JP2556584Y2 - Remote field eddy current sensor - Google Patents

Remote field eddy current sensor

Info

Publication number
JP2556584Y2
JP2556584Y2 JP1992000150U JP15092U JP2556584Y2 JP 2556584 Y2 JP2556584 Y2 JP 2556584Y2 JP 1992000150 U JP1992000150 U JP 1992000150U JP 15092 U JP15092 U JP 15092U JP 2556584 Y2 JP2556584 Y2 JP 2556584Y2
Authority
JP
Japan
Prior art keywords
eddy current
assembler
remote field
current sensor
field eddy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1992000150U
Other languages
Japanese (ja)
Other versions
JPH0557662U (en
Inventor
靖治 細原
究 鈴木
茂 藤原
俊英 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP1992000150U priority Critical patent/JP2556584Y2/en
Publication of JPH0557662U publication Critical patent/JPH0557662U/en
Application granted granted Critical
Publication of JP2556584Y2 publication Critical patent/JP2556584Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は管等の腐食減肉を検査す
るリモートフィールド渦流センサに係わり、特に埋設ガ
ス配管、化学プラント配管、熱交換器配管等の配管材料
の内、殊に鋳鉄管の保守管理をリモートフィールド渦流
法で行なう場合のリモートフィールド渦流センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote field eddy current sensor for inspecting corrosion thinning of pipes and the like, and particularly to pipe materials such as buried gas pipes, chemical plant pipes, heat exchanger pipes, especially cast iron pipes. The present invention relates to a remote field eddy current sensor in the case where maintenance is performed by a remote field eddy current method.

【0002】[0002]

【従来の技術及び考案が解決しようとする課題】従来か
ら、リモートフィールド渦流法を用いて金属管の探傷を
行うには、励磁コイルと一つ又はそれ以上の受信コイル
を管径の2倍程度以上離して管軸方向に配置してリモー
トフィールド渦流センサを構成し、このリモートフィー
ルド渦流センサを管路内に挿入して励磁コイルに励磁信
号を印加する。印加される励磁信号は比較的低い周波数
(数10Hz〜数100Hz)で、電圧は数V〜数10
Vが用いられる。
2. Description of the Related Art Conventionally, to perform flaw detection on a metal tube by using a remote field eddy current method, an exciting coil and one or more receiving coils are required to be about twice as large as the tube diameter. The remote field eddy current sensor is configured by being spaced apart in the axial direction of the tube to constitute a remote field eddy current sensor, and the remote field eddy current sensor is inserted into a pipe to apply an excitation signal to an excitation coil. The applied excitation signal has a relatively low frequency (several tens of Hz to several hundreds of Hz) and a voltage of several volts to several tens of Hz.
V is used.

【0003】励磁信号により発生した電磁波は、供試管
路の肉厚を通過するものと、管路内を伝播するものとに
分けられ、管路内を伝播する電磁波は管路を導波管と考
えたときの遮断周波数より遥かに低い周波数であるか
ら、急激に減衰して殆ど伝播しない。一方、管路の肉厚
を通過するものは間接伝播波と呼ばれ、管外を管路に沿
って伝播し、ゆっくり減衰し、同時に一部は管路肉厚を
再度通過し、管路内に浸透して受信コイルで検波され
る。
[0003] Electromagnetic waves generated by the excitation signal are divided into those that pass through the thickness of the test pipe and those that propagate in the pipe. The electromagnetic waves that propagate in the pipe are separated from the waveguide by the waveguide. Since the frequency is much lower than the assumed cutoff frequency, it is rapidly attenuated and hardly propagates. On the other hand, a wave that passes through the thickness of the pipe is called an indirectly propagated wave, which propagates along the pipe outside the pipe, attenuates slowly, and at the same time, partially passes through the pipe thickness again, and Penetrates the filter and is detected by the receiving coil.

