JPH03285161A - Remote eddy current flaw detection method - Google Patents

Remote eddy current flaw detection method

Info

Publication number
JPH03285161A
JPH03285161A JP8518590A JP8518590A JPH03285161A JP H03285161 A JPH03285161 A JP H03285161A JP 8518590 A JP8518590 A JP 8518590A JP 8518590 A JP8518590 A JP 8518590A JP H03285161 A JPH03285161 A JP H03285161A
Authority
JP
Japan
Prior art keywords
distance
coil
receiving coil
flaw detection
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8518590A
Other languages
Japanese (ja)
Inventor
Naoki Taoka
田岡 直規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8518590A priority Critical patent/JPH03285161A/en
Publication of JPH03285161A publication Critical patent/JPH03285161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To easily perform flaw detection work and to miniaturize an apparatus by exciting a transmission coil and measuring the boundary distance between a direct magnetic field affected region and an indirect magnetic field dominating region and adjusting the distance in a pipe axis direction between transmission and receiving coils so that the receiving coil is present in the latter region to allow both coils to integrally run. CONSTITUTION:A transmission coil T and a receiving coil R are integrally moved in the direction shown by an arrow 11. The magnetic flux 12 from the coil T pierces pipe 10 to propagate through an external space 13 along the outer surface of the pipe 10 and again pierces the pipe 10 to reach the receiving coil R. The electromagnetic wave speed of the magnetic flux 12 is lower in the thick wall part of the pipe 10 to a large extent and phase difference can be detected and, since the amplitude of a receiving signal also changes in a corroded reduce thickness part 14, the detection of said part 14 can be carried out. Since the distance between the coils T, R is variable, by setting the distance L to 2.5 times or more the diameter D of pipe to select the same so that the coil R is present in an indirect magnetic field, a detection signal reduced in noise is obtained and the reduced thickness part 14 can be certainly detected with high sensitivity. Since the distance L can be made as short as possible, an apparatus 35 is miniaturized and, even when the pipe 10 has a bent part, the apparatus is allowed to run smoothly to carry out work.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、地中埋設鋼管などの金属製管の腐食減肉を検
査するために用いられる離隔渦流探傷法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a remote eddy current flaw detection method used to inspect metal pipes such as underground steel pipes for corrosion thinning.

従来の技術 離隔渦流探傷法は、リモートフィールド渦流探傷法とも
呼ばれ、金属製管内に送信コイルと受信コイルとをその
管軸方向に間隔をあけて配置し、この送信コイルと受信
コイルとの間隔は、送信コイルからの直接の磁場の影響
が受信コイルに及ばないように、通常管径(すなわち管
の外径)の2〜4倍の距離を隔てて配置することが必要
とされており、送信コイルに交流を流すと送信コイルか
らの磁束が管を貫通して外部空間を通り、管の外面に沿
って伝わり再び管を貫通して受信コイルによって受信さ
れ、この磁束の電磁波は、管の肉厚部を通過するときの
速度の方が外部空間である空気中を通過するときの速度
に比べて大幅に小さく、したがってその伝播時間、すな
わち送信コイルの送信信号と受信コイルの受信信号との
位相差が、管の肉厚に比例して変化し、このことから、
位相差に対応した管の腐食減肉を検出する。
The conventional remote eddy current flaw detection method, also known as the remote field eddy current flaw detection method, involves arranging a transmitting coil and a receiving coil in a metal tube with an interval in the tube axis direction. In order to prevent the receiving coil from being directly influenced by the magnetic field from the transmitting coil, it is necessary to place it at a distance of 2 to 4 times the normal tube diameter (i.e. the outer diameter of the tube). When alternating current is applied to the transmitting coil, the magnetic flux from the transmitting coil passes through the tube, passes through the external space, travels along the outer surface of the tube, penetrates the tube again, and is received by the receiving coil.The electromagnetic waves of this magnetic flux are transmitted through the tube. The speed when passing through the thick part is much smaller than the speed when passing through the air, which is the external space, and therefore the propagation time, that is, the difference between the transmitted signal of the transmitting coil and the received signal of the receiving coil The phase difference changes in proportion to the wall thickness of the tube, and from this,
Detects corrosion thinning of pipes based on phase difference.

発明が解決しようとする課題 このような離隔渦流探傷法においては、検査されるべき
管種および管径が、離隔渦流現象の基礎となる渦流生成
および管内外の磁場分布に大きな影響を与える。したが
って管種、管径などに応じた最適な探傷条件(すなわち
(a)送信コイルの周波数、(b)励磁電力ならびに(
c)送信コイルおよび受信コイルの軸線方向、すなわち
管軸方向の距離など)を決定するには、手さぐり的な膨
大な実験作業が必要である。またこの探傷条件を実験室
などで予め定めておいても、現場での実際の検査される
べき管の材質のばらつきなどによって、最適な探傷条件
が変化し、腐食によって生じた管の城内部をノイズの少
ない鮮明な検出信号を得ることができない。
Problems to be Solved by the Invention In such a remote eddy current flaw detection method, the type and diameter of the tube to be inspected have a great influence on the eddy current generation, which is the basis of the isolated eddy current phenomenon, and on the magnetic field distribution inside and outside the tube. Therefore, the optimum flaw detection conditions (i.e., (a) transmitting coil frequency, (b) excitation power, and (
c) Determining the axial direction of the transmitting coil and the receiving coil (i.e., the distance in the tube axis direction) requires a huge amount of hands-on experiment work. Furthermore, even if these flaw detection conditions are determined in advance in a laboratory or the like, the optimum flaw detection conditions may change due to variations in the material of the pipe to be actually inspected in the field, and the inner walls of the pipe caused by corrosion may change. It is not possible to obtain a clear detection signal with little noise.

