JPH04158257A - Flaw detector for metallic material - Google Patents

Flaw detector for metallic material

Info

Publication number
JPH04158257A
JPH04158257A JP2283808A JP28380890A JPH04158257A JP H04158257 A JPH04158257 A JP H04158257A JP 2283808 A JP2283808 A JP 2283808A JP 28380890 A JP28380890 A JP 28380890A JP H04158257 A JPH04158257 A JP H04158257A
Authority
JP
Japan
Prior art keywords
flaw detection
detection data
received signal
signal
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2283808A
Other languages
Japanese (ja)
Inventor
Yasuharu Hosohara
靖治 細原
Kiwamu Suzuki
究 鈴木
Shigeru Fujiwara
茂 藤原
Shunei Kawabe
河部 俊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C X R KK
Tokyo Gas Co Ltd
Original Assignee
C X R KK
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C X R KK, Tokyo Gas Co Ltd filed Critical C X R KK
Priority to JP2283808A priority Critical patent/JPH04158257A/en
Publication of JPH04158257A publication Critical patent/JPH04158257A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent abnormal flaw detection data from being created by removing drift noise via a filter from a received signal which is output from a receiving coil which receives remote field vortex flow of a metallic material to be inspected. CONSTITUTION:Respective receiving terminals RT4... of a plurality of received signal processing modules RQ1 to RQ9 of a received signal circuit RCC are connected to excitation terminals T1 to T9 of an excitation signal send-out circuit 1. Respective phase comparators 12... admit received signals f1 to f9 generated on receiving coils RC1 to RC9 of a vortex flow sensor PRB at one input, which are to be compared with reference signals F1 to F9 respectively which are input to the other input. Here the signals f1 to f9 at an output of a BPF 9 are at an illegal level ILL including drift noise due to vibrations, etc., but they are normal received signals NOF when dc components are removed by an HPF 10 and flaw detection data output from the comparator 12 is also normal flaw detection data NOD. If comparison 12 is made with the level ILL maintained, an abnormal received signal ILF and abnormal flow detection data ILD are created.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は金属材探傷装置に係わり、特に埋設ガス配管、
化学プラント配管、熱交換器配管等の管路の保守、管理
をリモートフィールド渦流法で行なう金属材探傷装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a metal material flaw detection device, and is particularly applicable to buried gas piping,
This invention relates to a metal material flaw detection device that performs maintenance and management of pipelines such as chemical plant piping and heat exchanger piping using the remote field eddy current method.

[従来の技術及び発明が解決しようとする課題]リモー
トフィールド渦流法を用いて、金属材の探傷を行うには
、励磁コイルと一つ又はそれ以上の受信コイルを管径の
2倍程度以上離して管軸方向に配置して構成した渦流セ
ンサを信号伝送用のケーブルに取り付け、管路内に挿入
し、励磁コイルに励磁信号を印加する。印加される励磁
信号は比較的低い周波数(数10Hz〜数100Hz)
で、電圧は数V〜数10Vが用いられる。
[Prior art and problems to be solved by the invention] In order to perform flaw detection on metal materials using the remote field eddy current method, the excitation coil and one or more receiving coils must be separated by at least twice the pipe diameter. An eddy current sensor arranged in the axial direction of the pipe is attached to a signal transmission cable, inserted into the pipe, and an excitation signal is applied to the excitation coil. The applied excitation signal has a relatively low frequency (several 10 Hz to several 100 Hz)
The voltage used is several volts to several tens of volts.