【0004】受信コイルにより検波される受信信号は管
路肉厚を2度通過するので、非常に微弱(数μV〜数1
0μV)であり、管路肉厚通過による表皮効果の影響で
位相変化を受ける。リモートフィールド渦流法において
は、管路肉厚との関係でリニアリティーのよい位相変化
を位相差信号として検波し供試金属管の検査、診断の情
報として用いることが多い。
Since the reception signal detected by the reception coil passes through the pipe thickness twice, it is very weak (several μV to several 1).
0 μV), and undergoes a phase change under the influence of the skin effect due to passage through the conduit wall thickness. In the remote field eddy current method, a phase change with good linearity is detected as a phase difference signal in relation to the pipe wall thickness, and is often used as information for inspection and diagnosis of a test metal pipe.

【0005】一般に、図4に示すように、リモートフィ
ールド渦流センサ31は励磁コイル32と受信コイル3
3とで構成され、受信コイル33の巻線34はリモート
フィールド渦流センサ31の管内進行方向に沿って巻か
れる。この受信コイル33は複数個、例えば8個程度設
けられ、励磁コイル32と同一軸線に中心点がある円周
上に供試鋳鉄管TUの内壁に接して配置される。
Generally, as shown in FIG. 4, a remote field eddy current sensor 31 includes an exciting coil 32 and a receiving coil 3.
The winding 34 of the receiving coil 33 is wound along the direction of travel of the remote field eddy current sensor 31 in the pipe. A plurality of, for example, about eight, receiving coils 33 are provided, and are arranged in contact with the inner wall of the test cast iron tube TU on a circumference having a center point on the same axis as the exciting coil 32.

【0006】この構成のリモートフィールド渦流センサ
31において、供試鋳鉄管TUの診断を行う場合は、励
磁電圧、励磁周波数の微妙な変化や、リモートフィール
ド渦流センサ31の供試鋳鉄管TU内を進行するときの
振動の影響を受け、受信した位相差信号から供試鋳鉄管
TUの欠陷の深さを精度よく評価できない等の難点があ
る。
[0006] In the remote field eddy current sensor 31 having this configuration, when diagnosing the test cast iron tube TU, a subtle change in the excitation voltage and the excitation frequency and the progress of the test cast iron tube TU of the remote field eddy current sensor 31 are performed. There is a difficulty that the depth of the defect of the test cast iron tube TU cannot be accurately evaluated from the received phase difference signal due to the influence of the vibration at the time.

【0007】また、複数の受信コイルを用いた場合は、
リモートフィールド渦流現象に対する複数の受信コイル
の配置状況及び配置数に依っては供試鋳鉄管TUの付着
物等による管内径の縮径に対応できず、供試鋳鉄管TU
の総ての内壁に対し精度の高い診断ができない等の難点
がある。
When a plurality of receiving coils are used,
Depending on the arrangement status and number of the plurality of receiving coils for the remote field eddy current phenomenon, it is not possible to cope with the reduction of the inner diameter of the test cast iron tube TU due to the attachment of the test cast iron tube TU.
However, there is a drawback that highly accurate diagnosis cannot be performed for all the inner walls.

【0008】[0008]

【考案の目的】本考案は上述した難点に鑑みなされたも
ので、検波した位相差信号により供試金属管の欠陷の深
さを精度よく評価でき、供試金属管の付着物等による管
内径の縮径に対応でき、かつ供試鋳鉄管の総ての内壁に
対し精度の高い診断ができるリモートフィールド渦流セ
ンサを提供することを目的とする。
[Purpose of the Invention] The present invention has been made in view of the above-mentioned difficulties, and it is possible to accurately evaluate the depth of a defect in a test metal tube based on a detected phase difference signal. It is an object of the present invention to provide a remote field eddy current sensor capable of coping with a reduction in the inner diameter and performing highly accurate diagnosis on all inner walls of a test cast iron pipe.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に本考案のリモートフィールド渦流センサは、金属管に
リモートフイールド渦流を発生させる励磁コイルと、励
磁コイルを搭載し金属管内を走行する前方走行部材と、
励磁コイルから所定の間隔離れて設けられ、かつ金属管
の内周壁に押圧されて放射線状に設けられた複数の受信
コイルと、複数の受信コイルを搭載し金属管内を走行す
る後方走行部材と、前方走行部材と後方走行部材を連結
する連結部材とを備え、リモートフイールド渦流を受信
する所定数の受信コイルはそれぞれの磁路が金属管の内
周壁に対し垂直になるように設けられたものである。
In order to achieve this object, a remote field eddy current sensor according to the present invention is provided with an exciting coil for generating a remote field eddy current in a metal tube, and a forward running vehicle mounted with the exciting coil and running in the metal tube. Components,
A plurality of receiving coils provided in a predetermined distance from the exciting coil, and pressed radially by being pressed against the inner peripheral wall of the metal tube, and a rear running member mounted with the plurality of receiving coils and running in the metal tube, A connecting member for connecting the front running member and the rear running member, and a predetermined number of receiving coils for receiving the remote field eddy current are provided such that each magnetic path is perpendicular to the inner peripheral wall of the metal tube. is there.

【0010】[0010]

【作用】このリモートフィールド渦流センサにおいて、
連結された前、後方走行部材を設けたリモートフィール
ド渦流センサが金属管内を走行すると、リモートフィー
ルド渦流センサは金属管内の中心軸線に沿って円滑に進
行するので、励磁電圧、励磁周波数の微妙な変化や、リ
モートフィールド渦流センサが供試金属管内を進行する
ときの振動の影響を受け難く、かつ検波した位相差信号
により供試金属管の欠陷の深さを精度よく評価でき、金
属管内周壁の総ての部位の位相差信号を減衰せずに検波
することが可能となり、かつ供試金属管の付着物等によ
る管内径の縮径に対応でき、供試鋳鉄管の総ての内壁に
対し精度の高い診断ができる。
In this remote field eddy current sensor,
When the remote field eddy current sensor provided with the rear running member runs through the metal tube before being connected, the remote field eddy current sensor smoothly advances along the center axis in the metal tube, so that the excitation voltage and the excitation frequency are slightly changed. In addition, the remote field eddy current sensor is less susceptible to vibration when traveling inside the test metal tube, and the depth of the defect in the test metal tube can be accurately evaluated based on the detected phase difference signal. It is possible to detect the phase difference signal of all parts without attenuating it, and it can cope with the reduction of the inner diameter of the tube due to the adhesion of the test metal tube, etc. A highly accurate diagnosis can be made.

【0011】[0011]

【実施例】以下、本考案のリモートフィールド渦流セン
サの好ましい実施例を図1〜図3にしたがって詳述す
る。図1に示すように、本考案のリモートフィールド渦
流センサSQは、前方に合成樹脂等で形成された励磁コ
イル用ボビン2に巻かれた励磁コイル1と、励磁コイル
1を支持する励磁コイルマウンティングアッセンブラ3
と、前方先端車輪マウンティングアッセンブラ4と、前
方先端車輪マウンティングアッセンブラ4を供試鋳鉄管
TUの長手方向軸線上に支承する前方先端アッセンブラ
取付部材5と、前方先端車輪マウンティングアッセンブ
ラ4に搭載される前方先端車輪7a、7b、7cと、前
方後端車輪マウンティングアッセンブラ8と、前方後端
アッセンブラ取付部材9と、前方後端車輪マウンティン
グアッセンブラ8に搭載される前方後端車輪11a、1
1b、11cとで構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the remote field eddy current sensor according to the present invention will be described in detail with reference to FIGS. As shown in FIG. 1, the remote field eddy current sensor SQ of the present invention has an exciting coil 1 wound around an exciting coil bobbin 2 formed of a synthetic resin or the like in the front, and an exciting coil mounting assembler supporting the exciting coil 1. 3
A front tip wheel mounting assembler 4, a front tip assembler mounting member 5 for supporting the front tip wheel mounting assembler 4 on a longitudinal axis of the test cast iron pipe TU, and a front tip mounted on the front tip wheel mounting assembler 4. Wheels 7a, 7b, 7c, front rear wheel mounting assembler 8, front rear end assembler mounting member 9, and front rear wheels 11a, 1a mounted on front rear wheel mounting assembler 8.
1b and 11c.