本発明の目的は、検査すべき管が設けられている現場な
どにおいて、最適な探傷条件で離隔渦流探傷を行うこと
ができるよう、にした離隔渦流探傷法を提供することで
ある。またこのような離隔渦流探傷法では、上述のよう
に送信コイルと受信コイルとの間隔を管径の2〜4倍の
距離を隔てなければならず、したがって検査装置の構成
が大形化するという問題がある。このように検査装置の
構成が大形化すると、管の曲がり部を通過させること、
あるいは管内へ挿入させることが困難になる。
An object of the present invention is to provide a remote eddy current flaw detection method that allows remote eddy current flaw detection to be performed under optimal flaw detection conditions at a site where a pipe to be inspected is installed. In addition, in this type of remote eddy current flaw detection method, as mentioned above, the distance between the transmitting coil and the receiving coil must be 2 to 4 times the pipe diameter, which increases the size of the inspection equipment. There's a problem. As the configuration of the inspection device increases in this way, it becomes difficult to pass the pipe through bends,
Or it becomes difficult to insert it into the tube.

本発明のもう1つの目的は、検査装置の構成を可及的に
小形化することができるようにした離隔渦流探傷法を提
供することである。
Another object of the present invention is to provide a remote eddy current flaw detection method in which the configuration of the inspection device can be made as compact as possible.

課題を解決するための手段 本発明は、管内に送信コイルと受信コイルとをその管軸
方向に間隔をあけて配置し探傷を行う離隔渦流探傷法に
おいて、 送信コイルと受信コイルとの管軸方向の距離が可変であ
る探傷装置を準備し、 送信コイルを、予め定める周波数および予め定める励磁
電力で励磁し、前記距離を可変にして、直接磁場の影響
領域と間接磁場の支配領域との境界となる前記距離を測
定し、 その測定結果に基づいて、間接磁場の支配領域に受信コ
イルが存在するように、送信コイルと受信コイルとの距
離を設定して、送信コイルと受信コイルとを一体的に管
軸に沿って走行させることを特徴とする離隔渦流探傷法
である。
Means for Solving the Problems The present invention provides a remote eddy current flaw detection method in which a transmitter coil and a receiver coil are placed in a pipe with a gap in the tube axis direction for flaw detection. Prepare a flaw detection device with a variable distance, excite the transmitting coil with a predetermined frequency and predetermined excitation power, and make the distance variable so that the boundary between the area of direct magnetic field influence and the area dominated by indirect magnetic field. Based on the measurement results, the distance between the transmitting coil and the receiving coil is set so that the receiving coil is in the area dominated by the indirect magnetic field, and the transmitting coil and the receiving coil are integrally connected. This is a remote eddy current flaw detection method characterized by running the pipe along the axis of the pipe.

また本発明は、管内に送信コイルと受信コイルとをその
管軸方向に間隔をあけて配置し探傷を行う離隔渦流探傷
法において、 送信コイルと受信コイルとの管軸方向の距離が可変であ
る探傷装置を準備し、 送信コイルを、周波数および励磁電力の複数の各組合せ
を選んで、励磁し、各組合せ毎に前記距離を可変にして
、直接磁場の影響領域と間接磁場の支配領域との境界と
なる前記距離を測定し、その測定結果に基づいて、送信
コイルから予め定める距離だけあけて配置された受信コ
イルが、間接磁場の支配領域にあるように、周波数と励
磁電力との前記組合せを選ぶことを特徴とする離隔渦流
探傷法である。
Further, the present invention provides a remote eddy current flaw detection method in which a transmitting coil and a receiving coil are placed in a pipe at intervals in the tube axis direction, and the distance between the transmitting coil and the receiving coil in the tube axis direction is variable. A flaw detection device is prepared, the transmitting coil is excited by selecting each of a plurality of combinations of frequency and excitation power, and the distance is varied for each combination to differentiate the region affected by the direct magnetic field and the region dominated by the indirect magnetic field. The distance serving as the boundary is measured, and based on the measurement result, the combination of frequency and excitation power is determined so that the receiving coil, which is placed at a predetermined distance from the transmitting coil, is in the area dominated by the indirect magnetic field. This is a remote eddy current flaw detection method characterized by the selection of

