 and Comparative Examples 1 to 6 An ingot of tough pitch copper having a thickness of 30 mm, a width of 200 mm and a length of 300 mm was prepared by melting and casting. After subjecting this ingot to hot rolling, cold rolling and intermediate annealing were repeated several times to complete the final intermediate annealing and obtain a copper plate having a thickness shown in Table 1. Then, the copper foil was subjected to cold rolling so that the degree of cold working became the value shown in Table 1, and an ultrathin copper foil having a final thickness of 9 μm or 7 μm was obtained. Then, finish annealing was performed under the conditions described in Table 1 to obtain an ultrathin soft copper foil. The recrystallization temperature of the ultra-thin copper foil used in each example was as shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】以上のような方法で得られた極薄軟質銅箔
の引張強さ(kgf/mm2)及び伸び(%)は、表1に記載
したとおりであった。なお、引張強さ及び伸びの測定方
法は、以下のとおりである。即ち、巾10mmの試料(長手
方向が圧延方向である)の両端部をチャックで把持し、
チャック間距離50mm,引張速度10mm/minで、試料が破
断するまで引っ張って、荷重−歪曲線を描き、最大荷重
を断面で除したものを引張強さ(kgf/mm2)とする。一
方、破断時における試料の長さをL1(mm)とした場
合、[(L1−50)/50]×100の式で算出されるものを
伸び(%)とする。
The tensile strength (kgf / mm 2 ) and elongation (%) of the ultrathin soft copper foil obtained by the above method were as shown in Table 1. In addition, the measuring method of tensile strength and elongation is as follows. That is, both ends of a 10 mm wide sample (the longitudinal direction is the rolling direction) are gripped with chucks,
A sample is pulled at a distance between chucks of 50 mm and a tensile speed of 10 mm / min until the sample breaks, draw a load-strain curve, and the maximum load divided by the cross section is defined as the tensile strength (kgf / mm 2 ). On the other hand, if the length of the sample at break was L 1 and (mm), and [(L 1 -50) / 50 ] extending what is calculated by the equation × 100 (%).

【0015】表1の引張強さ及び伸びの結果から明らか
なとおり、最後の中間焼鈍と仕上焼鈍の間に施される冷
間圧延工程における冷間加工度を95%以下にし、且つ仕
上焼鈍の温度を再結晶温度又はそれよりも一定値高い温
度で行って得られた極薄軟質銅箔(実施例1〜6)は、
冷間加工度が95%を超えたり、再結晶温度未満の温度で
仕上焼鈍を行ったり、或いは再結晶温度よりも一定値以
上高い温度で仕上焼鈍を行い得られた極薄軟質銅箔(比
較例1〜6)に比べて、その引張強さは高く且つ伸びも
高いものであった。
As is clear from the results of tensile strength and elongation in Table 1, the degree of cold work in the cold rolling step performed between the final intermediate annealing and the finish annealing is set to 95% or less, and the finish annealing is performed. The ultra-thin soft copper foil (Examples 1 to 6) obtained by performing the temperature at a recrystallization temperature or a temperature higher than the recrystallization temperature by a fixed value,
Ultra-thin soft copper foil obtained by finishing at a cold working degree of more than 95%, performing annealing at a temperature lower than the recrystallization temperature, or performing annealing at a temperature higher than the recrystallization temperature by a fixed value or more Compared with Examples 1 to 6, the tensile strength was high and the elongation was high.

【0016】[0016]

【作用】本発明に係る方法で得られた極薄軟質銅箔が、
高い引張強さを保持し、且つ高い伸びを保持する理由は
定かではないが、以下のように推定しうる。即ち、タフ
ピッチ銅又は無酸素銅の銅板は、延性に優れているた
め、一般的に大きな冷間加工が施される。しかし、大き
な冷間加工を施すと、結晶組織の融通性が低下し、従っ
て、伸びが低下すると共に引張強さが低下するのであ
る。これに対し、本発明の如く、延性に優れている銅板
であっても、この延性を利用した大きな冷間加工を施さ
ない場合は、結晶組織の融通性が大きく、冷間加工後も
高延性となっている。この結果、比較的高い引張強さ及
び比較的高い伸びを有する、厚さ10μm以下の極薄軟質
銅箔が得られると推定しうるのである。
The ultra-thin soft copper foil obtained by the method according to the present invention is
The reason for maintaining high tensile strength and maintaining high elongation is not clear, but can be estimated as follows. That is, a copper plate made of tough pitch copper or oxygen-free copper is excellent in ductility, and therefore generally subjected to a large cold working. However, when a large cold work is performed, the flexibility of the crystal structure is reduced, so that the elongation is reduced and the tensile strength is reduced. On the other hand, even in the case of a copper plate having excellent ductility as in the present invention, if a large cold working utilizing this ductility is not performed, the flexibility of the crystal structure is large, and the ductility is high even after the cold working. It has become. As a result, it can be estimated that an ultrathin soft copper foil having a thickness of 10 μm or less having a relatively high tensile strength and a relatively high elongation can be obtained.

【0017】[0017]

【発明の効果】以上説明したように、本発明に係る方法
で得られた極薄軟質銅箔は、比較的高い引張強さと伸び
とを有しており、電線を被覆するためのシールド材とし
て使用した場合、シールド材に高張力が負荷されても、
シールド材が切断しにくいという効果を奏するものであ
る。また、合成樹脂製フィルムと貼合する場合に、銅箔
に高張力が負荷されても、銅箔にクラックが発生しにく
いという効果を奏するものである。
As described above, the ultrathin soft copper foil obtained by the method according to the present invention has a relatively high tensile strength and elongation, and is used as a shielding material for covering electric wires. When used, even if high tension is applied to the shield material,
This has the effect that the shielding material is hard to cut. In addition, when laminating with a synthetic resin film, even if high tension is applied to the copper foil, the copper foil is less likely to crack.

フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 1/09 H05K 1/09 A 9/00 9/00 W (58)調査した分野(Int.Cl.6,DB名) C22F 1/08 B21B 1/40 B21B 3/00 H01B 7/18 H01B 11/06 H05K 1/09 H05K 9/00 Continuation of the front page (51) Int.Cl. 6 identification code FI H05K 1/09 H05K 1/09 A 9/00 9/00 W (58) Field surveyed (Int.Cl. 6 , DB name) C22F 1 / 08 B21B 1/40 B21B 3/00 H01B 7/18 H01B 11/06 H05K 1/09 H05K 9/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 タフピッチ銅又は無酸素銅の鋳塊に、熱
間圧延,冷間圧延及び中間焼鈍,仕上焼鈍を施して、厚
さ10μm以下の極薄軟質銅箔を製造する方法において、
最後の中間焼鈍と仕上焼鈍との間において施される冷間
圧延による冷間加工度が95%以下であり、且つ仕上焼鈍
温度(T℃)が、再結晶温度≦T℃≦(再結晶温度+80
℃)であることを特徴とする極薄軟質銅箔の製造方法。
1. A method for producing an ultrathin soft copper foil having a thickness of 10 μm or less by subjecting an ingot of tough pitch copper or oxygen-free copper to hot rolling, cold rolling, intermediate annealing, and finish annealing.
The degree of cold working by cold rolling performed between the final intermediate annealing and the finish annealing is 95% or less, and the finish annealing temperature (T ° C) is recrystallization temperature ≦ T ° C ≦ (recrystallization temperature +80
° C).
JP27615793A 1993-10-06 1993-10-06 Manufacturing method of ultra-thin soft copper foil Expired - Lifetime JP2907415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27615793A JP2907415B2 (en) 1993-10-06 1993-10-06 Manufacturing method of ultra-thin soft copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27615793A JP2907415B2 (en) 1993-10-06 1993-10-06 Manufacturing method of ultra-thin soft copper foil

Publications (2)

Publication Number Publication Date
JPH07109552A JPH07109552A (en) 1995-04-25
JP2907415B2 true JP2907415B2 (en) 1999-06-21

Family

ID=17565545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27615793A Expired - Lifetime JP2907415B2 (en) 1993-10-06 1993-10-06 Manufacturing method of ultra-thin soft copper foil

Country Status (1)

Country Link
JP (1) JP2907415B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203131B2 (en) * 1997-01-27 2008-12-24 日本製箔株式会社 Method for producing soft copper foil with good wettability
JP2009158382A (en) * 2007-12-27 2009-07-16 Hitachi Cable Ltd Copper foil
JP5041455B2 (en) * 2010-08-30 2012-10-03 古河電気工業株式会社 Solar cell lead wire and manufacturing method thereof
JP5874595B2 (en) * 2012-10-09 2016-03-02 日立金属株式会社 Differential signal transmission cable
CN110814029B8 (en) * 2019-10-25 2020-10-02 菏泽广源铜带有限公司 Rolling method of 6-micron high-strength rolled copper foil
CN115921571B (en) * 2022-12-19 2024-01-09 江苏富威科技股份有限公司 Rolled copper foil manufacturing method and rolled copper foil

Also Published As

Publication number Publication date
JPH07109552A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
US3195991A (en) Production of composite metal strip suitable for the manufacture of bearings
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2907415B2 (en) Manufacturing method of ultra-thin soft copper foil
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2907414B2 (en) Method for manufacturing high ductility copper foil
JPH06100983A (en) Metal foil for tab tape having high young's modulus and high yield strength and its production
JP2003089859A (en) Method for producing aluminum alloy sheet having excellent bending workability
JPH0363442B2 (en)
US3661657A (en) Method for making aluminum sheet
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP3017236B2 (en) Method for producing Fe-Al alloy soft magnetic sheet having excellent magnetic properties
JPH0953162A (en) Production of soft copper foil
WO2000034544A2 (en) High strength aluminium alloy sheet and process
JPH06145930A (en) Production of precipitation type copper alloy
JPS5910522B2 (en) copper coated aluminum wire
JP3302840B2 (en) High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same
JPS63274728A (en) Copper alloy for wire-harness terminal and its production
JPS6053106B2 (en) Oxygen-free copper wire material
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JPH06100984A (en) Spring material excellent in shape freezability and spring limit value and its production
JPS63161148A (en) Manufacture of aluminum foil excellent in strength and workability
JP2872784B2 (en) Manufacturing method of aluminum foil
JP3835707B2 (en) Method for producing Al-Mg alloy plate for forming
JPS61288036A (en) Copper alloy for lead frame and its production