励磁信号により発生した電磁波は、供試管路の肉厚を通
過するものと、管路内を伝播するものにわけられ、管路
内を伝播する電磁波は管路を導波管と考えたときの遮断
周波数よりはるかに低い周波数であるから、急激に減衰
してほとんど伝播しない。一方、管路の肉厚を通過する
ものは間接伝播波と呼ばれ、管外を管路に沿って伝播し
、ゆっくり減衰し、同時に一部は管路肉厚を再度通過し
、管路内に浸透して受信コイルに検知される。
The electromagnetic waves generated by the excitation signal can be divided into those that pass through the wall thickness of the pipe under test and those that propagate within the pipe.The electromagnetic waves that propagate inside the pipe are divided into those that pass through the wall thickness of the pipe under test and those that propagate within the pipe. Since the frequency is much lower than the cutoff frequency, it is rapidly attenuated and hardly propagates. On the other hand, waves that pass through the wall thickness of the pipe are called indirect propagating waves, which propagate outside the pipe along the pipe and are slowly attenuated. and is detected by the receiving coil.

受信コイルにより検知された信号(以下、受信信号とい
う)は管路肉厚を2度通過していることから非常に微弱
(数μV〜数10μV)であり、管路肉厚通過による表
皮効果の影響で位相変化を受ける。リモートフィールド
渦流法においては、管路肉厚とのリニアリティーのよい
位相変化を情報として用いることが多い。
The signal detected by the receiving coil (hereinafter referred to as the received signal) is extremely weak (several μV to several tens of μV) because it passes through the pipe wall thickness twice, and the skin effect caused by passing through the pipe wall thickness is extremely weak. The phase changes due to the influence. In the remote field eddy current method, phase changes with good linearity with the pipe wall thickness are often used as information.

上記リモートフィールド渦流法で、励磁コイルと受信コ
イルからなる渦流センサを供試管路内に挿入し、一定速
度で漸進させると、漸進による渦流センサの振動で受信
コイルから出力される正常な受信信号に雑音が重畳され
、受信信号から生成される探傷データが異常な探傷デー
タに変移する等の難点がある。
In the remote field eddy current method described above, when an eddy current sensor consisting of an excitation coil and a receiving coil is inserted into a test pipe and gradually advanced at a constant speed, the vibration of the eddy current sensor caused by the gradual advancement produces a normal reception signal output from the receiving coil. There are disadvantages such as noise being superimposed and the flaw detection data generated from the received signal changing to abnormal flaw detection data.

また、複数の受信コイルを管路内壁に環状に配置した渦
流センサを用いた場合累積された異常な探傷データによ
り精度の高い管路の診断ができない等の難点がある。
Furthermore, when using an eddy current sensor in which a plurality of receiving coils are arranged annularly on the inner wall of a pipe, there are drawbacks such as the inability to diagnose the pipe with high precision due to accumulated abnormal flaw detection data.

[発明の目的] 本発明は上述した難点に鑑みなされたもので受信コイル
から出力される受信信号に含まれる振動等によるドリフ
ト雑音を除去することにより異常な探傷データの生成を
防止できる金属材探傷装置を提供することを目的とする
[Object of the Invention] The present invention has been made in view of the above-mentioned difficulties, and provides flaw detection for metal materials that can prevent the generation of abnormal flaw detection data by removing drift noise caused by vibrations included in the received signal output from the receiving coil. The purpose is to provide equipment.

また、複数の受信コイルを設けたリモート渦流センサを
使用することにより異常な探傷データの累積を防止し、
精度の高い管路の診断が行える金属材探傷装置を提供す
ることを目的とする。
In addition, by using a remote eddy current sensor equipped with multiple receiving coils, we can prevent the accumulation of abnormal flaw detection data.
The purpose of the present invention is to provide a metal material flaw detection device that can diagnose conduits with high precision.

[課題を解決するための手段] 本発明による金属材探傷装置は、基準信号を発生する基
準信号発生手段と、基準信号と同相の励磁信号を印加し
、供試金属材リモートフィールド渦流を発生させる励磁
コイルと、励磁コイルから所定の間隔離れて設けられリ
モートフィールド渦流を受信し受信信号を出力する受信
コイルと、受信コイルから出力される受信信号から直流
成分を除去する直流成分除去手段と、直流成分除去手段
で直流成分が除去された受信信号と基準信号とを比較し
探傷データを出力する探傷データ生成手段とで構成する
[Means for Solving the Problems] A metal material flaw detection device according to the present invention includes a reference signal generating means for generating a reference signal, and an excitation signal having the same phase as the reference signal to generate a remote field eddy current in the metal material under test. an excitation coil, a reception coil that is separated from the excitation coil by a predetermined distance and receives remote field eddy currents and outputs a reception signal; a DC component removal means that removes a DC component from a reception signal output from the reception coil; The flaw detection data generation means compares the received signal from which the DC component has been removed by the component removal means with a reference signal and outputs flaw detection data.