作  用 本発明に従えば、送信コイルと受信コイルとの管軸方向
、すなわちそれらの各軸線方向の距離が可変である探傷
装置を準備し、送信コイルを、通常、経験的に想定され
る周波数および励磁電力で励磁し、この状態で前記距離
を可変にして、直接磁場の影響領域と間接磁場の支配領
域との境界となる前記距離を測定し、その測定結果に基
づき、間接磁場の支配領域に受信コイルが存在するよう
に、送信コイルと受信コイルとの距離を設定して、これ
らのコイルを一体的に管内で管軸方向に沿って走行させ
る1周波数と励磁電力との各組合せを、複数種類、変化
させて、各組合せ毎に前記距離を可変にして、直接磁場
の影響領域と間接磁場の支配領域との境界となる距離を
測定する。こうして受信コイルから雑音の少ない受信信
号が得られる前記周波数と励磁電力と前記距離とによっ
て、離隔渦流探傷を行う、このようにして、周波数と励
磁電力の組合せに対して離隔渦流探傷を行うのに最適な
前記距離を設定する。
According to the present invention, a flaw detection device is prepared in which the distance between the transmitting coil and the receiving coil in the tube axis direction, that is, the distance in each axis direction is variable, and the transmitting coil is normally set at a frequency assumed empirically. and excitation power, and in this state, the distance is made variable to measure the distance that is the boundary between the area affected by the direct magnetic field and the area controlled by the indirect magnetic field, and based on the measurement result, the area controlled by the indirect magnetic field is determined. The distance between the transmitting coil and the receiving coil is set so that the receiving coil exists at A plurality of types are changed, and the distance is made variable for each combination, and the distance serving as the boundary between the region affected by the direct magnetic field and the region dominated by the indirect magnetic field is measured. In this way, a reception signal with less noise is obtained from the receiving coil. Remote eddy current testing is performed using the frequency, excitation power, and distance. In this way, remote eddy current testing is performed for the combination of frequency and excitation power. Set the optimum distance.

また本発明に従えば、送信コイルを、周波数および励磁
電力の複数の各組合せを選んで、励磁し、各組合せ毎に
前記距離を可変にして直接磁場の影響領域と間接磁場の
支配領域との境界となる前記距離を測定し、その測定結
果に基づいて、送信コイルから予め定める距離だけあけ
て配置された受信コイルが間接磁場の支配領域にあるよ
うに、周波数と励磁電力との組合せを選ぶ、こうして送
信コイルと受信コイルとの管軸方向の距離を先に設定し
、最適な離隔渦流探傷を行うことができるための周波数
および励磁電力の組合せを選ぶ、また、間接磁場の支配
領域内で受信コイルの配置を選ぶことができるため、送
信コイルと受信コイルとを近接させることが可能である
Further, according to the present invention, the transmitting coil is excited by selecting each of a plurality of combinations of frequency and excitation power, and the distance is varied for each combination to differentiate the area of influence of the direct magnetic field and the area of control of the indirect magnetic field. The distance serving as the boundary is measured, and based on the measurement result, a combination of frequency and excitation power is selected so that the receiving coil, which is placed a predetermined distance from the transmitting coil, is in the area dominated by the indirect magnetic field. In this way, the distance between the transmitting coil and the receiving coil in the tube axis direction is set in advance, and the combination of frequency and excitation power to perform optimal remote eddy current flaw detection is selected. Since the arrangement of the receiving coil can be selected, it is possible to place the transmitting coil and the receiving coil close to each other.

実施例 第1図は、本発明の一実施例の原理を説明するための断
面図である。地中に埋設されている鋼管などの金属製管
10の腐食減肉状態を検査するために、本発明が実施さ
れる。送信コイルTと受信コイルRとは、矢符11の方
向に一体的に移動することによって、菅10の腐食減肉
を検査することができる。
Embodiment FIG. 1 is a sectional view for explaining the principle of an embodiment of the present invention. The present invention is implemented to inspect the state of corrosion and thinning of a metal pipe 10 such as a steel pipe buried underground. By moving the transmitting coil T and the receiving coil R integrally in the direction of the arrow 11, corrosion thinning of the tube 10 can be inspected.

探傷装置35において、送信コイルTがらの磁束12は
、管10を貫通しで空中である外部空間13を通り、管
の外面に沿って伝わり再び被検出物である管10を貫通
して受信コイルRへ到達する。この磁束12である電磁
波の速度は、管10の肉厚部内の方が、外部空間13に
比べて大幅に小さいので、その伝播時間、すなわち送信
コイルTの送信信号と受信コイルRの受信信号との位相
差は、管10の肉厚に対応して、検出可能であり、こう
して腐食減肉部14の検出を行うことができる。減肉部
14によって、受信コイルRの受信信号振幅もまた変化
する。
In the flaw detection device 35, the magnetic flux 12 from the transmitting coil T passes through the tube 10, passes through the external space 13 in the air, is transmitted along the outer surface of the tube, and passes through the tube 10, which is the object to be detected, again to the receiving coil. Reach R. The speed of the electromagnetic wave, which is this magnetic flux 12, is much smaller in the thick walled part of the tube 10 than in the external space 13, so the propagation time, that is, the transmitted signal from the transmitting coil T and the received signal from the receiving coil R, The phase difference can be detected in accordance with the wall thickness of the pipe 10, and thus the corroded thinned portion 14 can be detected. Due to the thinned portion 14, the received signal amplitude of the receiving coil R also changes.

第2図は、送信コイルTの送信信号と受信コイルRの受
信信号との位相差と管10の肉厚との関係を示すグラフ
である。このことから、位相差と管10の肉厚が比例し
ていることが理解される。
FIG. 2 is a graph showing the relationship between the phase difference between the transmitted signal of the transmitting coil T and the received signal of the receiving coil R and the wall thickness of the tube 10. From this, it is understood that the phase difference and the wall thickness of the tube 10 are proportional.