【0012】前方先端アッセンブラ取付部材5と前方後
端アッセンブラ取付部材9にはそれぞれアッセンブラ取
付部材フランジ6a、6b、10a、10bが設けら
れ、このアッセンブラ取付部材フランジ6a、6b、1
0a、10bにより前方先端車輪マウンティングアッセ
ンブラ4、励磁コイルマウンティングアッセンブラ3及
び前方後端車輪マウンティングアッセンブラ8が相互に
緊結される。なお、前方先端アッセンブラ取付部材5と
前方後端アッセンブラ取付部材9は円筒状に形成され励
磁コイルマウンティングアッセンブラ3の励磁コイル1
に接続されたシールド芯線P0を貫入するようになって
い。
The front end assembler mounting member 5 and the front rear assembler mounting member 9 are provided with assembler mounting member flanges 6a, 6b, 10a, 10b, respectively. These assembler mounting member flanges 6a, 6b, 1
The front end wheel mounting assembler 4, the exciting coil mounting assembler 3, and the front rear end wheel mounting assembler 8 are mutually connected by 0a and 10b. The front end assembler mounting member 5 and the front rear assembler mounting member 9 are formed in a cylindrical shape, and the excitation coil 1 of the excitation coil mounting assembler 3 is formed.
The shield core P 0 connected looks like to penetrate.

【0013】また、後方に、受信コイルマウンティング
アッセンブラ13と、後方先端車輪マウンティングアッ
センブラ14と、後方先端車輪マウンティングアッセン
ブラ14を供試鋳鉄管TUの長手方向軸線上に支承する
後方先端アッセンブラ取付部材15と、後方先端車輪マ
ウンティングアッセンブラ14に搭載される後方先端車
輪17a、17b、17cと、後方後端車輪マウンティ
ングアッセンブラ18と、後方後端アッセンブラ取付部
材19と、後方後端車輪マウンティングアッセンブラ1
8に搭載される後方後端車輪21a、21b、21cと
が設けられる。
Also, rearward, a receiving coil mounting assembler 13, a rear tip wheel mounting assembler 14, and a rear tip assembler mounting member 15 for supporting the rear tip wheel mounting assembler 14 on the longitudinal axis of the test cast iron tube TU. , Rear tip wheels 17a, 17b, 17c mounted on the rear tip wheel mounting assembler 14, a rear rear wheel mounting assembler 18, a rear rear end assembler mounting member 19, and a rear rear wheel mounting assembler 1.
8 are provided with rear rear wheels 21a, 21b, 21c.