また、本発明による金属材探傷装置は、複数の受信コイ
ル、直流成分除去手段、探傷データ生成手段で構成する
Further, the metal material flaw detection apparatus according to the present invention is constituted by a plurality of receiving coils, a DC component removal means, and a flaw detection data generation means.

[実施例] 以下、本発明による金属材探傷装置の一実施例を第1図
、第2図について詳述する。
[Example] Hereinafter, an example of the metal material flaw detection apparatus according to the present invention will be described in detail with reference to FIGS. 1 and 2.

本発明による金属材探傷装置は第1図に示すように、励
磁コイルECと複数の受信コイルRCn(説明のためn
を1〜9とする)を設けた渦流センサPRB、基準信号
発生器2、励磁信号出力増幅器3、参照信号生成回路4
を設けた励磁信号送出回路1及び受信信号処理モジュー
ルRQ、〜RQ4を有する受信信号回路RCCで構成さ
れ、励磁信号送出回路1の励磁側端子T0、受信信号回
路RCCの受信信号処理モジュールRQ、〜RQsの受
信側端子RT、とRT、・・・・・・はケーブルCBL
のそれぞれのベア心線P0で受信コイルRCt〜RC9
で発生した受信信号f、〜f9はベア心線P。
As shown in FIG. 1, the metal material flaw detection apparatus according to the present invention includes an excitation coil EC and a plurality of receiving coils RCn (n for explanation).
1 to 9), a reference signal generator 2, an excitation signal output amplifier 3, and a reference signal generation circuit 4.
It is composed of an excitation signal sending circuit 1 provided with an excitation signal sending circuit 1 and a receiving signal circuit RCC having receiving signal processing modules RQ, ~RQ4. RQs receiving side terminals RT, RT, ...... are cable CBL
The receiving coils RCt to RC9 are connected to each bare core wire P0.
The received signals f, ~f9 generated at the bare core wire P.

〜P、で送受される。It is sent and received at ~P.

励磁信号送出回路1の基準信号発生回路2で発振された
励磁信号f0は励磁信号出力増幅器3で増幅されて励磁
側端子T0へ、参照信号生成回路4で生成された参照信
号F、〜F、はケーブルCBLのペア心線P0〜P、で
送受される励磁信号f。
The excitation signal f0 oscillated by the reference signal generation circuit 2 of the excitation signal transmission circuit 1 is amplified by the excitation signal output amplifier 3 and sent to the excitation side terminal T0, and the reference signals F, ~F, generated by the reference signal generation circuit 4 are transmitted. is the excitation signal f transmitted and received by the pair of core wires P0 to P of the cable CBL.

と受信信号f1〜f、相互の誘導による位相遅れを補正
したもので、受信信号f、〜f、に比べ電圧の高い励磁
信号foをシールドした特別のケーブルCBLを用いた
ときはこの参照信号 F1〜F、は励磁信号f0と同相としてもよい。
and the received signals f1 to f, corrected for the phase delay caused by mutual induction.When using a special cable CBL that shields the excitation signal fo, which has a higher voltage than the received signals f, to f, this reference signal F1 ~F may be in phase with the excitation signal f0.

受信信号回路RCCの受信信号処理モジュールRQ、〜
RQ、のそれぞれの受信端子RT、〜RT。
Reception signal processing module RQ of reception signal circuit RCC, ~
RQ, respective receiving terminals RT, ~RT.

は受信信号インタフェース5の差動増幅器6の入側に接
続され、差動増幅器6の出側はローパスフィルタ7、受
信アンプ8、バンドパスフィルタ9を介して波形整形器
10の入側と接続される。ペア心線P、〜P9に発生し
た同極性の雑音は差動増幅器で除去される。また、差動
増幅器6から出力される受信信号f1〜f、の高周波成
分はローパスフィルタ7で除去される。ローパスフィル
タ7で高周波成分を除去された受信信号f、〜f、はバ
ンドパスフィルタ9を経由してバイパスフィルタ10の
入側へ送出、バイパスフィルタ10の出側は波形整形器
11の入側と接続され、波形整形器11の出側は位相比
較器12の一方の入側と接続される。位相比較器12の
他方の入側は受信側端子RT aと接続され、位相比較
器12の出側は探傷信号出力器13を介して受信側端子
RT、と接続される。
is connected to the input side of the differential amplifier 6 of the receiving signal interface 5, and the output side of the differential amplifier 6 is connected to the input side of the waveform shaper 10 via the low-pass filter 7, the receiving amplifier 8, and the band-pass filter 9. Ru. Noise of the same polarity generated in the pair of core wires P, -P9 is removed by a differential amplifier. Further, high frequency components of the received signals f1 to f outputted from the differential amplifier 6 are removed by a low pass filter 7. The received signals f, ~f, from which high frequency components have been removed by the low-pass filter 7 are sent to the input side of the bypass filter 10 via the band-pass filter 9, and the output side of the bypass filter 10 is connected to the input side of the waveform shaper 11. The output side of the waveform shaper 11 is connected to one input side of the phase comparator 12. The other input side of the phase comparator 12 is connected to the reception side terminal RT a, and the output side of the phase comparator 12 is connected to the reception side terminal RT via the flaw detection signal output device 13 .

受信信号処理モジュールRQ 1〜RQ sのそれぞれ
の受信側端子RT、・・・・・・は励磁信号送出回路1
の励磁側端子T、〜T9と接続され、それぞれの位相比
較器12・・・・・・は一方の入側に入力される受信信
号f、〜f、と他方の入側に入力される参照信号F1〜
Fsを比較する。
Reception side terminals RT of each of the reception signal processing modules RQ 1 to RQ s, . . . are excitation signal transmission circuits 1
The phase comparators 12 are connected to excitation side terminals T, ~T9 of Signal F1~
Compare Fs.

ここで、バンドパスフィルタ9の出側の受信信号f1〜
f、は振動等による直流成分からなるドリフト雑音が含
まれたイリガルレベルILLであるが、バイパスフィル
タ10で直流成分が除去されると正常受信信号NOFと
なり位相比較器12から出力される探傷データも正常探
傷データNODとなる。また、イリガルレベルILLの
優位相比較器12で比較すると括弧内に示す異常受信信
号ILFと異常探傷データILDが生成される。
Here, the received signal f1~ on the output side of the bandpass filter 9
f is an illegal level ILL that contains drift noise consisting of a DC component due to vibrations, etc., but when the DC component is removed by the bypass filter 10, it becomes a normal received signal NOF and the flaw detection data output from the phase comparator 12 is also normal. The flaw detection data is NOD. Further, when compared by the superior phase comparator 12 at the illegal level ILL, an abnormal reception signal ILF and abnormal flaw detection data ILD shown in parentheses are generated.

[発明の作用コ 上記構成の金属材探傷装置で例えば励磁信号出力回路1
の励磁側端子T1から受信信号回路RCCの受信信号処
理モジュールRQ 1の受信側端子RT4へ参照信号F
1が送出され渦流センサPRBの受信コイルRC,に発
生した受信信号f、が受信側端子RT、とRT、に印加
されると、第2図の0点で示す参照信号F1の位相に比
べ受信信号f、がノーマルレベルNOLにあると0点に
、イリガルレベルILLにあると0点まで位相が遅れる
[Operation of the invention] For example, in the metal material flaw detection apparatus having the above configuration, the excitation signal output circuit 1
The reference signal F is sent from the excitation side terminal T1 of the receiving signal circuit RCC to the receiving side terminal RT4 of the receiving signal processing module RQ1 of the receiving signal circuit RCC.
1 is sent out and generated in the receiving coil RC of the eddy current sensor PRB, and is applied to the receiving side terminals RT, RT. When the signal f is at the normal level NOL, the phase is delayed to the 0 point, and when it is at the illegal level ILL, the phase is delayed to the 0 point.

受信信号f1がノーマルレベルNOLにあると第2図■
点に示す正常受信信号NOFがバイパスフィルタ10の
出側に生成される。従って、位相比較器12の出側の0
点で正常探傷データNODが出力される。
When the received signal f1 is at the normal level NOL, Fig. 2 ■
A normally received signal NOF shown at the dot is generated at the output side of the bypass filter 10. Therefore, 0 on the output side of the phase comparator 12
Normal flaw detection data NOD is output at the point.

直流分を除去するバイパスフィルタ10が設けられない
場合は、受信信号f1は第2図■点に示すイリガルレベ
ルILLにあるので0点の異常受信信号ILFと0点の
異常探傷データILDが生成されるので異常探傷データ
ILDの生成を防止できない。
If the bypass filter 10 that removes the DC component is not provided, the received signal f1 is at the illegal level ILL shown in point ■ in Fig. 2, so a 0-point abnormal reception signal ILF and a 0-point abnormal flaw detection data ILD are generated. Therefore, generation of abnormal flaw detection data ILD cannot be prevented.

上記実施例におけるバイパスフィルタ10は1次側コイ
ル、2次側コイルを有する変圧器で構成してもよい。
The bypass filter 10 in the above embodiment may be constructed of a transformer having a primary coil and a secondary coil.

[発明の効果] 本発明による金属材探傷装置は、基準信号を発生する基
準信号発生手段と、基準信号と同相の励磁信号を印加し
、供試金属材リモートフィールド渦流を発生させる励磁
コイルと、励磁コイルから所定の間隔離れて設けられリ
モートフィールド渦流を受信し受信信号を出力する受信
コイルと、受信コイルから出力される受信信号から直流
成分を除去する直流成分除去手段と、直流成分除去手段
で直流成分が除去された受信信号と基準信号とを比較し
探傷データを出力する探傷データ生成手段とで構成され
ているので、異常な探傷データの生成を防止できる効果
がある。
[Effects of the Invention] The metal material flaw detection apparatus according to the present invention includes: a reference signal generating means for generating a reference signal; an excitation coil that applies an excitation signal in phase with the reference signal to generate a remote field eddy current in the metal material under test; A receiving coil that is provided at a predetermined distance from the excitation coil and receives remote field eddy currents and outputs a received signal; a DC component removing means that removes a DC component from the received signal output from the receiving coil; Since it is comprised of a flaw detection data generation means that compares the received signal from which the DC component has been removed with a reference signal and outputs flaw detection data, it is effective in preventing generation of abnormal flaw detection data.

また、本発明による金属材探傷装置は、複数の受信コイ
ル、直流成分除去手段、探傷データ生成手段を設ければ
異常な探傷データの累積を防止し、精度の高い管路の診
断ができる効果がある。
Further, the metal material flaw detection device according to the present invention has the effect of preventing the accumulation of abnormal flaw detection data and making it possible to diagnose pipelines with high precision by providing a plurality of receiving coils, DC component removal means, and flaw detection data generation means. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による金属材探傷装置の一実施例を示す
ブロック図、第2図は本発明による金属材探傷装置の特
性図である。 2・・・・・・基準信号発生器(基準信号発生手段)1
0・・・・・・バイパスフィルタ(直流成分除去手段)
12・・・・・・位相比較器(探傷データ生成手段)E
C・・・・・・励磁コイル RCz〜RC,・・・・・・受信コイル代理人 弁理士
  守 谷 −雄
FIG. 1 is a block diagram showing an embodiment of the metal material flaw detection apparatus according to the present invention, and FIG. 2 is a characteristic diagram of the metal material flaw detection apparatus according to the present invention. 2...Reference signal generator (reference signal generation means) 1
0...Bypass filter (DC component removal means)
12... Phase comparator (flaw detection data generation means) E
C...Exciting coil RCz~RC,...Receiving coil agent Patent attorney Moritani -O

Claims (1)

【特許請求の範囲】 1、基準信号を発生する基準信号発生手段と、前記基準
信号と同相の励磁信号を印加し、供試金属材リモートフ
ィールド渦流を発生させる励磁コイルと、前記励磁コイ
ルから所定の間隔離れて設けられ前記リモートフィール
ド渦流を受信し受信信号を出力する受信コイルと、前記
受信コイルから出力される受信信号から直流成分を除去
する直流成分除去手段と、前記直流成分除去手段で直流
成分が除去された受信信号と前記基準信号とを比較し探
傷データを出力する探傷データ生成手段とを備えたこと
を特徴とする金属材探傷装置。 2、複数の前記受信コイル、前記直流成分除去手段、前
記探傷データ生成手段を設けたことを特徴とする請求項
1記載の金属材探傷装置。
[Scope of Claims] 1. A reference signal generating means for generating a reference signal, an excitation coil for applying an excitation signal in phase with the reference signal to generate a remote field eddy current in the metal material under test, and a predetermined source from the excitation coil. a receiving coil that receives the remote field eddy current and outputs a received signal; a DC component removing means that removes a DC component from the received signal output from the receiving coil; A metal material flaw detection apparatus comprising flaw detection data generating means for comparing a received signal from which components have been removed with the reference signal and outputting flaw detection data. 2. The metal material flaw detection apparatus according to claim 1, further comprising a plurality of said receiving coils, said DC component removal means, and said flaw detection data generation means.
JP2283808A 1990-10-22 1990-10-22 Flaw detector for metallic material Pending JPH04158257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2283808A JPH04158257A (en) 1990-10-22 1990-10-22 Flaw detector for metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2283808A JPH04158257A (en) 1990-10-22 1990-10-22 Flaw detector for metallic material

Publications (1)

Publication Number Publication Date
JPH04158257A true JPH04158257A (en) 1992-06-01

Family

ID=17670417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2283808A Pending JPH04158257A (en) 1990-10-22 1990-10-22 Flaw detector for metallic material

Country Status (1)

Country Link
JP (1) JPH04158257A (en)

Similar Documents

Publication Publication Date Title
US7285961B2 (en) Insulation degradation diagnostic device
JP3428734B2 (en) Metal tube flaw detector and metal tube flaw detection method
CA2005549C (en) Transient electromagnetic apparatus for detecting irregularities on conductive containers
US5461312A (en) Remote field eddy current sensor for detecting flaws in metal material
US20020075002A1 (en) Conductor tracing system
JPS5992342A (en) Eddy current probe
JPH04158257A (en) Flaw detector for metallic material
JPH04323551A (en) Metallic material flaw detection device
JPH04350553A (en) Metal material flaw detector
JPH07248314A (en) Probe for eddy-current flaw detection
JPH03274456A (en) Apparatus for detecting flaw of metal material
JPH04323550A (en) Metallic material flaw detection device
JPH04188057A (en) Flaw detecting apparatus for metal material
JP2000227420A (en) Multi-probe type eddy current examination and eddy current test equipment
JPH0295274A (en) Partial discharge detecting method
KR100592635B1 (en) Eddy Current Testing Apparatus
JP5215987B2 (en) Cable search method and cable search device
JPS5821159A (en) Eddy current flaw detecting method
JPS612065A (en) Flaw detector using eddy current
CN106771499A (en) The measuring system and method for the transient current that GIS isolator operations are formed
JPH0585033B2 (en)
EP1217391A2 (en) Conductor tracing system
JPS585677A (en) Detecting method for partial discharge of power cable
JPH11108968A (en) Hot-line tester for communication cable
JP2654793B2 (en) Partial discharge detection device