第3図は、本発明の一実施例の全体の構成を示す電気回
路図である。送信コイルTと受信コイルRとは非磁性材
料から成る連結棒15によって連結され、牽引ワイヤ1
6を介して牽引駆動装置17によって牽引されて走行さ
れる0周波数発生器18からのたとえば20〜80Hz
、好ましくは30〜40Hzの発振出力は、電力増幅器
19によって増幅され、送信コイルTで励磁される。
FIG. 3 is an electrical circuit diagram showing the overall configuration of an embodiment of the present invention. The transmitting coil T and the receiving coil R are connected by a connecting rod 15 made of a non-magnetic material, and the traction wire 1
20-80 Hz from a zero frequency generator 18 which is driven by a traction drive 17 via a
The oscillation output, preferably 30 to 40 Hz, is amplified by a power amplifier 19 and excited by a transmitting coil T.

受信コイルRからの受信信号は、信号増幅器20によっ
て増幅され、フィルタ21を介してライン22に導出さ
れる0位相差検出回路23は、送信コイルTの送信信号
と信号増幅器20およびフィルタ21を介する受信コイ
ルRからの受信信号との位相差を検出して、記録計24
に与えて記録紙上に記録を行わせる。フィルタ21から
の受信信号の振幅は、振幅検出回路25によって検出さ
れ、この振幅もまた記録計24によって記録紙上に記録
される。
The reception signal from the reception coil R is amplified by the signal amplifier 20 and output to the line 22 via the filter 21. The zero phase difference detection circuit 23 outputs the signal from the transmission coil T to the transmission signal via the signal amplifier 20 and the filter 21. The recorder 24 detects the phase difference with the received signal from the receiving coil R.
to record on the recording paper. The amplitude of the received signal from filter 21 is detected by amplitude detection circuit 25, and this amplitude is also recorded on recording paper by recorder 24.

第4図は5各探傷条件に対して送信コイルと受信コイル
との管軸方向の距離を変化させて管内部の送受信信号の
位相差を測定した本件発明者の実験結果を示すグラフで
ある。管10はSGP鋼管であり、その外径りは318
mmφであり、管肉厚は6.9mmであり、周波数発生
器18の発振周波数は40Hzである。送信コイルTは
、線径1、Ommφ、巻数750ターンであり、受信コ
イルRは線径0.1mmφ、巻数3000ターンて゛あ
る。ラインp1は、送信コイルTの励磁電力が1.2W
(=0.2AX6V)であり、ラインp2は0.002
W(=0.0IAx0.2V)の各場合を示す、なお参
考のためにラインp3は、励磁電力が30W(=IAX
30V)であるときの実験結果である。これらのグラフ
から直接磁場の影響領域は、ラインp1で1.5D以下
、ラインp2で0.6D以下、ラインp3で2.5D以
下であることが判る。
FIG. 4 is a graph showing the experimental results of the inventor of the present invention, in which the phase difference between the transmitted and received signals inside the tube was measured by changing the distance in the tube axis direction between the transmitting coil and the receiving coil for each of the five flaw detection conditions. The pipe 10 is an SGP steel pipe, and its outer diameter is 318.
mmφ, the tube wall thickness is 6.9 mm, and the oscillation frequency of the frequency generator 18 is 40 Hz. The transmitting coil T has a wire diameter of 1 Ommφ and the number of turns of 750 turns, and the receiving coil R has a wire diameter of 0.1 mmφ and the number of turns of 3000 turns. For line p1, the excitation power of the transmitting coil T is 1.2W.
(=0.2AX6V), and line p2 is 0.002
W (=0.0IAx0.2V). For reference, line p3 shows each case when the excitation power is 30W (=IAX
30V). From these graphs, it can be seen that the area directly influenced by the magnetic field is 1.5D or less for line p1, 0.6D or less for line p2, and 2.5D or less for line p3.

ラインp1〜p3では、参照符S1〜S3の距離りが、
送信コイルTの直接磁場12aの影響領域と、それより
も遠く離れた間接磁場の支配領域との境界となる値であ
り、いわば遷移点である。
In lines p1 to p3, the distance between reference marks S1 to S3 is
This value is the boundary between the area of influence of the direct magnetic field 12a of the transmitting coil T and the area of influence of the indirect magnetic field that is farther away, and is a so-called transition point.

離隔渦流探傷は、このような遷移点51〜S3よりも大
きい距離りが設定され、この距離りを可及的に短くする
ために、遷移点51〜S3よりも僅かに大きい距離りが
現実には、定められることが好ましい、励磁電力0.0
02Wおよび1,2Wに選んだとき、距離りは各々0.
6D以上および】、5D以上の範囲にそれぞれ選ぶこと
ができ、また励磁電力30Wとしたとき、距離りを2.
5D以上に選ぶことが可能である。
In remote eddy current testing, a distance larger than the transition points 51 to S3 is set, and in order to shorten this distance as much as possible, a distance slightly larger than the transition points 51 to S3 is actually set. is preferably defined as an excitation power of 0.0
When selecting 02W and 1,2W, the distance is 0.0.
6D or more, ], 5D or more can be selected, and when the excitation power is 30W, the distance is 2.
It is possible to select 5D or higher.

第5図は、各探傷条件に対して送信コイルと受信コイル
との管軸方向の距離を変化させて、管内部の受信信号の
振幅を測定した本件発明者の実験結果を示す、ライン9
1〜q3は、前述の第4図に関連して述べたラインp1
〜p3の条件に対応している。この第5図において、直
接磁場の影響領域と間接磁場の支配領域との境界となる
距離の位置r1〜r3は、いわば遷移点である。
FIG. 5 shows the experimental results of the present inventor in which the amplitude of the received signal inside the tube was measured by changing the distance in the tube axis direction between the transmitting coil and the receiving coil for each flaw detection condition, line 9.
1 to q3 are the lines p1 mentioned in relation to FIG. 4 above.
- It corresponds to the conditions of p3. In FIG. 5, the distance positions r1 to r3, which are the boundaries between the direct magnetic field influence area and the indirect magnetic field domination area, are so-called transition points.

このような実験結果から、本発明に従えば、送信コイル
Tの励磁電力を0.002W、1.2Wに選び、距離り
を各々0.6D以上、1.5D以上に選んで、減肉部1
4の減肉状態を検出することが可能であることが理解さ
れる。また励磁電力を30Wに選んだときには、遷移点
r3に対応して距離りを約2.5D以上に定めることに
よって、離隔渦流探傷を行うことができることが判る。
From such experimental results, according to the present invention, the excitation power of the transmitting coil T is selected to be 0.002W and 1.2W, and the distance is selected to be 0.6D or more and 1.5D or more, respectively, to reduce the thickness of the thinned part. 1
It is understood that it is possible to detect the thinning condition of 4. Furthermore, when the excitation power is selected to be 30 W, it can be seen that remote eddy current flaw detection can be performed by setting the distance to approximately 2.5 D or more corresponding to the transition point r3.

本発明に従えば、探傷装置35において、送信コイルT
と受信コイルRとの管軸方向の距離りは可変である。こ
のような探傷装置35がまず準備される。次に送信コイ
ルTをたとえば40Hz、30Wで励磁して距離りを変
化しつつ前述の第4図のラインp3を得る。このことか
ら、遷移点S3の距離りは約2.5Dであることが判る
。この測定結果に基づいて、送信コイルTと受信コイル
Rとの距離りは、約2.5D以上に選び、受信コイルR
が間接磁場の支配領域に存在するようにし、この状態で
送信コイルTと受信コイルRとを管軸方向に沿って走行
する。こうして受信コイルRから、ノイズの少ない検出
信号が得られ、高感度の鮮明な検出信号によって、腐食
減肉部14を確実に検出することが可能になる。
According to the present invention, in the flaw detection device 35, the transmitting coil T
The distance between the receiving coil R and the receiving coil R in the tube axis direction is variable. Such a flaw detection device 35 is first prepared. Next, the transmitting coil T is excited at, for example, 40 Hz and 30 W to obtain the line p3 in FIG. 4 while changing the distance. From this, it can be seen that the distance of the transition point S3 is approximately 2.5D. Based on this measurement result, the distance between the transmitting coil T and receiving coil R is selected to be approximately 2.5D or more, and the distance between the transmitting coil T and receiving coil R is selected to be approximately 2.5D or more.
exists in the region dominated by the indirect magnetic field, and in this state, the transmitting coil T and receiving coil R are run along the tube axis direction. In this way, a detection signal with less noise is obtained from the receiving coil R, and the corroded and thinned portion 14 can be reliably detected by the highly sensitive and clear detection signal.

実験室では、現場に設けられている検査すべき管10と
、類似の管における最適な探傷条件、すなわち周波数、
励磁電力および距離りを大略的に想定しておき、現場で
は、このような実験室での探傷条件を僅かに変化させる
ことによって、現場の実際に検査すべき管に最適な探傷
条件を容易に見付けることが可能になる。しかも本発明
では、遷移点51〜s3を見付け、これによって受信コ
イルを送信コイルの間接磁場の支配領域に配置すること
が可能になるので、その距離りを可及的に短くすること
ができる。そのため本件探傷装置35を小形化すること
ができ、管10に曲がり部が存在しても円滑に走行して
探傷作業を行うことができるようになる。
In the laboratory, the optimal flaw detection conditions for the tube 10 to be inspected installed at the site and similar tubes, that is, the frequency,
By roughly assuming the excitation power and distance, and slightly changing the flaw detection conditions in the laboratory, it is easy to find the optimum flaw detection conditions for the pipes to be actually inspected at the site. It becomes possible to find it. Furthermore, in the present invention, it is possible to find the transition points 51 to s3 and thereby arrange the receiving coil in the region dominated by the indirect magnetic field of the transmitting coil, so that the distance can be made as short as possible. Therefore, the present flaw detection device 35 can be downsized, and even if the tube 10 has a bent portion, it can run smoothly and perform flaw detection work.

また本発明の他の実施例として、検査すべき管10に対
して、送信コイルTと受信コイルRとの距111!Lを
たとえば管径りの15倍の距離〈すなわちL=1.5D
)を設定した場合には、現場での実験のために、送信コ
イルTと受信コイルRとの管軸方向の距離りが可変であ
る探傷袋!35を準備し、次に通常想定される励磁周波
数として、たとえば40Hzを選定して固定し、励磁電
力を変化させ、第4[2Iに示されるように、遷移点S
1〜s3が管径りの15倍の距離となるような励磁電力
を求める。このような励磁電力の値は、予め実験室で大
略的に定めておき、現場で実測によって調整を行う、第
4図では、ラインp1の遷移点s1が得られ、このとき
周波数40H2、励磁電力1,2Wである。このように
して、受信コイルRは送信コイルTから予め定める距離
L(=i5D)だけあけて配置されており、この受信コ
イルが間接磁場の支配領域にあるように、上述のように
周波数と励磁電力との組合せが選ばれる。これによって
受信コイルRからは、減肉M14に対応する高感度で鮮
明な検出信号が得られる。
Further, as another embodiment of the present invention, for the pipe 10 to be inspected, the distance between the transmitting coil T and the receiving coil R is 111! Let L be, for example, a distance 15 times the pipe diameter (i.e. L = 1.5D)
), the flaw detection bag has a variable distance between the transmitting coil T and receiving coil R in the tube axis direction for on-site experiments! 35, then select and fix, for example, 40 Hz as the normally assumed excitation frequency, vary the excitation power, and as shown in No. 4 [2I, transition point S
Find the excitation power such that 1 to s3 is a distance 15 times the pipe diameter. The value of such excitation power is roughly determined in advance in the laboratory, and adjusted by actual measurements on site. It is 1.2W. In this way, the receiving coil R is placed a predetermined distance L (=i5D) from the transmitting coil T, and the frequency and excitation are adjusted as described above so that the receiving coil is in the area dominated by the indirect magnetic field. A combination with electric power is selected. As a result, a highly sensitive and clear detection signal corresponding to the thinning M14 can be obtained from the receiving coil R.

なお受信コイルRの振幅を利用して離隔渦流探傷を行う
こともまた、同様にして、可能である。
Note that it is also possible to perform remote eddy current flaw detection using the amplitude of the receiving coil R in the same manner.

送信コイルTと受信コイルRとの距離りが可変である探
傷装置35の具体的な構成は、第6図に示されている。
A specific configuration of the flaw detection device 35 in which the distance between the transmitting coil T and the receiving coil R is variable is shown in FIG.

第7図はその探傷装置35の簡略化した分解斜視図であ
る。
FIG. 7 is a simplified exploded perspective view of the flaw detection device 35.

第8図は支持手段37の正面図であり、第9図はその支
持手段37の断面図であり、第10図はもう1つの支持
手段48の断面図である。送信コイルTは支持手段37
に巻回されて管10の管軸方向に移動可能とされる。こ
の支持手段37は、送信コイルTが巻回される板状体3
8と、その軸線方向両端部にボルト39によって固定さ
れる一対の端板40,41と、これらの端板41をその
下部で左右で支持する支持部材42.43と、これらの
支持部材42.43に取付けられている車輪44.45
とを有する。板状体38と端板40゜41とには、連結
棒15が挿通し、ボルト76゜77を用いて固定片46
によって固定される。
8 is a front view of the support means 37, FIG. 9 is a sectional view of the support means 37, and FIG. 10 is a sectional view of another support means 48. The transmitting coil T is a support means 37
The tube 10 is wound around the tube 10 so that it can be moved in the axial direction of the tube 10. This support means 37 is a plate-shaped body 3 around which the transmitting coil T is wound.
8, a pair of end plates 40, 41 fixed to both ends in the axial direction by bolts 39, support members 42, 43 that support these end plates 41 on the left and right at the bottom thereof, and these support members 42. Wheels attached to 43 44.45
and has. The connecting rod 15 is inserted through the plate-like body 38 and the end plates 40° 41, and the fixing piece 46 is fixed using bolts 76° 77.
Fixed by

連結棒15にはまた、もう1つの支持手段48が固定さ
れる。
Another support means 48 is also fixed to the connecting rod 15 .

第11図は受信コイルRの斜視図であり、第12図は受
信コイルRを管10の半径方向の外方から内方を見た平
面図であり、第13図は受信コイルRの側面図であり、
第14図は受信コイルRの正面図である。一対の端板5
1,52間に亘って、取付部材53が周方向に間隔をあ
けて取付けられており、端板51.52間には板状体5
4が配置される。取付部材53は、端板51,52の周
方向に等間隔をあけて配置される。端板51,52、板
状体54などは、前述の送信コイルTのための支持手段
37と同様な構成となっており、車輪55が設けられた
支持体56に取付けられる。
11 is a perspective view of the receiving coil R, FIG. 12 is a plan view of the receiving coil R viewed from the outside in the radial direction of the tube 10, and FIG. 13 is a side view of the receiving coil R. and
FIG. 14 is a front view of the receiving coil R. A pair of end plates 5
Mounting members 53 are installed at intervals in the circumferential direction between the end plates 51 and 52, and a plate-like member 5 is installed between the end plates 51 and 52.
4 is placed. The mounting members 53 are arranged at equal intervals in the circumferential direction of the end plates 51 and 52. The end plates 51, 52, plate-shaped body 54, etc. have the same structure as the support means 37 for the transmitting coil T described above, and are attached to a support body 56 on which wheels 55 are provided.

受信コイルRは、コア57に巻回される。端板51には
、ボス64がボルト75によって固定されており、この
ボス64には締付は用のボルト66が半径方向に延びる
。このボルト66によって、支持棒15を締付けること
によって、支持手段48を支持棒15に固定することが
できる。またこのボルト66を緩めることによって、支
持手段48を連結棒15の軸線方向に変位して調整し、
送信コイルTと受信コイルRとの距離りを可変とするこ
とができる。
The receiving coil R is wound around the core 57. A boss 64 is fixed to the end plate 51 by a bolt 75, and a tightening bolt 66 extends in the radial direction from the boss 64. By tightening the support rod 15 using this bolt 66, the support means 48 can be fixed to the support rod 15. Also, by loosening this bolt 66, the support means 48 is displaced and adjusted in the axial direction of the connecting rod 15,
The distance between the transmitting coil T and the receiving coil R can be made variable.

発明の効果 以上のように本発明によれば、検査されるべき管に対し
、実験室においても現場においてもノイズの少ない受信
信号が受信コイルから得られるように、最適な探傷条件
、すなわち送信コイルの周波数および励磁電力ならびに
送信コイルおよび受信コイル間の管軸方向の距離を容易
に決定することができる。そのため実験室でも現場でも
離隔渦流探傷作業を容易に行うことができるようになる
Effects of the Invention As described above, according to the present invention, the optimum flaw detection conditions, that is, the transmitting coil is set so that a received signal with low noise can be obtained from the receiving coil for the pipe to be inspected both in the laboratory and in the field. The frequency and excitation power as well as the distance in the tube axis direction between the transmitting coil and the receiving coil can be easily determined. Therefore, remote eddy current flaw detection can be easily performed both in the laboratory and in the field.

また送信コイルと受信コイルとの間の距離を可及的に短
くすることができるようになるので、検査装置の構成を
小形化し、管の曲がり部の通過および管内への挿入が容
易になる。
Furthermore, since the distance between the transmitting coil and the receiving coil can be made as short as possible, the configuration of the inspection device can be made smaller, and it becomes easier to pass through bends in the tube and insert it into the tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の原理を説明するための断面
図、第2図は送受信信号の位相差と管10の肉厚との関
係を示すグラフ、第3図は本発明の一実施例の電気的構
成を示す図、第4図は本件発明者の実験結果で管内部の
送受信信号の位相差と距離りとの関係を示すグラフ、第
5図は本件発明者の実験結果で管内部の受信信号の振幅
と距離りとの関係を示すグラフ、第6図は本発明の一実
施例の探傷装置35を示す断面図、第7図はその探傷装
置35の簡略化した分解斜視図、第8図は支持手段37
の正面図、第9図はその支持手段37の断面図、第10
図はもう1つの支持手段48の断面図、第11図は受信
コイルRの斜視図、第12図は受信コイルRの平面図、
第13図は受信コイルRの側面図、第14図は受信コイ
ルRの正面図である。 10・・・管、11 走行方向、12・・・磁束、18
周波数発生器、19・・電力増幅器、20・・・信号増
幅器、21・・・フィルタ、23・・・位相差検出回路
、24・・・記録計、25・・・振幅検出回路、T・・
・送信コイル、R・・・受信コイル
FIG. 1 is a cross-sectional view for explaining the principle of an embodiment of the present invention, FIG. 2 is a graph showing the relationship between the phase difference of transmitted and received signals and the wall thickness of the tube 10, and FIG. A diagram showing the electrical configuration of the embodiment, FIG. 4 is a graph showing the relationship between the phase difference of the transmitting and receiving signals inside the tube and distance, and FIG. 5 is the experimental result of the inventor. A graph showing the relationship between the amplitude of the received signal inside the pipe and the distance, FIG. 6 is a sectional view showing a flaw detection device 35 according to an embodiment of the present invention, and FIG. 7 is a simplified exploded perspective view of the flaw detection device 35. 8 shows the support means 37.
FIG. 9 is a sectional view of the supporting means 37, FIG.
11 is a perspective view of the receiving coil R, FIG. 12 is a plan view of the receiving coil R,
FIG. 13 is a side view of the receiving coil R, and FIG. 14 is a front view of the receiving coil R. 10...Pipe, 11 Running direction, 12...Magnetic flux, 18
Frequency generator, 19... Power amplifier, 20... Signal amplifier, 21... Filter, 23... Phase difference detection circuit, 24... Recorder, 25... Amplitude detection circuit, T...
・Transmission coil, R...reception coil

Claims (2)

【特許請求の範囲】[Claims] (1)管内に送信コイルと受信コイルとをその管軸方向
に間隔をあけて配置し探傷を行う離隔渦流探傷法におい
て、 送信コイルと受信コイルとの管軸方向の距離が可変であ
る探傷装置を準備し、 送信コイルを、予め定める周波数および予め定める励磁
電力で励磁し、前記距離を可変にして、直接磁場の影響
領域と間接磁場の支配領域との境界となる前記距離を測
定し、 その測定結果に基づいて、間接磁場の支配領域に受信コ
イルが存在するように、送信コイルと受信コイルとの距
離を設定して、送信コイルと受信コイルとを一体的に管
軸に沿つて走行させることを特徴とする離隔渦流探傷法
(1) A flaw detection device in which the distance between the transmitting coil and the receiving coil in the tube axis direction is variable in the remote eddy current flaw detection method in which flaw detection is performed by arranging a transmitting coil and a receiving coil in the tube with an interval in the tube axis direction. prepare a transmitter coil, excite the transmitting coil with a predetermined frequency and predetermined excitation power, make the distance variable, and measure the distance that is the boundary between the area affected by the direct magnetic field and the area dominated by the indirect magnetic field; Based on the measurement results, the distance between the transmitting coil and the receiving coil is set so that the receiving coil is located in the area dominated by the indirect magnetic field, and the transmitting coil and the receiving coil are made to travel together along the tube axis. A remote eddy current flaw detection method characterized by:
(2)管内に送信コイルと受信コイルとをその管軸方向
に間隔をあけて配置し探傷を行う離隔渦流探傷法におい
て、 送信コイルと受信コイルとの管軸方向の距離が可変であ
る探傷装置を準備し、 送信コイルを、周波数および励磁電力の複数の各組合せ
を選んで、励磁し、各組合せ毎に前記距離を可変にして
、直接磁場の影響領域と間接磁場の支配領域との境界と
なる前記距離を測定し、その測定結果に基づいて、送信
コイルから予め定める距離だけあけて配置された受信コ
イルが、間接磁場の支配領域にあるように、周波数と励
磁電力との前記組合せを選ぶことを特徴とする離隔渦流
探傷法。
(2) A flaw detection device in which the distance between the transmitting coil and the receiving coil in the tube axis direction is variable in the remote eddy current flaw detection method in which a transmitting coil and a receiving coil are placed in a pipe with a space between them in the tube axis direction. , the transmitter coil is excited by selecting each of a plurality of combinations of frequency and excitation power, and the distance is varied for each combination, so that the boundary between the area of influence of the direct magnetic field and the area of influence of the indirect magnetic field is and, based on the measurement result, select the combination of frequency and excitation power such that the receiving coil, which is disposed a predetermined distance from the transmitting coil, is in a region dominated by the indirect magnetic field. A remote eddy current flaw detection method characterized by:
JP8518590A 1990-03-31 1990-03-31 Remote eddy current flaw detection method Pending JPH03285161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8518590A JPH03285161A (en) 1990-03-31 1990-03-31 Remote eddy current flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8518590A JPH03285161A (en) 1990-03-31 1990-03-31 Remote eddy current flaw detection method

Publications (1)

Publication Number Publication Date
JPH03285161A true JPH03285161A (en) 1991-12-16

Family

ID=13851605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8518590A Pending JPH03285161A (en) 1990-03-31 1990-03-31 Remote eddy current flaw detection method

Country Status (1)

Country Link
JP (1) JPH03285161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536346A (en) * 2006-05-09 2009-10-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic sensor device having a magnetic field generator and a sensor
CN111351846A (en) * 2020-03-18 2020-06-30 南京理工大学 Intelligent detection device based on far-field eddy current

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536346A (en) * 2006-05-09 2009-10-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic sensor device having a magnetic field generator and a sensor
CN111351846A (en) * 2020-03-18 2020-06-30 南京理工大学 Intelligent detection device based on far-field eddy current

Similar Documents

Publication Publication Date Title
CN107064289B (en) Method, device and system for multi-mode electromagnetic ultrasonic and magnetic leakage detection and sensor
CA2214981C (en) Non-destructive evaluation of pipes and tubes using magnetostrictive sensors
US6920792B2 (en) Transducer guided wave electromagnetic acoustic
US20040189289A1 (en) Method for testing prestressed concrete pipes
JPH073408B2 (en) Pipeline pitting detector
KR100573736B1 (en) Transducer for Generating and Sensing Torsional Waves, and Apparatus and Method for Structural Diagnosis Using It
EP0787980A3 (en) Measuring a load on a part and monitoring the integrity of the part
US6854336B2 (en) Measurement of stress in a ferromagnetic material
JPH03285161A (en) Remote eddy current flaw detection method
JPH0587780A (en) Method and apparatus for nondestructive inspection of metal pipe
JPH11133003A (en) Ppm electromagnetic ultrasonic transducer and device and method for detecting flaw using ppm electromagnetic ultrasonic transducer
JPH03285160A (en) Remote eddy current flaw detection method
JPH03285159A (en) Remote eddy current flaw detection method
RU2104501C1 (en) Ultrasonic level indicator
JP2898681B2 (en) Remote field eddy current sensor
JP2556584Y2 (en) Remote field eddy current sensor
JPH02126153A (en) Tube inspecting device using remote field eddy current method
SU1022044A1 (en) Non-destructive method of checking lengthy metal article mechanical propetries
JP3648713B2 (en) Eddy current flaw detector
RU2172488C1 (en) Flaw detecting tool to test holes in walls inside pipe-line
JPH05196608A (en) Separated eddy current flaw detecting method
JPS59151030A (en) Vortex type axial force measuring method
SU868550A1 (en) Pulsed electromagnetic method of measuring thickness of ferromagnetic tubes
JPH10123097A (en) Sensor for detecting wall thinning
SU1280524A1 (en) Electromagnetic-acoustic method of checking ferromagnetic articles