JP3152676B2 - Metal remote field eddy current flaw detector - Google Patents

Metal remote field eddy current flaw detector

Info

Publication number
JP3152676B2
JP3152676B2 JP12129191A JP12129191A JP3152676B2 JP 3152676 B2 JP3152676 B2 JP 3152676B2 JP 12129191 A JP12129191 A JP 12129191A JP 12129191 A JP12129191 A JP 12129191A JP 3152676 B2 JP3152676 B2 JP 3152676B2
Authority
JP
Japan
Prior art keywords
signal
eddy current
phase
excitation
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12129191A
Other languages
Japanese (ja)
Other versions
JPH04350553A (en
Inventor
靖治 細原
究 鈴木
茂 藤原
俊英 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP12129191A priority Critical patent/JP3152676B2/en
Priority to GB9421618A priority patent/GB2281399B/en
Priority to US07/740,388 priority patent/US5210492A/en
Priority to GB9116817A priority patent/GB2255184B/en
Priority to GB9421617A priority patent/GB2281398B/en
Priority to CA002048496A priority patent/CA2048496C/en
Priority to DE4126162A priority patent/DE4126162C2/en
Priority to FR9110181A priority patent/FR2675579B1/en
Publication of JPH04350553A publication Critical patent/JPH04350553A/en
Priority to US08/014,875 priority patent/US5365169A/en
Priority to US08/222,863 priority patent/US5461312A/en
Application granted granted Critical
Publication of JP3152676B2 publication Critical patent/JP3152676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属材リモートフィール
ド渦流探傷装置に係わり、特に埋設ガス配管、化学プラ
ント配管、熱交換器配管等の管路の保守管理をリモート
フィールド渦流法で行なう金属材リモートフィールド渦
流探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal material remote field eddy current flaw detection apparatus, and more particularly to a metal material remote device for performing maintenance management of pipes such as buried gas pipes, chemical plant pipes, heat exchanger pipes, etc. by a remote field eddy current method. The present invention relates to a field eddy current flaw detector.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】リモー
トフィールド渦流法を用いて、金属材の探傷を行うに
は、励磁コイルと、一つまたは、それ以上の受信コイル
を管径の2倍程度はなして管軸方向に配置したリモート
フィールド渦流センサを信号伝達用のケーブルに取り付
け、管路内に挿入し、励磁電圧を印加する。印加される
励磁信号は、通常数10Hz〜数100Hzの比較的低
い周波数が用いられ、励磁電圧は、数V〜数10Vが利
用されている。
2. Description of the Related Art In order to perform flaw detection of a metal material using the remote field eddy current method, an exciting coil and one or more receiving coils are required to be about twice as large as a tube diameter. The remote field eddy current sensor arranged in the pipe axis direction is attached to the signal transmission cable, inserted into the pipe, and the excitation voltage is applied. The applied excitation signal generally uses a relatively low frequency of several tens Hz to several hundreds Hz, and the excitation voltage is several volts to several tens of volts.

【0003】励磁信号により発生した電磁波は、供試管
路の肉厚を通過するものと、管路内を伝搬するものに分
けられ、管路内を伝搬する電磁波は、管路を導波管と考
えた場合の遮断周波数より遥かに低い周波数であるか
ら、急激に減衰しほとんど伝搬しない。一方、管路肉厚
内を伝搬する電磁波は、間接伝搬波と呼ばれ、管外を管
路に沿って伝搬し、ゆっくり減衰し、同時に一部は管路
肉厚を再度通過し、管路内に浸透して受信コイルにより
受信される。
[0003] Electromagnetic waves generated by the excitation signal are divided into those that pass through the thickness of the test pipe and those that propagate in the pipe. The electromagnetic waves that propagate in the pipe are separated from the waveguide by a waveguide. Since the frequency is much lower than the assumed cut-off frequency, it is rapidly attenuated and hardly propagates. On the other hand, an electromagnetic wave propagating in the pipe thickness is called an indirectly propagated wave, propagates outside the pipe along the pipe, slowly attenuates, and at the same time partially passes through the pipe thickness again, and It penetrates into and is received by the receiving coil.

【0004】受信コイルにより検出された受信信号は、
管路を2度通過していることから非常に微弱(数μV〜
数10μV)であり、管路肉厚通過による表皮効果によ
り位相変化を受けている。リモートフィールド渦流法に
おいては、管路肉厚とのリニアリティーのよい位相変化
を情報として用いることが多い。
The received signal detected by the receiving coil is
Very weak (several μV ~
Several tens of microvolts), and undergoes a phase change due to a skin effect caused by passage through the conduit. In the remote field eddy current method, a phase change with good linearity with the pipe wall thickness is often used as information.

【0005】上記リモートフィールド渦流法に於いて
は、1つの励磁コイルの後方に複数個の受信コイルを同
一円周上に配置した絶対値型と、同一円周上に配置され
た前方群の受信コイルとその後方に設けられた後方群の
受信コイルで構成される差動型がある。
In the above-mentioned remote field eddy current method, an absolute value type in which a plurality of receiving coils are arranged on the same circumference behind one excitation coil, and a reception group in a front group arranged on the same circumference. There is a differential type including a coil and a rear group of receiving coils provided behind the coil.

【0006】絶対値型では、受信コイル群のそれぞれの
コイルは、巻数が同じであり、複数の受信コイルは、セ
ンサ信号を出力する必要対の引き出し線で測定器と接続
されている。
[0006] In the absolute value type, each coil of the receiving coil group has the same number of turns, and the plurality of receiving coils are connected to the measuring instrument by a necessary pair of lead wires for outputting sensor signals.

【0007】これに対し、差動型では、前方群と後方群
のそれぞれの受信コイルは巻数が全て同じで、前方コイ
ルと後方コイルとを差動に結線し、必要対の引き出し線
を設け測定器と接続している。
On the other hand, in the differential type, the receiving coils of the front group and the rear group all have the same number of turns, the front coil and the rear coil are differentially connected, and the necessary pairs of lead wires are provided. Connected to the container.

【0008】絶対型センサに於いては、無欠陥部に於い
ても常に受信信号が得られるが、前記差動型センサの場
合は、局部欠陥等の形状変化部以外では、差動結線の為
ほとんど受信信号が得られない。この現象は、リモート
フィールド渦流による磁路を励磁コイルの軸に対し直角
方向に設けた受信コイル(法線方向コイル)を使用した
場合にも生じる。
In the case of the absolute type sensor, a received signal is always obtained even in a non-defective part. However, in the case of the differential type sensor, a differential connection is required at a part other than a shape change part such as a local defect. Almost no received signal can be obtained. This phenomenon also occurs when a receiving coil (normal direction coil) having a magnetic path formed by a remote field eddy current provided in a direction perpendicular to the axis of the exciting coil is used.

【0009】差動型または法線方向コイルで構成した受
信コイル群をリモートフィールド渦流で使用する場合に
は、被検体健全部においては、安定した位相検波を行う
に充分な受信信号が得られず、位相検波された探傷デー
タに雑音が混入される。このため、探傷データが異常な
探傷データに変移する等の難点がある。
When a receiving coil group composed of differential or normal direction coils is used in a remote field eddy current, a received signal sufficient for performing stable phase detection cannot be obtained in a healthy subject. In addition, noise is mixed in the flaw detection data subjected to the phase detection. For this reason, there is a problem that the flaw detection data shifts to abnormal flaw detection data.

【0010】また、複数の受信コイルを管路内壁に環状
に配置したリモートフィールド渦流センサを用いた場合
累積された異常な探傷データにより精度の高い管路の診
断ができない等の難点がある。
In addition, when a remote field eddy current sensor in which a plurality of receiving coils are annularly arranged on the inner wall of a pipeline is used, there is a problem that a highly accurate pipeline diagnosis cannot be performed due to accumulated abnormal flaw detection data.

【0011】[0011]

【発明の目的】本発明は、上述した難点に鑑みなされた
もので、受信コイルから出力される受信信号に、予め設
定された位相及び振幅を有する交流信号を重畳させるこ
とにより異常な探傷データの生成を防止でき、複数の受
信コイルを管路内壁に環状に配置したリモートフィール
ド渦流センサを用いることにより、探傷データに含まれ
る位相検波雑音による異常な探傷デ−タの累積を防止で
きる金属材リモートフィールド渦流探傷装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an abnormal flaw detection data is obtained by superimposing an AC signal having a predetermined phase and amplitude on a reception signal output from a reception coil. By using a remote field eddy current sensor in which generation is prevented and a plurality of receiving coils are annularly arranged on the inner wall of the pipeline, accumulation of abnormal flaw detection data due to phase detection noise included in flaw detection data can be prevented. An object is to provide a field eddy current flaw detection device.

【0012】[0012]

【課題を解決するたの手段】この目的を達成するために
本発明の金属材リモートフィールド渦流探傷装置は、金
属材の欠陥を検出するにあたり、基準信号を生成するた
めの基準信号発生手段と、基準信号と同位相の励磁信号
により供試金属材にリモートフィールド渦流を生成させ
るための励磁コイルと、励磁コイルから所定の間隔離れ
て配置され、リモートフィールド渦流を受信し複数の受
信信号を送出する複数の法線方向受信コイル或いは予め
定めた間隔に配置した2つのコイルにより構成する複数
の差動型受信コイルと、励磁信号を予め定めた所定振幅
レベルに減衰させるための複数の減衰器と、減衰器から
の出力信号を予め定めた位相に移相する複数の移相器で
構成する複数の交流信号生成手段と、複数の受信信号と
複数の交流信号生成手段で生成された信号を加算する複
数の信号加算手段と、基準信号および複数の信号加算手
段で生成された複数の加算信号の位相比較を行って複数
の探傷データを出力する複数の探傷データ生成手段とを
備えたものである。
In order to achieve this object, a metal material remote field eddy current flaw detection apparatus according to the present invention includes a reference signal generating means for generating a reference signal when detecting a defect in a metal material; An excitation coil for generating a remote field eddy current in the test metal material by an excitation signal having the same phase as the reference signal, and an excitation coil arranged at a predetermined distance from the excitation coil to receive the remote field eddy current and transmit a plurality of reception signals A plurality of normal-type receiving coils or a plurality of differential-type receiving coils constituted by two coils arranged at a predetermined interval; and a plurality of attenuators for attenuating the excitation signal to a predetermined amplitude level, A plurality of AC signal generating means each including a plurality of phase shifters for shifting an output signal from the attenuator to a predetermined phase; a plurality of received signals and a plurality of AC signal generators; A plurality of signal adding means for adding the signals generated by the means, and a plurality of flaw detection data generating means for comparing the phases of the reference signal and the plurality of added signals generated by the plurality of signal adding means and outputting a plurality of flaw detection data Means.

【0013】[0013]

【作用】この金属材リモートフィールド渦流探傷装置に
おいて、励磁信号がリモートフィールド渦流センサの励
磁コイルに印加されると受信コイルには受信信号が発生
する。受信信号インタフェースの差動増幅器で同相雑
音、ローパスフィルタで高周波成分を除去された受信信
号は加算器の他方の入力側へ印加される。一方、加算信
号処理モジュールの加算端子に印加された励磁信号は加
算信号生成モジュールの減衰器で振幅設定器で設定され
たレベルまで減衰される。つぎに移相器では予め位相角
設定器で設定された位相角、例えば15度が設定されて
いると、受信信号処理モジュールの一方の入力側には位
相角が15度遅れた加算信号が送出される。
In this metal material remote field eddy current flaw detector, when an excitation signal is applied to the excitation coil of the remote field eddy current sensor, a reception signal is generated in the reception coil. The reception signal from which the common-mode noise has been removed by the differential amplifier of the reception signal interface and the high-frequency component has been removed by the low-pass filter is applied to the other input side of the adder. On the other hand, the excitation signal applied to the addition terminal of the addition signal processing module is attenuated by the attenuator of the addition signal generation module to the level set by the amplitude setting device. Next, in the phase shifter, if the phase angle set in advance by the phase angle setting device, for example, 15 degrees, is set, an addition signal whose phase angle is delayed by 15 degrees is sent to one input side of the reception signal processing module. Is done.

【0014】[0014]

【実施例】以下、本発明の金属材リモートフィールド渦
流探傷装置をその一実施例について図1を参照して詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the metal material remote field eddy current flaw detector of the present invention will be described in detail with reference to FIG.

【0015】本発明の金属材リモートフィールド渦流探
傷装置は図1に示すように、励磁コイルECと複数の受
信コイルRCn(説明のためnを1〜9とし、差動コイ
ルを使用する場合を示す)を設けたリモートフィールド
渦流センサPRB、基準信号発生器2、励磁信号出力増
幅器3、参照信号生成回路4を設けた励磁信号送出回路
1、受信信号処理モジュールRQ1〜RQ9、加算信号生
成モジュールRA1〜RA9、受信信号インタフェースR
B1〜RB9をそれぞれに設けた受信信号回路RCC1〜
RCC9で構成される。
As shown in FIG. 1, the metallic material remote field eddy current flaw detector of the present invention shows a case where an exciting coil EC and a plurality of receiving coils RCn (n is 1 to 9 for explanation and a differential coil is used). ) Provided with the remote field eddy current sensor PRB, the reference signal generator 2, the excitation signal output amplifier 3, the excitation signal transmission circuit 1 provided with the reference signal generation circuit 4, the reception signal processing modules RQ1 to RQ9, and the addition signal generation modules RA1 to RA9, reception signal interface R
Receiving signal circuits RCC1 to RCC1 provided with B1 to RB9, respectively.
It is composed of RCC9.

【0016】励磁信号送出回路1の基準信号発生器2の
出力側は励磁信号増幅器3の入側と、励磁信号出力増幅
器3の出側は端子T0とそれぞれ接続される。また、送
信端子T0はケーブルCBLのペア心線P0によりリモー
トフィールド渦流センサPRBの励磁コイルECと接続
され、受信コイルRC1〜RC9はケーブルCBLのペア
心線P1〜P9で受信信号回路RC1〜RC9のそれぞれの
受信端子RT2、RT3と接続される。前述のペア心線P
0には励磁信号f0、ペア心線P1〜P9には受信信号f1
〜f9が送受信される。なお、送信端子T0は受信信号回
路RCC1〜RCC9のそれぞれの加算端子RT1と接続
される。
The output side of the reference signal generator 2 of the excitation signal sending circuit 1 is connected to the input side of the excitation signal amplifier 3, and the output side of the excitation signal output amplifier 3 is connected to the terminal T0. The transmitting terminal T0 is connected to the exciting coil EC of the remote field eddy current sensor PRB by the pair of cores P0 of the cable CBL, and the receiving coils RC1 to RC9 are connected to the pair of cores P1 to P9 of the cable CBL by the pair of cores P1 to P9 of the reception signal circuit RC1 to RC9. Connected to respective receiving terminals RT2 and RT3. Pair core wire P mentioned above
0 indicates the excitation signal f0, and paired cores P1 to P9 indicate the reception signal f1.
To f9 are transmitted and received. The transmission terminal T0 is connected to the respective addition terminals RT1 of the reception signal circuits RCC1 to RCC9.

【0017】励磁信号送出回路1の基準信号発生器2の
出力側は参照信号生成回路4の入力側と接続され、参照
信号生成回路4の9本の出力側は参照信号端子T1〜T9
と接続される。この参照信号端子T1〜T9は受信信号回
路RCC1〜RCC9のそれぞれの参照端子RT4と接続
される。
The output side of the reference signal generator 2 of the excitation signal sending circuit 1 is connected to the input side of the reference signal generation circuit 4, and the nine output sides of the reference signal generation circuit 4 have reference signal terminals T1 to T9.
Connected to The reference signal terminals T1 to T9 are connected to the respective reference terminals RT4 of the reception signal circuits RCC1 to RCC9.

【0018】加算信号生成モジュールRA1〜RA9はそ
れぞれ減衰器5、振幅設定器5a、移相器6及び位相角
設定器6aで構成し、減衰器5の入力側には加算端子R
T1が、出力側には移相器6の入力側が接続される。ま
た、移相器6の出力側は後述する受信信号処理モジュー
ルRQ1〜RQ9の加算器11の一方の入側と接続され
る。
Each of the addition signal generation modules RA1 to RA9 comprises an attenuator 5, an amplitude setter 5a, a phase shifter 6, and a phase angle setter 6a.
The input side of the phase shifter 6 is connected to the output side of T1. The output side of the phase shifter 6 is connected to one input side of the adder 11 of the later-described reception signal processing modules RQ1 to RQ9.

【0019】受信信号インタフェースRB1〜RB9はそ
れぞれ差動増幅器7、ローパスフィルタ8、受信アンプ
9、バンドパスフィルタ10で接続され、差動増幅器7
の一方並びに他方の入側は受信端子RT2、RT3と接続
される。また、差動増幅器7の出力側はローパスフィル
タ8、受信アンプ9、バンドパスフィルタ10を経由し
て前述の加算器11の他方の入側と接続される。
The reception signal interfaces RB1 to RB9 are connected by a differential amplifier 7, a low-pass filter 8, a reception amplifier 9, and a band-pass filter 10, respectively.
Are connected to the receiving terminals RT2 and RT3. The output side of the differential amplifier 7 is connected to the other input side of the adder 11 via a low-pass filter 8, a reception amplifier 9, and a band-pass filter 10.

【0020】受信信号処理モジュールRQ1〜RQ9はそ
れぞれ加算器11、波形整形回路12、位相比較器1
3、探傷データ出力器14で構成される。加算信号生成
モジュールRA1〜RA9のそれぞれの移相器6の出力側
及び受信信号インタフェースRB1〜RB9のそれぞれの
バンドパスフィルタ10が一方並びに他方の入側に接続
された加算器11の出力側は波形整形回路12、位相比
較器13、探傷信号出力器14を経由して探傷データ端
子RT5と接続される。なお、励磁信号送出回路1の参
照信号端子T1〜T9は受信信号処理モジュールRQ1〜
RQ9のそれぞれのモジュール側参照端子RT4を介して
位相比較器13の比較入力側と接続される。
The received signal processing modules RQ1 to RQ9 each include an adder 11, a waveform shaping circuit 12, and a phase comparator 1.
3. It is composed of a flaw detection data output unit 14. The output side of the adder 11 in which the output side of the phase shifter 6 of each of the addition signal generation modules RA1 to RA9 and the respective bandpass filters 10 of the reception signal interfaces RB1 to RB9 are connected to one input side and the other input side, respectively. It is connected to the flaw detection data terminal RT5 via the shaping circuit 12, the phase comparator 13, and the flaw detection signal output unit 14. The reference signal terminals T1 to T9 of the excitation signal transmission circuit 1 are connected to the reception signal processing modules RQ1 to RQ1.
RQ9 is connected to the comparison input side of the phase comparator 13 via the respective module-side reference terminals RT4.

【0021】このように構成された金属材リモートフィ
ールド渦流探傷装置で図1に示す励磁信号f0がリモー
トフィールド渦流センサPRBの励磁コイルECに印加
されると受信コイルRC1〜RC9には受信信号f1〜f9
が発生する。受信信号インタフェースRB1〜RB9の差
動増幅器7で同相雑音、ローパスフィルタ8で高周波成
分を除去された受信信号f1〜f9は加算器11の他方の
入力側へ印加される。一方、加算信号処理モジュールR
CC1〜RCC9の加算端子RT1に印加された励磁信号
f0は加算信号生成モジュールRA1〜RA9の減衰器5
で振幅設定器5aで設定されたレベルまで減衰される。
つぎに移相器6では予かじめ位相角設定器6aで設定さ
れた位相角、例えば15度が設定されていると、受信信
号処理モジュールRQ1〜RQ9の一方の入力側には位相
角が15度遅れた加算信号が送出される。加算器11で
は供試管で生成された受信信号f0〜f9と、この加算信
号が加算されるので位相雑音は加算器11で確実に除去
され、加算器11の出力側から位相比較器13へは一定
レベルの受信信号f0〜f9が送出される。このため、位
相比較器13では安定した位相検波を行うことができ
る。安定した位相検波が行われるので、それぞれの探傷
データ端子RT5には正常な探傷データが出力されるの
で、雑音による異常な探傷データが累積され、欠陥部の
形状、深さ、位置を誤診断するような事態は起らない。
When the excitation signal f0 shown in FIG. 1 is applied to the excitation coil EC of the remote field eddy current sensor PRB in the thus configured metal remote field eddy current flaw detector, the reception signals f1 to RC9 are applied to the reception coils RC1 to RC9. f9
Occurs. The reception signals f1 to f9 from which the common-mode noise has been removed by the differential amplifier 7 of the reception signal interfaces RB1 to RB9 and the high-frequency component has been removed by the low-pass filter 8 are applied to the other input side of the adder 11. On the other hand, the addition signal processing module R
The excitation signal f0 applied to the addition terminal RT1 of CC1 to RCC9 is applied to the attenuator 5 of the addition signal generation module RA1 to RA9.
, The signal is attenuated to the level set by the amplitude setting device 5a.
Next, in the phase shifter 6, if the phase angle set in advance by the phase angle setting unit 6a, for example, 15 degrees, is set to one input side of the reception signal processing modules RQ1 to RQ9, the phase angle is set to 15 degrees. An additional signal delayed by degrees is transmitted. The adder 11 adds the received signals f0 to f9 generated by the test tubes and the added signal, so that the phase noise is reliably removed by the adder 11, and the output from the adder 11 is sent to the phase comparator 13 from the output side. Received signals f0 to f9 of a constant level are transmitted. Therefore, the phase comparator 13 can perform stable phase detection. Since stable phase detection is performed, normal flaw detection data is output to each flaw detection data terminal RT5, so that abnormal flaw detection data due to noise is accumulated, and the shape, depth, and position of the defective portion are erroneously diagnosed. Such a situation does not occur.

【0022】[0022]

【発明の効果】以上の実施例から明らかなように、本発
明の金属材リモートフィールド渦流探傷装置によれば、
受信コイルから出力される受信信号に、予め設定された
位相及び振幅を有する交流信号を重畳させることにより
異常な探傷データの生成を防止でき、複数の受信コイル
を管路内壁に環状に配置したリモートフィールド渦流セ
ンサを用いることにより、探傷データに含まれる位相検
波雑音による異常な探傷デ−タの累積を防止できる。
As is clear from the above embodiments, according to the metal remote field eddy current flaw detector of the present invention,
By superimposing an AC signal having a preset phase and amplitude on a reception signal output from the reception coil, generation of abnormal flaw detection data can be prevented, and a remote control in which a plurality of reception coils are annularly arranged on the inner wall of the pipeline. By using the field eddy current sensor, accumulation of abnormal flaw detection data due to phase detection noise included in flaw detection data can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による金属材リモートフィールド渦流探
傷装置の一実施例を示すブロック図。
FIG. 1 is a block diagram showing one embodiment of a metal material remote field eddy current flaw detector according to the present invention.

【符号の説明】[Explanation of symbols]

2・・・・・・基準信号発生器(基準信号発生手段) 5・・・・・・減衰器 6・・・・・・移相器 11・・・・・・加算器(信号加算手段) 14・・・・・・探傷データ出力器(探傷データ生成手段) RA1〜RA9・・・・・・加算信号生成モジュール(交流信号
生成手段) EC・・・・・・励磁コイル RC1〜RC9・・・・・・法線方向受信コイル、差動型受信コ
イル
2 Reference signal generator (reference signal generation means) 5 Attenuator 6 Phase shifter 11 Adder (signal addition means) 14 flaw detection data output device (flaw detection data generation means) RA1 to RA9 ... addition signal generation module (AC signal generation means) EC ... excitation coil RC1 to RC9 ... .... Normal direction receiving coil, differential receiving coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 茂 広島県呉市西中央2丁目1番12号 株式 会社シーエックスアール 開発事業部内 (72)発明者 河部 俊英 広島県呉市西中央2丁目1番12号 株式 会社シーエックスアール 開発事業部内 (56)参考文献 特開 平3−274456(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/72 - 27/90 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeru Fujiwara 2-1-1-12 Nishichuo, Kure-shi, Hiroshima Inside CXR Development Division (72) Inventor Toshihide Kawabe 2-Nishichuo, Kure-shi, Hiroshima No. 1-12 Inside CXR Development Division (56) References JP-A-3-274456 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 27/72-27 / 90

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属材の欠陥を検出するにあたり、基準信
号を生成するための基準信号発生手段(2)と、基準信
号と同位相の励磁信号により供試金属材にリモートフィ
ールド渦流を生成させるための励磁コイル(EC)と、
励磁コイルから所定の間隔離れて配置され、リモートフ
ィールド渦流を受信し複数の受信信号を送出する複数の
法線方向受信コイル或いは予め定めた間隔に配置した2
つのコイルにより構成する複数の差動型受信コイル(R
C1〜RC9)と、励磁信号を予め定めた所定振幅レベル
に減衰させるための複数の減衰器(5)と、減衰器から
の出力信号を予め定めた位相に移相する複数の移相器
(6)で構成する複数の交流信号生成手段(RA1〜R
A9)と、複数の受信信号と複数の交流信号生成手段で
生成された信号を加算する複数の信号加算手段(11)
と、基準信号および複数の信号加算手段で生成された複
数の加算信号の位相比較を行って複数の探傷データを出
力する複数の探傷データ生成手段(14)とを備えたこ
とを特徴とする金属材リモートフィールド渦流探傷装
In detecting a defect in a metal material, a reference signal is detected.
Signal generating means (2) for generating a reference signal;
The excitation signal in phase with the
An excitation coil (EC) for generating a cold eddy current;
It is placed a predetermined distance away from the excitation coil, and
Multiple eddy currents and multiple received signals
Normal direction receiving coil or 2 arranged at a predetermined interval
A plurality of differential receiving coils (R
C1 to RC9) and a predetermined amplitude level of the excitation signal
Attenuators (5) for attenuating to
Phase shifters that shift the output signal of the phase shifter to a predetermined phase
(6) A plurality of AC signal generating means (RA1-R
A9) and a plurality of reception signals and a plurality of AC signal generation means
A plurality of signal adding means for adding the generated signals (11)
And the reference signal and the complex generated by the plurality of signal adding means.
Multiple flaw detection data by comparing the phase of
A plurality of flaw detection data generating means (14)
Metal field remote eddy current flaw detector
Place .
JP12129191A 1991-04-22 1991-05-27 Metal remote field eddy current flaw detector Expired - Fee Related JP3152676B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP12129191A JP3152676B2 (en) 1991-05-27 1991-05-27 Metal remote field eddy current flaw detector
GB9421618A GB2281399B (en) 1991-04-22 1991-08-05 Flaw detector for metal material
US07/740,388 US5210492A (en) 1991-04-22 1991-08-05 Remote field eddy current flaw detector for metal pipes having a pair of receiver coils providing a differential offset amplitude signal
GB9116817A GB2255184B (en) 1991-04-22 1991-08-05 Flaw detector for metal material
GB9421617A GB2281398B (en) 1991-04-22 1991-08-05 Flaw detector for metal material
CA002048496A CA2048496C (en) 1991-04-22 1991-08-06 Flaw detector for metal material
DE4126162A DE4126162C2 (en) 1991-04-22 1991-08-07 Fault detector for metals
FR9110181A FR2675579B1 (en) 1991-04-22 1991-08-09 FAULT DETECTOR FOR A METAL MATERIAL, PARTICULARLY A PIPE, AND REMOTE FIELD EDGE CURRENT SENSOR FOR THIS DETECTOR.
US08/014,875 US5365169A (en) 1991-04-22 1993-01-28 Remote field eddy current flaw detector for metal material including attenuator, adder, phase shiftery and phase comparator
US08/222,863 US5461312A (en) 1991-04-22 1994-04-05 Remote field eddy current sensor for detecting flaws in metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12129191A JP3152676B2 (en) 1991-05-27 1991-05-27 Metal remote field eddy current flaw detector

Publications (2)

Publication Number Publication Date
JPH04350553A JPH04350553A (en) 1992-12-04
JP3152676B2 true JP3152676B2 (en) 2001-04-03

Family

ID=14807626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12129191A Expired - Fee Related JP3152676B2 (en) 1991-04-22 1991-05-27 Metal remote field eddy current flaw detector

Country Status (1)

Country Link
JP (1) JP3152676B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879850A (en) * 2020-07-23 2020-11-03 南昌航空大学 Weld array far-field eddy current detection probe and detection method thereof
CN112229904A (en) * 2020-11-23 2021-01-15 南昌航空大学 Pulse far-field eddy current detection probe and use method thereof

Also Published As

Publication number Publication date
JPH04350553A (en) 1992-12-04

Similar Documents

Publication Publication Date Title
JP3428734B2 (en) Metal tube flaw detector and metal tube flaw detection method
US5461312A (en) Remote field eddy current sensor for detecting flaws in metal material
US7285961B2 (en) Insulation degradation diagnostic device
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
EP0119708A2 (en) Electromagnetic surveying of pipes and cables
US8564303B2 (en) Systems and methods for detecting anomalies in elongate members using electromagnetic back scatter
JPH04503253A (en) conductor tracking system
GB2129140A (en) An eddy current probe with defect-noise discrimination
JP3152676B2 (en) Metal remote field eddy current flaw detector
JP2693009B2 (en) Metal flaw detector
JP2898681B2 (en) Remote field eddy current sensor
JPH07248314A (en) Probe for eddy-current flaw detection
JPH04158257A (en) Flaw detector for metallic material
Cole Location of partial discharges and diagnostics of power transformers using acoustic methods
GB2136131A (en) Electromagnetic Surveying of Pipes and Cables
KR100360978B1 (en) Nondestructive RFEC inspection system for tube in tubes
JPH04323551A (en) Metallic material flaw detection device
JPH0785074B2 (en) Metal flaw detector
GB2281399A (en) Eddy current flaw detector
JPH0572255A (en) Measurement method of partial discharge for cable
JPH0295274A (en) Partial discharge detecting method
JPH02126153A (en) Tube inspecting device using remote field eddy current method
JPH0572257A (en) Measurement method of partial discharge for cable
JPH05149925A (en) Apparatus for measuring characteristic of cable for inspection of flaw in metallic material
JPH076951B2 (en) Metal flaw detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees