JPH07248314A - Probe for eddy-current flaw detection - Google Patents

Probe for eddy-current flaw detection

Info

Publication number
JPH07248314A
JPH07248314A JP4074294A JP4074294A JPH07248314A JP H07248314 A JPH07248314 A JP H07248314A JP 4074294 A JP4074294 A JP 4074294A JP 4074294 A JP4074294 A JP 4074294A JP H07248314 A JPH07248314 A JP H07248314A
Authority
JP
Japan
Prior art keywords
coil
flaw detection
transmitting
current flaw
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4074294A
Other languages
Japanese (ja)
Inventor
Osamu Iwai
修 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4074294A priority Critical patent/JPH07248314A/en
Publication of JPH07248314A publication Critical patent/JPH07248314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To provide a probe that is available in a remote field eddy-current flaw detecting process capable of detecting any defect so sensitively in making flaw detecting signal be hard to receive any external effect. CONSTITUTION:An electric circuit such as a preamplifier 8 or the like is installed in space between a receiving coil 7 and a transmitting coil 3. This receiving coil 7 is set up in front of the transmitting coil 3 locking from the side of a signal source. Likewise, a magnetic shield 13 is installed in space between the transmitting coil 3, through which both transmitting and receiving probes are constituted so as to make them replaceable in terms of structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱交換器や石油プラント
等の配管の保守検査に用いられる、リモートフィールド
渦流探傷法で使用されるプローブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe used in a remote field eddy current flaw detection method used for maintenance inspection of pipes of heat exchangers, oil plants and the like.

【0002】[0002]

【従来の技術】リモートフィールド渦流探傷法は、ノン
ディストラクティブテスティングハンドブック(Nondes
tuructive Testing Hnadbook)第4巻のエレクトロマグ
ネティックテスティング(Electrnmagnetic Testing )
にその例が記載されている。これは図7に示すように送
信コイル3に数Vないし数100Vの電圧信号を与える
ことにより、送信コイル3より磁場4を発生させる。送
信コイル3より発生する磁場のうち、管内部に発生する
磁場4は、探傷を行う管が強磁性体の場合透磁率が管6
の各区域でばらついているために、直接磁場4に乱れを
生じさせ、それがS/N比を悪くさせる原因となる。リ
モートフィールド渦流探傷試験においては送信コイル3
と受信コイル7との距離を管外径の2〜3倍離すことに
よって直接磁場4の影響が少なくなり、送信コイル3に
よって管6に発生した渦電流19によって発生する間接磁
場5を受信することにより探傷を行う方法である。
2. Description of the Related Art Remote field eddy current testing is a non-destructive testing handbook (Nondes
tuructive Testing Hnadbook) Vol. 4 Electromagnetic Testing (Electrnmagnetic Testing)
The example is described in. As shown in FIG. 7, a magnetic field 4 is generated from the transmission coil 3 by applying a voltage signal of several V to several 100 V to the transmission coil 3. Among the magnetic fields generated by the transmitting coil 3, the magnetic field 4 generated inside the tube has a magnetic permeability of the tube 6 when the flaw detection tube is a ferromagnetic material.
In each area, the magnetic field 4 is directly disturbed, which causes the S / N ratio to deteriorate. Transmitter coil 3 in remote field eddy current flaw testing
The influence of the direct magnetic field 4 is reduced by separating the distance between the receiving coil 7 and the receiving coil 7 by 2 to 3 times the outer diameter of the tube, and the indirect magnetic field 5 generated by the eddy current 19 generated in the tube 6 by the transmitting coil 3 is received. This is a method for flaw detection.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のリモー
トフィールド渦流探傷法においては、受信コイル3の信
号が数μVと微弱なものであり、外部ノイズの影響を受
けやすく、このためS/N比の悪化が起こりやすい。ま
た、受信コイル7の信号が送信コイル3によって印可さ
れる信号による影響によってもS/N比の悪化が起こ
る。そこで、本発明の目的は探傷信号を外部の影響を受
けにくくし、感度良く欠陥を探傷することができる渦流
探傷用プローブを提供することにある。
However, in the above-mentioned remote field eddy current flaw detection method, the signal of the receiving coil 3 is as weak as a few μV, and is easily affected by external noise. Is likely to worsen. Further, the S / N ratio is deteriorated due to the influence of the signal applied by the transmitting coil 3 on the signal of the receiving coil 7. Therefore, an object of the present invention is to provide an eddy current flaw detection probe that can detect flaws with high sensitivity by making flaw detection signals less susceptible to external influences.

【0004】[0004]

【課題を解決するための手段】本発明は以上の目的を達
成するために、受信コイルと送信コイルの間にプリアン
プ等の電気回路を設け、また信号源側からみて受信コイ
ルを送信コイルの前に配置し、さらに送信コイルと受信
コイルとの間に磁気シールドを設け、送信プローブおよ
び受信プローブのつけ替えを可能な構成とする。
In order to achieve the above object, the present invention provides an electric circuit such as a preamplifier between the receiving coil and the transmitting coil, and the receiving coil is placed in front of the transmitting coil when viewed from the signal source side. In addition, a magnetic shield is provided between the transmission coil and the reception coil, so that the transmission probe and the reception probe can be replaced.

【0005】[0005]

【作用】受信コイルと送信コイルの間にプリアンプを設
けることによって先端での受信コイルによる信号を外部
ノイズの影響を受ける影響を少なくして増幅を行うこと
ができる。また受信コイルと送信コイルとの間にプリア
ンプを設けることで受信コイルによる受信信号を送信コ
イルに送信信号による干渉を受けずに信号を増幅させる
ことができる。また、プリアンプによって増幅させた受
信信号は、数V程度まで増幅させることができるため
に、この場合には送信コイルによる影響を受けにくくな
る。
By providing a preamplifier between the receiving coil and the transmitting coil, the signal from the receiving coil at the tip can be amplified while reducing the influence of external noise. Further, by providing a preamplifier between the receiving coil and the transmitting coil, the signal received by the receiving coil can be amplified without the receiving coil receiving the interference of the transmitting signal. Further, since the reception signal amplified by the preamplifier can be amplified up to about several V, in this case, it is less likely to be affected by the transmission coil.

【0006】また、信号源側からみて、受信コイルを送
信コイルの前に配置することによって探傷信号は送信コ
イル側を通過する前にプリアンプによって増幅され、こ
れにより送信コイル側で送信信号による影響を受けにく
くすることができる。
Further, by arranging the reception coil in front of the transmission coil as seen from the signal source side, the flaw detection signal is amplified by the preamplifier before passing through the transmission coil side, whereby the influence of the transmission signal on the transmission coil side is affected. It can be hard to receive.

【0007】さらに、送信コイルと受信コイルとの間に
シールドを設けることによって、送信コイルから生じる
直接磁場を遮蔽することによって直接磁場によるノイズ
の影響を取り除くことができる。
Furthermore, by providing a shield between the transmission coil and the reception coil, the influence of noise due to the direct magnetic field can be eliminated by shielding the direct magnetic field generated from the transmission coil.

【0008】渦流探傷試験では対象となる試験体の特性
によって探傷を行う周波数を設定するが、それによりコ
イルのインピーダンスが決定される。コイルのインピー
ダンス特性によって探傷感度やS/N比が変化するため
に、プローブのつけ替えを可能な構成を採用し、試験体
に合ったインピーダンス特性を有する別なコイルを使用
することができる。
In the eddy current flaw detection test, the frequency at which flaw detection is performed is set according to the characteristics of the target test body, which determines the impedance of the coil. Since the flaw detection sensitivity and the S / N ratio change depending on the impedance characteristic of the coil, it is possible to adopt a configuration in which the probe can be replaced and to use another coil having the impedance characteristic suitable for the test body.

【0009】[0009]

【実施例】以下本発明の実施例を図面を参照して説明す
る。図1は本発明の一実施例を示している。電圧源1よ
りの送信電圧信号は送信信号ケーブル2を導通させ、プ
ローブ1,2における送信コイル3に電流を流すことに
よって磁場が発生する。送信コイル3によって発生する
磁場は送信コイル3によって直接生じた直接磁場4と、
送信コイル3によって管6に生じた渦電流によって生じ
る間接磁場5が生じる。このうち間接磁場5は管6の外
面を伝わり、一部は管の内面へと再び戻る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. A transmission voltage signal from the voltage source 1 causes the transmission signal cable 2 to conduct, and a current is passed through the transmission coil 3 in the probes 1 and 2 to generate a magnetic field. The magnetic field generated by the transmitter coil 3 is the direct magnetic field 4 directly generated by the transmitter coil 3,
An indirect magnetic field 5 is produced by the eddy currents produced in the tube 6 by the transmitter coil 3. Of this, the indirect magnetic field 5 propagates on the outer surface of the tube 6, and part of it returns to the inner surface of the tube again.

【0010】リモートフィールド渦流探傷試験において
は送信コイル3と受信コイル7との距離を管外径の数倍
離すことによって送信コイル3より生じる磁場の影響を
少なくし、間接磁場5を効率よく受信する方法である。
間接磁場5は受信コイル7によって受信され、電流信号
が生じる。
In the remote field eddy current flaw detection test, the influence of the magnetic field generated by the transmitting coil 3 is reduced by separating the distance between the transmitting coil 3 and the receiving coil 7 by several times the outer diameter of the tube, and the indirect magnetic field 5 is efficiently received. Is the way.
The indirect magnetic field 5 is received by the receiving coil 7 and a current signal is generated.

【0011】受信コイル7が受信した電圧信号は、受信
コイル7と送信コイル3の間にあるプリアンプ8によっ
て増幅され、受信コイル信号ケーブル9を通してロック
インアンプ10に入力される。
The voltage signal received by the receiving coil 7 is amplified by the preamplifier 8 between the receiving coil 7 and the transmitting coil 3 and input to the lock-in amplifier 10 through the receiving coil signal cable 9.

【0012】探傷は鋼製の管6に欠陥等の不連続部分が
存在すると、送信電圧信号と受信コイルが受信した電圧
信号との振幅と位相差のずれが生じる。送信電圧信号は
一部参照信号11として、ロックインアンプ10に入力し、
また、受信コイル信号9からの信号はロックインアンプ
10に入力し、振幅および位相差の計測を行う。
In the flaw detection, if a discontinuous portion such as a defect is present in the steel pipe 6, a difference in amplitude and phase difference between the transmission voltage signal and the voltage signal received by the receiving coil occurs. The transmission voltage signal is partially input to the lock-in amplifier 10 as the reference signal 11,
The signal from the receiving coil signal 9 is a lock-in amplifier.
Input into 10 and measure the amplitude and phase difference.

【0013】図2はプローブの接続部を示したものであ
る。プローブはそれぞれ受信コイル7の部分とプリアン
プ8、そして磁気シールド13等の信号処理を行う部分
と、送信コイル3の部分にそれぞれ分割され、それぞれ
の部分についてはコネクタ14によって接続される。送信
コイル3および受信コイル7はそれぞれ探傷を行う試験
体によって探傷感度やS/N比が最も良い条件となるプ
ローブを選択することができる。
FIG. 2 shows the connecting portion of the probe. The probe is divided into a receiving coil 7, a preamplifier 8, a portion for performing signal processing such as a magnetic shield 13 and a transmitting coil 3, and each portion is connected by a connector 14. For the transmitting coil 3 and the receiving coil 7, it is possible to select a probe that has the best conditions for flaw detection sensitivity and S / N ratio, depending on the test body on which flaw detection is performed.

【0014】他の実施例として図3に示すように、フィ
ルター回路15を加えることによって受信コイル7が受信
する欠陥部分の信号以外の探傷周波数成分を除去するこ
とができる。また図4に示すように、アナログ/デジタ
ル変換器16等の種々の信号処理回路などを設けることが
できる。
As another embodiment, as shown in FIG. 3, by adding a filter circuit 15, a flaw detection frequency component other than the signal of the defective portion received by the receiving coil 7 can be removed. Further, as shown in FIG. 4, various signal processing circuits such as the analog / digital converter 16 can be provided.

【0015】さらに、図5に示すように、送信コイル3
と受信コイル7との間は柔軟性のある手段で接続でき、
U字管等の曲型管についても適用できる。ただし、U字
管等の曲がり管については送受信コイルの大きさを、コ
イルが曲管部分を通過できるようにするためにコイルの
大きさが制限される。これに対し信号処理部分の回路は
管の内径に対して十分小さくするならば、本発明のプロ
ーブは曲がり管についても直管部分と同様の信号処理が
可能である。
Further, as shown in FIG.
And the receiving coil 7 can be connected by a flexible means,
It is also applicable to curved pipes such as U-shaped pipes. However, for a bent pipe such as a U-shaped pipe, the size of the transmitting / receiving coil is limited, and the size of the coil is limited so that the coil can pass through the curved pipe portion. On the other hand, if the circuit of the signal processing portion is made sufficiently small with respect to the inner diameter of the pipe, the probe of the present invention can perform the same signal processing on the bent pipe as on the straight pipe portion.

【0016】図6(a)(b)(c)(d)に示すよう
に曲がり管を探傷する際についても、種々の信号処理回
路および磁気シールド等をつけ替えることが可能であ
り、また信号処理回路を組み合わせて使用することも可
能である。また、送信コイル3と受信コイル7について
も試験体の特性に合わせて最も探傷する条件が良いプロ
ーブを使用することができる。
As shown in FIGS. 6 (a), 6 (b), 6 (c), and 6 (d), various signal processing circuits, magnetic shields, and the like can be replaced even when the bent pipe is inspected. It is also possible to use a combination of processing circuits. Further, for the transmitting coil 3 and the receiving coil 7, it is possible to use a probe having the best conditions for flaw detection in accordance with the characteristics of the test body.

【0017】[0017]

【発明の効果】本発明によれば、先端側に受信コイルを
配置することにより、送信コイルによる干渉の影響を少
なくすることができる。また、受信コイルと送信コイル
との間にプリアンプを配置することによって受信コイル
が送信コイルの干渉を受ける前に数μVの信号を数Vの
信号にまで増幅を行うことができる。また、この際プリ
アンプは受信コイルと送信コイルとの間に配置してある
ので、受信コイルからのシールド線を短くすることがで
き、外部信号源の影響を受ける前に信号増幅することが
できるため、S/N比が良くなるという利点がある。さ
らに、増幅された受信信号は送信コイル部分を通過する
際には数Vまで増幅されているので、送信コイルにより
影響を受けないで済む。送信コイルと受信コイルとの間
には送信コイルによる直接磁場を磁気シールドによって
遮蔽することによって直接磁場による影響を少なくする
ことができる。このように本発明によれば、検出する欠
陥信号の情報を損なうことなく感度を良くすることがで
きるため高感度の探傷が可能となる。
According to the present invention, by arranging the receiving coil on the tip side, it is possible to reduce the influence of interference by the transmitting coil. Further, by disposing the preamplifier between the receiving coil and the transmitting coil, it is possible to amplify a signal of several μV to a signal of several V before the receiving coil receives the interference of the transmitting coil. Further, at this time, since the preamplifier is arranged between the receiving coil and the transmitting coil, the shield wire from the receiving coil can be shortened and the signal can be amplified before being affected by the external signal source. , S / N ratio is improved. Furthermore, since the amplified received signal is amplified up to several V when passing through the transmitting coil portion, it is not affected by the transmitting coil. By blocking the direct magnetic field from the transmitting coil with a magnetic shield between the transmitting coil and the receiving coil, the influence of the direct magnetic field can be reduced. As described above, according to the present invention, since the sensitivity can be improved without damaging the information of the defect signal to be detected, it is possible to perform flaw detection with high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による渦流探傷プローブを示す構成図。FIG. 1 is a configuration diagram showing an eddy current flaw detection probe according to the present invention.

【図2】プローブの構造および接続機構を示す詳細図。FIG. 2 is a detailed view showing the structure and connection mechanism of the probe.

【図3】本発明の他の実施例を示す構成図。FIG. 3 is a configuration diagram showing another embodiment of the present invention.

【図4】本発明の他の実施例を示す構成図。FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す構成図。FIG. 5 is a configuration diagram showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す構成図。FIG. 6 is a configuration diagram showing another embodiment of the present invention.

【図7】従来のリモートフィールド渦流探傷の作用を説
明するための図。
FIG. 7 is a view for explaining the action of a conventional remote field eddy current flaw detection.

【符号の説明】[Explanation of symbols]

1…電圧源、2…送信信号ケーブル、3…送信コイル、
4…直接磁場、5…間接磁場、6…管、7…受信コイ
ル、8…プリアンプ、9…受信信号ケーブル、10…ロッ
クインアンプ、11…参照信号、12…プローブ、13…磁気
シールド、14…プローブ接続ピン、15…フィルター回
路、16…アナログ/デジタル変換器、17…電気回路、18
…U字管、19…渦電流
1 ... Voltage source, 2 ... Transmission signal cable, 3 ... Transmission coil,
4 ... Direct magnetic field, 5 ... Indirect magnetic field, 6 ... Tube, 7 ... Receiving coil, 8 ... Preamplifier, 9 ... Received signal cable, 10 ... Lock-in amplifier, 11 ... Reference signal, 12 ... Probe, 13 ... Magnetic shield, 14 … Probe connection pin, 15… Filter circuit, 16… Analog / digital converter, 17… Electrical circuit, 18
… U-shaped tube, 19… Eddy current

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 同軸上に巻線された一対の送信コイルお
よび受信コイルと、前記送信コイルおよび前記受信コイ
ルの中間に配置され、受信コイルが接続されたプリアン
プとを備え、前記送信コイル側に対する出力信号の引き
出し方向を前記送信コイル側に配置したことを特徴とす
る渦流探傷用プローブ。
1. A pair of a transmission coil and a reception coil, which are coaxially wound, and a preamplifier, which is arranged between the transmission coil and the reception coil and to which the reception coil is connected, are provided. An eddy current flaw detection probe characterized in that an output signal extraction direction is arranged on the transmission coil side.
【請求項2】 前記送信コイルと前記受信コイルとの間
に前記送信コイルによって生じる直接磁場に影響を少な
くするための磁気シールドを設けたことを特徴とする請
求項1記載の渦流探傷用プローブ。
2. The eddy current flaw detection probe according to claim 1, further comprising a magnetic shield provided between the transmitting coil and the receiving coil to reduce an influence of a direct magnetic field generated by the transmitting coil.
【請求項3】 前記送信コイルと前記受信コイルとの間
にフィルター回路を設け、探傷する周波数成分以外の信
号を除去するようにしたことを特徴とする請求項1記載
の渦流探傷用プローブ。
3. The eddy current flaw detection probe according to claim 1, wherein a filter circuit is provided between the transmission coil and the reception coil to remove signals other than a frequency component for flaw detection.
【請求項4】 前記送信コイルと前記受信コイルとの間
に信号処理回路または磁気シールドまたはその他機構が
つけ替え可能に構成したことを特徴とする請求項1記載
の渦流探傷用プローブ。
4. The eddy current flaw detection probe according to claim 1, wherein a signal processing circuit, a magnetic shield, or another mechanism is replaceable between the transmitting coil and the receiving coil.
【請求項5】 試験体の特性に合わせてプローブの特性
を合わせるようにコイルを別なコイルとつけ替え可能に
構成したことを特徴とする請求項1記載の渦流探傷用プ
ローブ。
5. The eddy current flaw detection probe according to claim 1, wherein the coil can be replaced with another coil so as to match the characteristics of the probe according to the characteristics of the test body.
【請求項6】 前記送信コイルと前記受信コイルとの間
を柔軟性を有する手段で接続し、曲がり管部分に対して
も適用可能に構成したことを特徴とする請求項1または
請求項4記載のプローブ。
6. The structure according to claim 1, wherein the transmitting coil and the receiving coil are connected to each other by means having flexibility so that the transmitting coil and the receiving coil can be applied to a bent pipe portion. Probe.
JP4074294A 1994-03-11 1994-03-11 Probe for eddy-current flaw detection Pending JPH07248314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074294A JPH07248314A (en) 1994-03-11 1994-03-11 Probe for eddy-current flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074294A JPH07248314A (en) 1994-03-11 1994-03-11 Probe for eddy-current flaw detection

Publications (1)

Publication Number Publication Date
JPH07248314A true JPH07248314A (en) 1995-09-26

Family

ID=12589091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074294A Pending JPH07248314A (en) 1994-03-11 1994-03-11 Probe for eddy-current flaw detection

Country Status (1)

Country Link
JP (1) JPH07248314A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456066B1 (en) * 1997-09-06 2002-09-24 Lattice Intellectual Property Limited Eddy current pipeline inspection device and method
JP4766472B1 (en) * 2010-10-22 2011-09-07 国立大学法人 岡山大学 Nondestructive inspection apparatus and nondestructive inspection method
JP2013113787A (en) * 2011-11-30 2013-06-10 Hitachi Transportation Technologies Ltd Remote field eddy current flaw detection system and remote field eddy current flaw detection method
CN105241952A (en) * 2015-10-30 2016-01-13 湘潭大学 Pipeline elbow detection method based on remote field eddy current and detection device
CN112114031A (en) * 2020-10-14 2020-12-22 西安石油大学 Detector for measuring metal defects of petroleum pipeline matrix

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456066B1 (en) * 1997-09-06 2002-09-24 Lattice Intellectual Property Limited Eddy current pipeline inspection device and method
JP4766472B1 (en) * 2010-10-22 2011-09-07 国立大学法人 岡山大学 Nondestructive inspection apparatus and nondestructive inspection method
JP2013113787A (en) * 2011-11-30 2013-06-10 Hitachi Transportation Technologies Ltd Remote field eddy current flaw detection system and remote field eddy current flaw detection method
CN105241952A (en) * 2015-10-30 2016-01-13 湘潭大学 Pipeline elbow detection method based on remote field eddy current and detection device
CN112114031A (en) * 2020-10-14 2020-12-22 西安石油大学 Detector for measuring metal defects of petroleum pipeline matrix
CN112114031B (en) * 2020-10-14 2023-10-17 西安石油大学 Detector for measuring metal defects of petroleum pipeline base body

Similar Documents

Publication Publication Date Title
JP3428734B2 (en) Metal tube flaw detector and metal tube flaw detection method
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
CA1201481A (en) Eddy current probe with defect-noise discrimination
CA2342647A1 (en) Super sensitive eddy-current system and method
CN105510433B (en) A kind of metal tube electromagnetic nondestructive device based on dynamic raw eddy current
EP2373986A2 (en) Magnetic inspection device
KR100478528B1 (en) A method and apparatus for inspecting tubes by eddy currents
JPH07248314A (en) Probe for eddy-current flaw detection
CN106706753B (en) Differential electromagnetic ultrasonic sensor and detection system
JPH0772122A (en) Leak flux flaw detection method and apparatus for internal defect of magnetic material
JP2000227420A (en) Multi-probe type eddy current examination and eddy current test equipment
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
JPS61198055A (en) Insertion type probe for eddy current examination
JPS5821159A (en) Eddy current flaw detecting method
JP2959395B2 (en) Metal residue detection method in metal tube
JPH0295274A (en) Partial discharge detecting method
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
JPS63313087A (en) Method for detecting buried metallic pipe or the like
KR101173760B1 (en) Detection method of eddy current signal of small amplitude
JPH09257867A (en) Detection device for electric discharge
Fisher et al. Pulsed Eddy-Current Crack-Characterization Experiments
KR20010036575A (en) Nondestructive RFEC inspection system for tube in tubes
JP4608666B2 (en) Deterioration diagnosis device for iron-based structures
JPH08278289A (en) Flaw detection device and method for ferromagnetic tube
CN116840344A (en) Vortex and electromagnetic ultrasonic composite detection device and method based on railway vehicle axle