【0014】後方後端車輪21a、21b、21c、後
方先端車輪17a、17b、17c、前方後端車輪11
a、11b、11c及び前方先端車輪7a、7b、7c
はリモートフィールド渦流センサSQが走行時に滑らな
いように摩擦係数の大きな合成ゴム等で形成される。後
方先端アッセンブラ取付部材15と後方後端アッセンブ
ラ取付部材19にはそれぞれアッセンブラ取付部材フラ
ンジ16a、16b、20a、20bが設けられ、この
アッセンブラ取付部材フランジ16a、16b、20
a、20bにより後方先端車輪マウンティングアッセン
ブラ14、受信コイルマウンティングアッセンブラ13
及び後方後端車輪マウンティングアッセンブラ18が相
互に緊結される。なお、後方先端アッセンブラ取付部材
15と後方後端アッセンブラ取付部材19は円筒状に形
成され、受信コイルマウンティングアッセンブラ13に
受信コイルRCn(設明のためnを16とし12時のと
ころをRC1、6時をRC9とする)が設けられる。
Rear rear wheels 21a, 21b, 21c, rear front wheels 17a, 17b, 17c, front rear wheel 11
a, 11b, 11c and front tip wheels 7a, 7b, 7c
Is formed of synthetic rubber or the like having a large friction coefficient so that the remote field eddy current sensor SQ does not slip during traveling. The rear-end assembler mounting member 15 and the rear-end assembler mounting member 19 are provided with assembler mounting member flanges 16a, 16b, 20a, 20b, respectively. These assembler mounting member flanges 16a, 16b, 20
a, 20b, the rear tip wheel mounting assembler 14, the receiving coil mounting assembler 13
And the rear rear wheel mounting assembler 18 is fastened to each other. Note that the rear front end assembler mounting member 15 and the rear rear assembler mounting member 19 are formed in a cylindrical shape, and the receiving coil mounting assembler 13 has the receiving coil RCn (n is 16 for the sake of clarity, RC 1 , 6 at 12:00). Time is set to RC 9 ).

【0015】また、前方後端アッセンブラ取付部材9と
後方先端アッセンブラ取付部材15はシールド芯線P0
が貫入され、繞曲自在のフレキシブル連結部材12によ
り相互に連結されている。受信コイルRC1は、図2に
示すように、三角形の受信コイル保持板22の最頂部に
装着される。受信コイル保持板22の端部22a、22
bは受信コイルマウンティングアッセンブラ13の爪2
4a、24bにより半径方向への移動量が制限される。
また、受信コイル保持板22は半径方向へ受信コイルR
1を押出すように三枚のバネ材23a、23b、23
cが装着され、バネ材23cの両端は受信コイルマウン
ティングアッセンブラ13の内部に設けた円板状支持体
26の端部26a、26bで弾設される。
The front rear end assembler mounting member 9 and the rear front assembler mounting member 15 are connected to the shield core P 0.
Are penetrated and connected to each other by a flexible connecting member 12 that can freely bend. The receiving coil RC 1 is mounted on the top of a triangular receiving coil holding plate 22 as shown in FIG. Ends 22a, 22 of receiving coil holding plate 22
b is the claw 2 of the receiving coil mounting assembler 13
4a and 24b limit the amount of movement in the radial direction.
In addition, the receiving coil holding plate 22 moves the receiving coil R in the radial direction.
Three sheets of spring material 23a so as to push the C 1, 23b, 23
c is mounted, and both ends of the spring member 23c are elastically provided at ends 26a and 26b of a disk-shaped support 26 provided inside the receiving coil mounting assembler 13.

【0016】受信コイル保持板22の最頂部に装着され
た受信コイルRC1は、図3に示すように、非磁性材料
例えば合成樹脂等で形成されたボビン28と、ボビン2
8に挿入されたフェライト27とで構成され、フェライ
ト27にはコイル29が卷かれている。また、受信コイ
ルRC1は供試鋳鉄管TUの内壁に対し磁路が垂直にな
るよう配設される。受信コイルRC1に接続されたシー
ルド芯線P1は他のシールド芯線P0、P2〜P16と共に
円筒状に形成された後方後端アッセンブラ取付部材19
の内部から接続端子(図示せず)を介して外部に設置さ
れる測定、診断等の装置に接続される。なお、実際の装
置では数10mの金属材探傷検査用ケーブルがケーブル
ドラムに巻込まれ、順次供試鋳鉄管TUの内部に繰出さ
れるようになっている。
As shown in FIG. 3, the receiving coil RC 1 mounted on the top of the receiving coil holding plate 22 includes a bobbin 28 made of a non-magnetic material such as a synthetic resin, and a bobbin 2.
8, and a coil 29 is wound around the ferrite 27. The receiving coil RC 1 is arranged to the magnetic path to the inner wall of the test試鋳iron pipes TU are vertical. Receive coil RC shield core P 1 connected to one another shield core P 0, P 2 rear rear formed in a cylindrical shape with to P 16 assembler mounting member 19
Is connected to a device for measurement, diagnosis, etc., which is installed outside through a connection terminal (not shown). In an actual apparatus, a cable for metal flaw detection inspection of several tens of meters is wound around a cable drum and sequentially fed out into a test cast iron tube TU.

【0017】このように構成されたリモートフィールド
渦流センサSQを供試鋳鉄管TUに挿入し、金属材探傷
検査用ケーブルを順次供試鋳鉄管TUの内部に繰出すと
4対の車輪、即ち後方後端車輪21a、21b、21
c、後方先端車輪17a、17b、17c、前方後端車
輪11a、11b、11c及び前方先端車輪7a、7
b、7cが供試鋳鉄管TUの内壁を均等に押圧するの
で、供試鋳鉄管TUの中心点は軸線に沿って滑かに進行
し、進行に伴う振動は4対の車輪の弾性で吸収される。
このため三枚のバネ材23a、23b、23cにより供
試鋳鉄管TUの内壁に押圧されている受信コイルRC1
〜RC16は供試鋳鉄管TUの内壁に密着して進行し雑音
の少ない位相差信号を検波する。
The thus constructed remote field eddy current sensor SQ is inserted into the test cast iron tube TU, and the metal material inspection cable is sequentially fed out into the test cast iron tube TU. Rear wheels 21a, 21b, 21
c, rear front wheels 17a, 17b, 17c, front rear wheels 11a, 11b, 11c and front front wheels 7a, 7
Since b and 7c uniformly press the inner wall of the test cast iron tube TU, the center point of the test cast iron tube TU smoothly advances along the axis, and the vibration accompanying the progress is absorbed by the elasticity of the four pairs of wheels. Is done.
For this reason, the receiving coil RC 1 pressed against the inner wall of the test cast iron tube TU by the three spring members 23a, 23b, 23c.
The RC 16 travels in close contact with the inner wall of the test cast iron tube TU and detects a phase difference signal with little noise.

【0018】受信コイルRC1は角度が15度離れた円
周上の供試鋳鉄管TUの内壁では位相差信号が6dB減
衰する。従って、15度離れた位置に他の受信コイルR
2を設ければ、6dBの減衰は24個の受信コイルR
1〜RC24で相互に補間できる。しかし、実際には供
試鋳鉄管TUの内径等の物理的構造により最適個数を装
着できない場合もあり、この場合は最適個数よりも若干
少ない個数としてもよい。
The receiving coil RC 1 is angular phase difference signal is 6dB attenuation in the inner wall of the test試鋳iron pipe TU on which 15 ° apart circumferentially. Therefore, another receiving coil R is located at a position separated by 15 degrees.
If C 2 is provided, the attenuation of 6 dB is equivalent to 24 reception coils R
Interpolation can be performed between C 1 and RC 24 . However, in practice, the optimum number may not be installed due to the physical structure such as the inner diameter of the test cast iron tube TU. In this case, the number may be slightly smaller than the optimum number.

【0019】[0019]

【考案の効果】以上の説明からも明らかなように本考案
のリモートフィールド渦流センサによれば、励磁電圧、
励磁周波数の微妙な変化や、リモートフィールド渦流セ
ンサが供試金属管内を進行するときの振動の影響を受け
難く、かつ受信した位相差信号により供試金属管の欠陷
の深さを精度よく評価でき、また金属管内周壁の総ての
部位の位相差信号を減衰せずに検波することが可能とな
り、供試金属管の付着物等による管内径の縮径に対応で
き、かつ供試鋳鉄管の総ての内壁に対し精度の高い診断
ができる。
[Effect of the Invention] As is clear from the above description, according to the remote field eddy current sensor of the present invention, the excitation voltage,
It is hardly affected by subtle changes in the excitation frequency and vibration when the remote field eddy current sensor travels inside the test metal tube, and accurately evaluates the depth of defects in the test metal tube based on the received phase difference signal. In addition, it is possible to detect the phase difference signal of all parts of the inner peripheral wall of the metal tube without attenuating it. Highly accurate diagnosis can be made for all inner walls.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案によるリモートフィールド渦流センサの
一実施例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of a remote field eddy current sensor according to the present invention.

【図2】本考案によるリモートフィールド渦流センサの
受信コイルの装着部分を示す断面図。
FIG. 2 is a cross-sectional view illustrating a mounting part of a receiving coil of the remote field eddy current sensor according to the present invention.

【図3】本考案によるリモートフィールド渦流センサの
受信コイルの磁路と供試金属管との位置を示す断面図。
FIG. 3 is a cross-sectional view showing a position of a magnetic path of a receiving coil and a test metal tube of the remote field eddy current sensor according to the present invention.

【図4】従来のリモートフィールド渦流センサの断面
図。
FIG. 4 is a cross-sectional view of a conventional remote field eddy current sensor.

【符号の説明】[Explanation of symbols]

1・・・・・・励磁コイル 7a、7b、7c・・・・・・前方先端車輪(前方走行部材) 11a、11b、11c・・・・・・前方後端車輪(前方走行
部材) 17a、17b、17c・・・・・・後方先端車輪(後方走行
部材) 21a、21b、21c・・・・・・後方後端車輪(後方走行
部材) 12・・・・・・フレキシブル連結部材(連結部材) RC1〜RC16・・・・・・受信コイル YU・・・・・・供試鋳鉄管(供試金属管)
1 Exciting coil 7a, 7b, 7c Front end wheel (front running member) 11a, 11b, 11c Front rear end wheel (front running member) 17a, 17b, 17c... Rear rear end wheel (rear running member) 21a, 21b, 21c... Rear rear end wheel (rear running member) 12 ... flexible connecting member (connecting member) ) RC 1 to RC 16・ ・ ・ ・ ・ ・ Reception coil YU ・ ・ ・ ・ ・ ・ Test cast iron tube (test metal tube)

───────────────────────────────────────────────────── フロントページの続き (72)考案者 藤原 茂 広島県呉市西中央2丁目1番12号 株式 会社シーエックスアール 開発事業部内 (72)考案者 河部 俊英 広島県呉市西中央2丁目1番12号 株式 会社シーエックスアール 開発事業部内 (56)参考文献 特開 昭64−35261(JP,A) 特開 昭2−126153(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeru Fujiwara 2-1-1-12 Nishichuo, Kure-shi, Hiroshima CXR Co., Ltd. Development Division (72) Inventor Toshihide Kawabe 2-Nishichuo, Kure-shi, Hiroshima No. 1-12 CXR Development Division (56) References JP-A-64-35261 (JP, A) JP-A-2-126153 (JP, A)

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】金属管(TU)にリモートフイールド渦流
を発生させる励磁コイル(1)と、前記励磁コイルを搭
載し前記金属管内を走行する前方走行部材(7a、7
b、7c、11a、11b、11c)と、前記励磁コイ
ルから所定の間隔離れて設けられ、かつ前記金属管の内
周壁に押圧されて放射線状に設けられた複数の受信コイ
ル(RC1〜RC16)と、前記複数の受信コイルを搭載
し前記金属管内を走行する後方走行部材(17a、17
b、17c、21a、21b、21c)と、前記前方走
行部材と前記後方走行部材を連結する連結部材(12)
とを備え、前記リモートフイールド渦流を受信する所定
数の受信コイルはそれぞれの磁路が前記金属管の内周壁
に対し垂直になるように設けられたことを特徴とするリ
モートフィールド渦流センサ。
An exciting coil (1) for generating a remote field vortex in a metal tube (TU), and a forward traveling member (7a, 7) mounted with the exciting coil and traveling in the metal tube (TU).
b, 7c, 11a, 11b, 11c) and, from said exciting coil is provided apart a predetermined distance, and a plurality of receiving coils (RC 1 which is provided in the pressing has been radially to the inner peripheral wall of the metal tube ~RC 16 ) and a rear running member (17a, 17a) mounted with the plurality of receiving coils and running in the metal tube.
b, 17c, 21a, 21b, 21c) and a connecting member (12) for connecting the front running member and the rear running member.
And a predetermined number of receiving coils for receiving the remote field eddy current are provided such that respective magnetic paths are perpendicular to an inner peripheral wall of the metal tube.
JP1992000150U 1992-01-07 1992-01-07 Remote field eddy current sensor Expired - Fee Related JP2556584Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992000150U JP2556584Y2 (en) 1992-01-07 1992-01-07 Remote field eddy current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992000150U JP2556584Y2 (en) 1992-01-07 1992-01-07 Remote field eddy current sensor

Publications (2)

Publication Number Publication Date
JPH0557662U JPH0557662U (en) 1993-07-30
JP2556584Y2 true JP2556584Y2 (en) 1997-12-03

Family

ID=11466013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992000150U Expired - Fee Related JP2556584Y2 (en) 1992-01-07 1992-01-07 Remote field eddy current sensor

Country Status (1)

Country Link
JP (1) JP2556584Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7064086B2 (en) * 2017-02-23 2022-05-10 三菱重工業株式会社 Eddy current flaw detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435261A (en) * 1987-07-30 1989-02-06 Mitsubishi Heavy Ind Ltd Probe for isolated eddy current
JPH06103291B2 (en) * 1988-11-04 1994-12-14 東邦瓦斯株式会社 Pipe inspection device by remote field eddy current method

Also Published As

Publication number Publication date
JPH0557662U (en) 1993-07-30

Similar Documents

Publication Publication Date Title
JP3428734B2 (en) Metal tube flaw detector and metal tube flaw detection method
AU690436B2 (en) Non-destructive evaluation of pipes and tubes using magnetostrictive sensors
US6429650B1 (en) Method and apparatus generating and detecting torsional wave inspection of pipes or tubes
US6396262B2 (en) Method and apparatus for short term inspection or long term structural health monitoring
US6624628B1 (en) Method and apparatus generating and detecting torsional waves for long range inspection of pipes and tubes
US6127823A (en) Electromagnetic method for non-destructive testing of prestressed concrete pipes for broken prestressing wires
US20040095137A1 (en) Method and apparatus generating and detecting torsional wave inspection of pipes or tubes
JPH11502938A (en) Eddy current sensor and tube inspection device having at least one sensor
JP2556584Y2 (en) Remote field eddy current sensor
RU177945U1 (en) Device for ultrasonic inspection of the pipeline
JPS637895Y2 (en)
JPS6080760A (en) Electromagnetic ultrasonic transducer
JPH03285161A (en) Remote eddy current flaw detection method
JP2959395B2 (en) Metal residue detection method in metal tube
JPH07248314A (en) Probe for eddy-current flaw detection
JPH08278289A (en) Flaw detection device and method for ferromagnetic tube
US10352909B2 (en) Paired magnetostrictive transducers for non destructive testing of tubular structures with selective torsional or flexural wave modes
JPH0726758U (en) Receiver coil for remote field eddy current flaw detector
JPH0355099Y2 (en)
JPH03118465A (en) Detecting apparatus for defect inside tube
JPH03285160A (en) Remote eddy current flaw detection method
JPS6324152A (en) Probe for eddy current flaw detection
JPH03220451A (en) Remote field vortex sensor
JPH0648184B2 (en) In-pipe insertion type electromagnetic ultrasonic probe
JPS6298251A (en) Method and device for detecting corrosion of pipe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees