JP2898681B2 - Remote field eddy current sensor - Google Patents

Remote field eddy current sensor

Info

Publication number
JP2898681B2
JP2898681B2 JP1568290A JP1568290A JP2898681B2 JP 2898681 B2 JP2898681 B2 JP 2898681B2 JP 1568290 A JP1568290 A JP 1568290A JP 1568290 A JP1568290 A JP 1568290A JP 2898681 B2 JP2898681 B2 JP 2898681B2
Authority
JP
Japan
Prior art keywords
coil
receiving coil
eddy current
remote field
field eddy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1568290A
Other languages
Japanese (ja)
Other versions
JPH03220451A (en
Inventor
靖治 細原
茂 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHII ETSUKUSU AARU KK
Tokyo Gas Co Ltd
Original Assignee
SHII ETSUKUSU AARU KK
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHII ETSUKUSU AARU KK, Tokyo Gas Co Ltd filed Critical SHII ETSUKUSU AARU KK
Priority to JP1568290A priority Critical patent/JP2898681B2/en
Publication of JPH03220451A publication Critical patent/JPH03220451A/en
Application granted granted Critical
Publication of JP2898681B2 publication Critical patent/JP2898681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はリモートフィールド渦流センサに係わり、特
に油井管、パイプライン、熱交換器等の金属材の瑕疵を
検出するリモートフィールド渦流法に適用できるリモー
トフィールド渦流センサに関する。
Description: TECHNICAL FIELD The present invention relates to a remote field eddy current sensor, and is particularly applicable to a remote field eddy current method for detecting defects in metal materials such as oil country tubular goods, pipelines, and heat exchangers. The present invention relates to a remote field eddy current sensor.

[従来の技術及び発明が解決しようとする課題] 従来の金属材が管路のときリモートフィールド渦流を
用いて金属材の診断を行うには、励磁コイルと受信コイ
ルからなるリモートフィールド渦流センサを供試金属
材、例えば管路内に挿入し、励磁コイルに励磁信号を印
加する。
[Problems to be Solved by the Related Art and the Invention] In order to diagnose a metal material using a remote field eddy current when the conventional metal material is a pipe, a remote field eddy current sensor including an excitation coil and a reception coil is provided. It is inserted into a test metal material, for example, a pipe, and an excitation signal is applied to the excitation coil.

励磁コイルが発生する電磁波は供試路の肉厚を通過す
る間接伝播と供試管路を導波管としてみたときの直接伝
播が考えられるが、直接伝播は供試管路の周波数特性に
より完全に減衰する。このため、利用できる診断データ
は管路による間接伝播波となる。受信コイル近傍におけ
るリモートフィールド渦流による受信信号の振幅及び位
相の変化がいわゆる表皮効果といわれるが、受信信号の
振幅は管路の肉厚により指数関数的に減少する。励磁信
号と受信信号の位相差は管材の透磁率、電気伝導度およ
び励磁信号の周波数による電気理論上の条件に対し、管
肉厚にほぼ比例した値となるので前記位相差が診断に用
いられることが普通である。
The electromagnetic wave generated by the exciting coil may be indirect propagation through the thickness of the test path or direct propagation when the test pipe is regarded as a waveguide, but the direct propagation is completely attenuated by the frequency characteristics of the test pipe. I do. For this reason, the diagnostic data that can be used is an indirectly propagated wave through a pipeline. The change of the amplitude and phase of the received signal due to the remote field eddy current near the receiving coil is called a so-called skin effect, but the amplitude of the received signal decreases exponentially due to the thickness of the conduit. The phase difference between the excitation signal and the reception signal is substantially proportional to the tube wall thickness with respect to the magnetic permeability of the tube, the electrical conductivity, and the electrical theoretical condition based on the frequency of the excitation signal, so the phase difference is used for diagnosis. That is normal.

受信コイルは励磁コイルの後方に設けられ管路の内壁
に沿ってスター状に配置され数個の受信コイルを有する
絶対値形と、スター状に配置された前方群の受信コイル
とその後方に設けられた後方群の受信コイルを設けた差
動形とがある。
The receiving coil is provided at the rear of the exciting coil, is arranged in a star shape along the inner wall of the pipeline, and has an absolute value type having several receiving coils, and the receiving coil of the front group arranged in a star shape and the rear thereof. And a differential type provided with a receiving coil of the rear group.

絶対値形では群中のそれぞれは巻数が同じであり、複
数の受信コイルは直列または並列に接続されセンサ信号
を出力する必要対の引出線で測定器と接続するようにな
っている。
In the absolute value type, each group in the group has the same number of turns, and the plurality of receiving coils are connected in series or in parallel so as to be connected to the measuring instrument with the necessary pairs of leads for outputting sensor signals.

差動形では前方群と後方群のそれぞれの受信コイルは
巻数が総べて同じで、前方群と後方群から必要な数のコ
イルを直列または並列に接続し、前方コイルと後方コイ
ル間を差動に結線して必要対の引出線を設け、測定器と
接続するようになっている。
In the differential type, the receiving coils of the front group and the rear group all have the same number of turns.The required number of coils are connected in series or in parallel from the front group and the rear group, and the difference between the front coil and the rear coil is changed. A necessary pair of lead wires are provided by connecting the motion and connected to the measuring instrument.

上記構成の絶対値形リモートフィールド渦流センサは
比較的高いレベルのセンサ信号が得られるので安定した
診断が実施でき供試管路の漸次状腐食部FWの検出には適
しているが、局部的腐食部FSに対しては検出感度が低
く、局部的腐食FSが小さくなると検出ができない等の難
点がある。
The absolute value type remote field eddy current sensor with the above configuration can obtain a relatively high level sensor signal and can perform stable diagnosis, and is suitable for detecting the gradually corroded portion FW of the test pipe. There are disadvantages such as low detection sensitivity for FS and the inability to detect if the local corrosion FS is small.

一方、差動形リモートフィールド渦流センサは前方群
の受信コイルと後方群の受信コイルのセンサ信号のレベ
ル差で腐食を検出するようになっているので局部的腐食
FSに対し感度が高く有利であるが漸次的腐食部FWに対し
ては差動信号が得られにくく不利である難点がある。ま
た、差動信号が小さいため安定的に位相検波が行なえな
い難点がある。
On the other hand, the differential type remote field eddy current sensor detects corrosion based on the level difference between the sensor signals of the front group receiving coil and the rear group receiving coil.
Although it has high sensitivity and is advantageous for FS, there is a disadvantage that it is difficult to obtain a differential signal for the gradually corroded portion FW, which is disadvantageous. Further, there is a problem that the phase detection cannot be performed stably because the differential signal is small.

差動形、絶対値形共にセンサ信号のレベルの強弱だけ
が行なわれるのでなく、得られたセンサ信号の位相遅延
特性から腐食の深度、広さ等を演算するので、位相検波
の安定性が重要である。
The stability of phase detection is important because both the differential type and the absolute value type calculate the depth and width of corrosion based on the phase delay characteristics of the obtained sensor signal as well as the level of the sensor signal. It is.

[発明の目的] 本発明は上述した難点に鑑みなされたもので、励磁コ
イル側に設ける前方の受信コイルの巻数を後方の受信コ
イルの巻数より大きくすることにより、漸次状腐食及び
局部的腐食両方に対して安定した位相データが得られる
センサ信号を出力できるリモートフィールド渦流センサ
を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above-described difficulties, and has a structure in which the number of turns of the front receiving coil provided on the exciting coil side is made larger than the number of turns of the rear receiving coil, so that both gradual corrosion and local corrosion are achieved. It is an object of the present invention to provide a remote field eddy current sensor capable of outputting a sensor signal capable of obtaining stable phase data.

[課題を解決するための手段] 以上の目的を達成するため本発明によるリモートフィ
ールド渦流センサは、供試金属材にリモートフィールド
渦流を発生させる励磁コイルと、前記励磁コイルから所
定間隔離れて設けられ前記リモートフィールド渦流を受
信する第1の受信コイルと、前記第1の受信コイルより
巻数が少なく、かつ前記励磁コイルからの距離が前記所
定間隔より長い間隔離れて配設され前記リモートフィー
ルド渦流を受信する第2の受信コイルとで構成する。
Means for Solving the Problems In order to achieve the above object, a remote field eddy current sensor according to the present invention is provided with an exciting coil for generating a remote field eddy current in a test metal material and a predetermined distance from the exciting coil. A first receiving coil for receiving the remote field eddy current; a first receiving coil having a smaller number of turns than the first receiving coil, and a distance from the excitation coil being longer than the predetermined interval to receive the remote field eddy current; And a second receiving coil.

[実施例] 以下、本発明によるリモートフィールド渦流センサの
一実施例を図面に従って詳述する。
Hereinafter, an embodiment of the remote field eddy current sensor according to the present invention will be described in detail with reference to the drawings.

第1図において、MCは励磁コイルである。励磁コイル
MCの後方に所定間隔(管径の2倍以上)離れた位置に前
方受信コイルCn(nは1〜6)を設ける。前方受信コイ
ルFC1〜FC6は供試管1に対し相互に60°間隔で設ける。
したがって、前方受信コイルFC1は12時の方向、FC2は2
時‥‥FC3は10時の方向に配設され、それぞれ前方受信
コイルFC1〜FC6は直列接続され、引出線FL1、FL2が引出
され、差動コイル2の端子2cと2aに接続される。また、
後方受信コイルRCn(nは1〜6)を前方受信コイルFC1
〜FC6より後方に設ける。それぞれの後方受信コイルRC1
〜RC6は前方受信コイルFC1〜FC6より巻数が少ないコイ
ルで構成され、かつ配設方向は前方受信コイルFC1〜FC6
と同じ方向である。従って、後方受信コイルRC1は12時
の方向‥‥に配設される。
In FIG. 1, MC is an exciting coil. Excitation coil
A front receiving coil Cn (n is 1 to 6) is provided at a position separated by a predetermined interval (at least twice the pipe diameter) behind the MC. The front receiving coils FC 1 to FC 6 are provided at intervals of 60 ° with respect to the test tube 1.
Therefore, the front receiving coil FC 1 is in the direction of 12:00, FC 2 is 2
The time FC 3 is arranged in the direction of 10 o'clock, the respective front receiving coils FC 1 to FC 6 are connected in series, the lead lines FL 1 and FL 2 are drawn, and the terminals 2 c and 2 a of the differential coil 2 are connected. Connected. Also,
Rear receiving coil RCn front receiving coil FC 1 to (n is 1-6)
~ Provided behind FC 6 . Each rear receiving coil RC 1
To RC 6 is a coil winding number is less than the front receiving coil FC 1 ~FC 6, and the laying direction is forward receiving coils FC 1 ~FC 6
In the same direction. Therefore, the rear receiving coils RC 1 is disposed in the direction ‥‥ 12 o'clock.

後方受信コイルRC1〜RC6は直列に接続され引出線R
L1、RL2で差動コイル2の端子2cと2bに接続される。
Rear receiving coil RC 1 to RC 6 are connected in series lead line R
L 1 and RL 2 are connected to the terminals 2 c and 2 b of the differential coil 2.

なお、前方受信コイルFCnの一端と、後方受信コイルR
Cnの一端を接続し、前方、後方受信コイルFCn、RCnのそ
れぞれの他端を引出し、前方受信コイルFCnと、後方受
信コイルRCnが相互に差動巻となるよう布線すれば差動
コイルが省略できる。
Note that one end of the front receiving coil FCn and the rear receiving coil R
One end of Cn is connected, the other ends of the front and rear receiving coils FCn and RCn are pulled out, and the front receiving coil FCn and the rear receiving coil RCn are wired so as to form a differential winding. Can be omitted.

[発明の作用] 上記構成のリモートフィールド渦流センサを健全部に
置くと第2図に示すようにIは(以下、I、II…はベク
トルを表わす)前方受信コイルFCnによる信号ベクト
ル、IIは後方受信コイルRCnによる信号ベクトルで、近
接しているためほぼ同一の位相θをもつ。IIIは差動結
線による差動ベクトルである。III=I−IIで方向が同
じだから位相θである。この信号ベクトルIIIを基準信
号XIで位相検波を行うと健全部に対する位相データθが
得られる。従来はI−II=IIIはIIIが小さいので位相検
波が不安定となり安定した位相データが得られなかった
が、本発明によるリモートフィールド渦流センサでは励
磁コイルMCに近い前方受信コイルFCnが励磁コイルMCよ
りの距離が遠い後方受信コイルRCnに比べて信号レベル
が高いだけでなく、巻線回数が多いので巻線回数が多い
分だけ信号レベルが更に加算されるので位相検波に十分
の大きさの差動信号ベクトルIIIが得られ、安定した位
相テータが得られる。
[Operation of the Invention] When the remote field eddy current sensor having the above configuration is placed in a sound part, as shown in FIG. 2, I is a signal vector by the front receiving coil FCn (hereinafter, I, II... It is a signal vector by the receiving coil RCn, and has almost the same phase θ due to proximity. III is a differential vector by differential connection. Since III = I-II and the direction is the same, the phase is θ. When this signal vector III is subjected to phase detection with the reference signal XI, phase data θ for a healthy part is obtained. Conventionally, when I-II = III, III is small, so that phase detection becomes unstable and stable phase data cannot be obtained. However, in the remote field eddy current sensor according to the present invention, the front receiving coil FCn close to the exciting coil MC has the exciting coil MC. Not only the signal level is higher than the rear receiving coil RCn, which is farther away, but also because the number of windings is large, the signal level is added as much as the number of windings is large, so the difference is large enough for phase detection. The motion signal vector III is obtained, and a stable phase data is obtained.

第3図は大きな漸次状腐食部FWに対する信号ベクトル
変化を示している。信号ベクトルIは前方受信コイルFC
nによる健全部の信号ベクトル、IIは後方受信コイルRCn
による健全部の信号ベクトル、IIIは差動結線による健
全部の差ベクトルである。漸次状腐食部FWは、大きな広
さを有するため、前方受信コイル及び後方受信コイル両
方が腐食部に含まれ、両方の信号ベクトルが同様に変化
する。IVは前方受信コイルFCnによる漸次状腐食部信号
ベクトル、Vは後方受信コイルRCnによる漸次状腐食部
信号ベクトル、VIは差動結線による漸次腐食部差ベクト
ルである。ここでVIには漸次状腐食部FWが含まれ、III
との位相差をもって漸次状腐食部FWを検出することがで
きる。
FIG. 3 shows a signal vector change for a large gradual corrosion portion FW. The signal vector I is the forward receiving coil FC
n is the signal vector of the sound part due to n, II is the rear receiving coil RCn
Is a signal vector of a healthy part, and III is a difference vector of a healthy part due to differential connection. Since the progressively corroded portion FW has a large area, both the front receiving coil and the rear receiving coil are included in the corroded portion, and both signal vectors change similarly. IV is a progressively corroded portion signal vector due to the front receiving coil FCn, V is a progressively corroded portion signal vector due to the rear receiving coil RCn, and VI is a progressively corroded difference vector due to differential connection. Here, VI contains progressively corroded portions FW, and III
The progressively corroded portion FW can be detected based on the phase difference.

第4図のIは前方受信コイルFCnの健全部の信号ベク
トル、IIは後方受信コイルRCnの健全部信号ベクトル、I
IIは差動結線による健全部差ベクトルである。局部的腐
食部FSは、広がりが小さいため前方受信コイルFCnのみ
が腐食部に含まれ、信号ベクトルIのみが変化する場合
を考えるとIVは前方受信コイルFCnの局部的腐食部にお
ける信号ベクトル、Vは局部的腐食部FSの差動結線によ
る信号ベクトルである。VとIIIの位相差によって局部
的腐食部FSを検出することができる。
In FIG. 4, I is the signal vector of the sound part of the front receiving coil FCn, II is the signal vector of the sound part of the rear receiving coil RCn, I
II is a sound part difference vector by differential connection. Considering the case where only the front receiving coil FCn is included in the corroded portion because the locally corroded portion FS has a small spread, and only the signal vector I changes, IV is the signal vector in the locally corroded portion of the front receiving coil FCn, V Is a signal vector due to the differential connection of the local corrosion portion FS. The local corrosion portion FS can be detected by the phase difference between V and III.

励磁コイルMCと前方、後方受信コイルFCn、RCnとの距
離による受信レベルを第5図に示す。横軸が距離差(MC
−FCn又はRCn)で縦軸が信号レベルである。必要な受信
レベルを得るのに巻数の多い受信コイルを後方受信コイ
ルRCnとすると受信レベルが減少した分をカバーするた
め、更に巻数を増加しなければならないのでこの特性図
から明らかなように巻数の多い前方受信コイルFCnを前
方に設ければ励磁コイルMCに近接して増加した信号レベ
ルと巻数増により増加した信号レベルが加算されて安定
した信号レベルが得られる。
FIG. 5 shows reception levels depending on the distance between the exciting coil MC and the front and rear receiving coils FCn and RCn. The horizontal axis indicates the distance difference (MC
−FCn or RCn), the vertical axis is the signal level. If the receiving coil with a large number of turns is used as the rear receiving coil RCn to obtain the required receiving level, the number of turns must be further increased to cover the decrease in the receiving level. If a large number of front receiving coils FCn are provided in front, a signal level increased near the exciting coil MC and a signal level increased due to an increase in the number of windings are added to obtain a stable signal level.

なお、上記実施例における前方、後方受信コイルFC
n、RCnのコイル数は6個に限定しない。また、受信コイ
ルの接続形態は並列でも可能であり、接続コイル数も任
意に構成できる。前方、後方受信コイルFCn、RCnの接続
は上記実施例に限定せず、差動演算が行なえる回路構成
が得られれば同様な効果が得られることは言うまでもな
い。
Note that the front and rear receiving coils FC in the above embodiment are used.
The number of coils of n and RCn is not limited to six. Further, the connection form of the receiving coils can be parallel, and the number of connected coils can be arbitrarily configured. The connection between the front and rear receiving coils FCn and RCn is not limited to the above embodiment, and it goes without saying that a similar effect can be obtained as long as a circuit configuration capable of performing differential operation is obtained.

[発明の効果] 本発明によるリモートフィールド渦流センサは、供試
金属材にリモートフィールド渦流を発生させる励磁コイ
ルと、前記励磁コイルから所定間隔離れて設けられた前
記リモートフィールド渦流を受信する第1の受信コイル
と、前記第1の受信コイルより巻数が少なく、かつ前記
励磁コイルからの距離が前記所定間隔より長い間隔離れ
て配設された前記リモートフィールド渦流を受信する第
2の受信コイルとで構成してあるから漸次状腐食及び局
部的腐食両方に対し従来に比べて安定した位相データが
得られるセンサ信号を出力できる効果がある。
[Effects of the Invention] A remote field eddy current sensor according to the present invention includes an excitation coil that generates a remote field eddy current in a test metal material, and a first field that receives the remote field eddy current provided at a predetermined distance from the excitation coil. A receiving coil, and a second receiving coil configured to receive the remote field eddy current, the number of turns being smaller than that of the first receiving coil, and the distance from the exciting coil being longer than the predetermined interval. Therefore, there is an effect that a sensor signal capable of obtaining more stable phase data can be output as compared with the related art for both gradual corrosion and local corrosion.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるリモートフィールド渦流センサの
構成図、第2図は第1図に係わる健全管に於ける信号ベ
クトル図、第3図は第1図に係わる漸次状腐食による信
号ベクトル変化図、第4図は第1図に係わる局部的腐食
に於ける信号ベクトル変化図、第5図は励磁コイルと受
信コイルとの距離に対する信号レベルを示す特性図であ
る。 1……供試管(金属材) 2……差動コイル MC……励磁コイル FCn……前方受信コイル(第1の受信コイル) RCn……後方受信コイル(第2の受信コイル)
FIG. 1 is a block diagram of a remote field eddy current sensor according to the present invention, FIG. 2 is a signal vector diagram in a sound pipe according to FIG. 1, and FIG. 3 is a signal vector change diagram due to gradual corrosion according to FIG. FIG. 4 is a diagram showing a signal vector change in the local corrosion shown in FIG. 1, and FIG. 5 is a characteristic diagram showing a signal level with respect to a distance between an exciting coil and a receiving coil. 1. Test tube (metal material) 2. Differential coil MC Excitation coil FCn Front receiving coil (first receiving coil) RCn Rear receiving coil (second receiving coil)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−35261(JP,A) 特開 昭61−134658(JP,A) 特公 昭48−18277(JP,B1) (58)調査した分野(Int.Cl.6,DB名) G01N 27/72 - 27/90 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-64-35261 (JP, A) JP-A-61-134658 (JP, A) JP-B-48-18277 (JP, B1) (58) Field (Int.Cl. 6 , DB name) G01N 27/72-27/90

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】供試験金属材にリモートフィールド渦流を
発生させる励磁コイルと、前記励磁コイルから所定間隔
離れて設けられ前記リモートフィールド渦流を受信する
第1の受信コイルと、前記第1の受信コイルより巻数が
少なく、かつ前記励磁コイルからの距離が前記所定間隔
より長い間隔離れて配設され前記リモートフィールド渦
流を受信する第2の受信コイルとを備えたことを特徴と
するリモートフィールド渦流センサ。
1. An exciting coil for generating a remote field eddy current in a metal material under test, a first receiving coil provided at a predetermined distance from the exciting coil to receive the remote field eddy current, and the first receiving coil A remote coil having a smaller number of turns and a second receiving coil disposed at a distance from the exciting coil longer than the predetermined interval and receiving the remote field eddy current.
JP1568290A 1990-01-25 1990-01-25 Remote field eddy current sensor Expired - Fee Related JP2898681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1568290A JP2898681B2 (en) 1990-01-25 1990-01-25 Remote field eddy current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1568290A JP2898681B2 (en) 1990-01-25 1990-01-25 Remote field eddy current sensor

Publications (2)

Publication Number Publication Date
JPH03220451A JPH03220451A (en) 1991-09-27
JP2898681B2 true JP2898681B2 (en) 1999-06-02

Family

ID=11895523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1568290A Expired - Fee Related JP2898681B2 (en) 1990-01-25 1990-01-25 Remote field eddy current sensor

Country Status (1)

Country Link
JP (1) JP2898681B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159984A (en) * 2019-03-28 2020-10-01 国立研究開発法人日本原子力研究開発機構 Eddy current flaw detection probe and eddy current flaw detector
JP2020159983A (en) * 2019-03-28 2020-10-01 国立研究開発法人日本原子力研究開発機構 Eddy current flaw detection probe and eddy current flaw detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726758U (en) * 1992-02-07 1995-05-19 東京瓦斯株式会社 Receiver coil for remote field eddy current flaw detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159984A (en) * 2019-03-28 2020-10-01 国立研究開発法人日本原子力研究開発機構 Eddy current flaw detection probe and eddy current flaw detector
JP2020159983A (en) * 2019-03-28 2020-10-01 国立研究開発法人日本原子力研究開発機構 Eddy current flaw detection probe and eddy current flaw detector
JP7295523B2 (en) 2019-03-28 2023-06-21 国立研究開発法人日本原子力研究開発機構 Eddy current flaw detection probe and eddy current flaw detection device
JP7295522B2 (en) 2019-03-28 2023-06-21 国立研究開発法人日本原子力研究開発機構 Eddy current flaw detection probe and eddy current flaw detection device

Also Published As

Publication number Publication date
JPH03220451A (en) 1991-09-27

Similar Documents

Publication Publication Date Title
US5461312A (en) Remote field eddy current sensor for detecting flaws in metal material
JP4263244B2 (en) Eddy current inspection technology
EP0321112B1 (en) Method for detecting corrosion on conductive containers
CN1898558B (en) Method and system for torsional wave inspection of heat exchanger tubes
US20040189289A1 (en) Method for testing prestressed concrete pipes
US4608534A (en) Eddy current probe for detecting localized defects in cylindrical components
US8564303B2 (en) Systems and methods for detecting anomalies in elongate members using electromagnetic back scatter
JP2004518950A (en) Stress measurement of ferromagnetic materials
JPH01501419A (en) Method for detecting wall thickness changes in hollow bodies that conduct electricity
JP2898681B2 (en) Remote field eddy current sensor
US5821747A (en) Method and apparatus for scanning a plurality of parallel pipes for flaws using tube-to-tube through transmissions
US6388439B1 (en) Method and device for measuring in situ the gap between two given elements in a tubular pipe
RU2250372C1 (en) Electromagnetic well defect detector
US20150176959A1 (en) Method and measuring device for measuring thickness of a ferromagnetic metal object
JP3152676B2 (en) Metal remote field eddy current flaw detector
JPH07248314A (en) Probe for eddy-current flaw detection
JP3426748B2 (en) Eddy current detection test method
JPS58843Y2 (en) Eddy current flaw detector
JPH03285161A (en) Remote eddy current flaw detection method
JPH06186205A (en) Eddy-current flaw detecting apparatus
JP2693009B2 (en) Metal flaw detector
JPH04188057A (en) Flaw detecting apparatus for metal material
JPH02126153A (en) Tube inspecting device using remote field eddy current method
JP2002162388A (en) Eddy current detector for welded pipe
JPH08278289A (en) Flaw detection device and method for ferromagnetic tube

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees