JP2892508B2 - High strength copper alloy with good hot workability - Google Patents

High strength copper alloy with good hot workability

Info

Publication number
JP2892508B2
JP2892508B2 JP40968690A JP40968690A JP2892508B2 JP 2892508 B2 JP2892508 B2 JP 2892508B2 JP 40968690 A JP40968690 A JP 40968690A JP 40968690 A JP40968690 A JP 40968690A JP 2892508 B2 JP2892508 B2 JP 2892508B2
Authority
JP
Japan
Prior art keywords
copper alloy
cast material
cracks
hot workability
strength copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP40968690A
Other languages
Japanese (ja)
Other versions
JPH04210439A (en
Inventor
立彦 江口
重雄 篠崎
好正 大山
浩一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP40968690A priority Critical patent/JP2892508B2/en
Publication of JPH04210439A publication Critical patent/JPH04210439A/en
Application granted granted Critical
Publication of JP2892508B2 publication Critical patent/JP2892508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コネクター、端子、リ
ードフレームなどの電気・電子機器部品に使用するのに
好適な、強度、ばね性および導電性にすぐれた銅合金に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy excellent in strength, spring property and conductivity, suitable for use in electrical and electronic equipment parts such as connectors, terminals and lead frames.

【0002】[0002]

【従来の技術】コネクター、端子、リードフレームなど
の電気・電子機器部品に使用される銅合金条には従来、
Sn入り銅やC194などのFe入り銅が用いられてきたが、電
気・電子機器の小型化、軽量化、高密度化に伴い、強
度、ばね性および導電性の高度なバランスが必要とな
り、従来の銅合金では対応が困難になってきている。そ
こで最近では、これらの特性にすぐれたCu−Ni−Si系の
いわゆるコルソン系銅合金(Ni:2.0〜4.0%、Si:0.4
〜1.0%、残部Cu。%は重量%、以下同じ)が使用され
るに至っている。
2. Description of the Related Art Conventionally, copper alloy strips used for electrical and electronic equipment parts such as connectors, terminals, lead frames, etc.
Sn-containing copper and Fe-containing copper such as C194 have been used, but as electrical and electronic equipment has become smaller, lighter, and more dense, a high balance of strength, springiness, and conductivity is required. It is becoming difficult to deal with such copper alloys. Therefore, recently, a so-called Corson-based copper alloy of a Cu-Ni-Si system (Ni: 2.0 to 4.0%, Si: 0.4
~ 1.0%, balance Cu. % Is% by weight, the same applies hereinafter).

【0003】[0003]

【発明が解決しようとする課題】しかしコルソン系銅合
金は、強度、ばね性および導電性などの実用特性にはす
ぐれているものの、製造のしやすさの点で著しい欠点を
有しているため、まだ広く用いられるには至っていな
い。
However, although the Corson-based copper alloy is excellent in practical properties such as strength, spring property and conductivity, it has a remarkable drawback in ease of production. Has not yet been widely used.

【0004】すなわち、銅合金条を工業的に安価に製造
するためには、溶解鋳造時に大きな断面積の鋳塊をつく
り、これを700℃以上の高温で熱間圧延して圧延素材を
製造することが必要である。しかしながらコルソン系銅
合金は熱間圧延のための加熱工程で、凝固時の残留応力
の作用により脆性割れが発生し、これがその後の熱間圧
延に悪影響を及ばして、歩留りを大幅に低下させる要因
となっている。
[0004] In other words, in order to produce copper alloy strips industrially at low cost, an ingot having a large cross-sectional area is produced at the time of melting and casting, and this is hot-rolled at a high temperature of 700 ° C or more to produce a rolled material. It is necessary. However, in the heating process for hot rolling, corson-based copper alloys generate brittle cracks due to the action of residual stress during solidification, which adversely affects subsequent hot rolling and significantly reduces the yield. It has become.

【0005】この脆性割れは残留応力の大きい大断面積
の鋳造材ほど顕著に発生するため、従来は鋳造材の断面
積を小さくすることによって加熱工程での脆性割れを回
避している。しかしこの方法では、生産性がわるく、製
造コストが高くつく。
[0005] Since the brittle cracks occur more remarkably in a cast material having a large residual area with a large residual stress, conventionally, the brittle crack in the heating step is avoided by reducing the sectional area of the cast material. However, in this method, productivity is low and manufacturing cost is high.

【0006】また、これらの課題に対しては、コルソン
系銅合金にMn、Mgなどを添加することによって熱間圧延
性を改善する対策も公表されているが、この対策は、熱
間圧延に先立つ加熱工程での割れを低減する効果は必ず
しも十分ではなく、製造コスト低減に対しての効果は少
ない。
[0006] In order to solve these problems, measures have been published to improve the hot rolling property by adding Mn, Mg, etc. to the Corson-based copper alloy. The effect of reducing cracks in the preceding heating step is not always sufficient, and has little effect on reducing manufacturing costs.

【0007】このため本発明は、強度、ばね性および導
電性にすぐれたCu−Ni−Si系合金の、熱間圧延に先立つ
加熱工程での割れを防止し、熱間加工性を高めて、低コ
ストで製造できる高強度銅合金を提供することを目的と
する。
[0007] Therefore, the present invention is to prevent cracking of a Cu-Ni-Si alloy excellent in strength, spring property and conductivity in a heating step prior to hot rolling, and to enhance hot workability. An object is to provide a high-strength copper alloy that can be manufactured at low cost.

【0008】[0008]

【課題を解決するための手段】本発明に係る熱間加工性
の良好な高強度銅合金は、Ni:2.0〜4.0%、Si:0.4〜
1.0%、P:0.01〜0.05%を含み、残部がCuおよび不可
避不純物からなり、鋳造材の結晶粒度が10mm以下である
ことを特徴とするものである。またこの合金は、半田付
け性を向上させるため、Zn:0.05〜1.0%を添加する場
合もある。
The high-strength copper alloy having good hot workability according to the present invention comprises Ni: 2.0 to 4.0% and Si: 0.4 to 4.0%.
1.0%, P: 0.01 to 0.05%, the balance being Cu and unavoidable impurities, and the grain size of the cast material is 10 mm or less. In addition, in some cases, Zn: 0.05 to 1.0% is added to the alloy to improve solderability.

【0009】[0009]

【作用】Cu−Ni−Si系合金の鋳造材を熱間圧延する場
合、熱間加工温度としては700〜1000℃が望ましく、鋳
造材は加熱炉にてこの温度まで昇温される。この際、40
0〜700℃の温度範囲を通過するときに、鋳造材は結晶粒
界において脆化し、割れを発生することが、種々の研究
によって判明した。
In the case of hot rolling a cast material of a Cu-Ni-Si alloy, the hot working temperature is desirably 700 to 1000 ° C, and the cast material is heated to this temperature in a heating furnace. At this time, 40
Various studies have shown that when passing through the temperature range of 0-700 ° C., the cast material becomes brittle at the grain boundaries and cracks.

【0010】この割れ現象を詳細に検討した結果、Cu−
Ni−Si系合金の鋳造材においては、溶湯の凝固時に大き
な残留応力が発生し、これが400〜700℃の温度領域にお
いて緩和され、この際に結晶粒界にボイド状の欠陥が発
生し、このボイド状の欠陥が連結して脆性割れに到るこ
とが判明した。
As a result of a detailed study of this cracking phenomenon, Cu-
In a cast material of a Ni-Si alloy, a large residual stress is generated during solidification of the molten metal, and this is relaxed in a temperature region of 400 to 700 ° C. At this time, a void-like defect is generated at a crystal grain boundary. It was found that the void-like defects were connected to form brittle cracks.

【0011】なお従来から、Niを多量に含む銅合金は原
料のNi中に含まれる硫黄が熱間加工性を著しく劣化させ
ることが分かっており、前述のMn、Mgの添加は、その脱
硫効果によって熱間加工性を改善する試みである。
Conventionally, it has been known that in a copper alloy containing a large amount of Ni, the sulfur contained in the raw material Ni significantly deteriorates the hot workability. This is an attempt to improve hot workability.

【0012】これに対し、Ni:2.0〜4.0%、Si:0.4〜
1.0%を含むCu−Ni−Si系合金鋳造材の場合は、キュプ
ロニッケルのような通常のNi含有銅合金とは異なり、溶
湯の脱酸に用いるPの存在が、鋳造材の粒界強度を著し
く低下させ、400〜700℃の温度範囲を通過するときに割
れの発生を促進することを解明した。このような研究結
果から本発明者等は、Pの含有量を0.01%以下に抑制す
ることによって加熱工程での割れを防止できることを見
出した。
On the other hand, Ni: 2.0-4.0%, Si: 0.4-
In the case of a Cu-Ni-Si alloy casting material containing 1.0%, unlike ordinary Ni-containing copper alloys such as cupronickel, the presence of P used for deoxidation of molten metal decreases the grain boundary strength of the casting material. It was clarified that it significantly reduced and accelerated the generation of cracks when passing through the temperature range of 400-700 ° C. From these research results, the present inventors have found that cracking in the heating step can be prevented by suppressing the P content to 0.01% or less.

【0013】しかし、Pの含有量を0.01%以下にするこ
とは、工業的には原料の精製等が必要となり、原料コス
トの上昇が問題となる。
However, if the content of P is set to 0.01% or less, it is necessary to purify the raw material industrially, which raises a problem of an increase in raw material cost.

【0014】そこでPの含有量が0.01%以上の領域での
割れ防止対策を見出すべく、鋳造材の結晶粒度が脆性割
れの関係を種々検討した。その結果、鋳造材における割
れ発生は前述のように鋳造材の結晶粒界に発生したボイ
ド状欠陥が連結することが原因であることから、欠陥が
生じても割れに成長させず、また仮に小さな割れができ
ても割れの伝播を阻止すれば、脆性割れには至らないこ
とを見出した。すなわち割れの改善効果を高めるために
は、鋳造材の凝固時の結晶粒度を小さくし、割れの伝播
を抑制すればよい。
Therefore, in order to find a measure for preventing cracking in a region where the P content is 0.01% or more, various studies were made on the relationship between the crystal grain size of the cast material and brittle cracking. As a result, as described above, since cracks in the cast material are caused by connection of the void-like defects generated at the crystal grain boundaries of the cast material, even if the defects occur, they do not grow into cracks, and if they are small, It has been found that even if a crack is formed, brittle cracking does not occur if the propagation of the crack is prevented. That is, in order to enhance the effect of improving cracks, it is only necessary to reduce the crystal grain size during solidification of the cast material and suppress the propagation of cracks.

【0015】検討結果によると、Pの含有量0.01%以上
で割れを防止するには鋳造材の結晶粒度を10mm以下にす
ることが必要であり、10mmを越えると割れの防止効果が
十分に現れない。また結晶粒度を10mm以下にしても、P
の含有量が0.05%を越えると、Pによる脆性割れの感受
性が高まり、結晶粒度調整による割れの改善効果が十分
に現れない。このためPの含有量は0.05%以下にする必
要がある。
According to the examination results, in order to prevent cracking at a P content of 0.01% or more, it is necessary to reduce the crystal grain size of the cast material to 10 mm or less, and if it exceeds 10 mm, the effect of preventing cracking appears sufficiently. Absent. Also, even if the grain size is 10 mm or less,
If the content exceeds 0.05%, the sensitivity of P to brittle cracking increases, and the effect of improving cracking by adjusting the crystal grain size does not sufficiently appear. Therefore, the content of P needs to be 0.05% or less.

【0016】Pの含有量が0.01〜0.05%の範囲であれ
ば、原料精製の必要がないため原料コストが安く、しか
も鋳造材の結晶粒度を10mm以下にすることにより熱間加
工時の割れを防止できるため加工コストも安くなる。こ
のため全体として製造コストの安価な高強度銅合金が得
られることになる。
When the content of P is in the range of 0.01 to 0.05%, the cost of the raw material is low because the raw material does not need to be refined, and the crystal grain size of the cast material is reduced to 10 mm or less to prevent cracking during hot working. The processing cost can be reduced because it can be prevented. Therefore, a high-strength copper alloy having a low production cost can be obtained as a whole.

【0017】[0017]

【実施例】以下、本発明を実施例により具体的に説明す
る。表1に示す組成の銅合金を溶解鋳造して、厚さ200m
m、幅1200mmの鋳造材を製造した。また比較のため厚さ1
20mm、幅500mmの小断面積の鋳造材も製造した。同時に
溶解鋳造の際、溶湯を流し込む鋳型の温度を変化させる
ことにより、各種の結晶粒度を有する鋳造材を得た。
The present invention will be described below in more detail with reference to examples. A copper alloy having the composition shown in Table 1 was melted and cast to a thickness of 200 m.
m, a cast material having a width of 1200 mm was manufactured. Also thickness 1 for comparison
Casting materials with a small cross section of 20 mm and a width of 500 mm were also manufactured. At the same time, at the time of melt casting, casting materials having various crystal grain sizes were obtained by changing the temperature of the mold into which the molten metal was poured.

【0018】各鋳造材を950℃の加熱炉に入れ、950℃に
昇温して5時間保持した後、板厚30mmまで熱間圧延し
た。圧延された板材につき割れの状態を評価した。評価
は、健全に加工ができたものをA、割れが発生して熱間
圧延の途中で加工が不可能になったものをC、板厚30mm
まで加工できたものの割れが発生し、歩留りが80%以下
となったものをBとした。
Each cast material was placed in a heating furnace at 950 ° C., heated to 950 ° C. and maintained for 5 hours, and then hot-rolled to a thickness of 30 mm. The state of cracking was evaluated for the rolled sheet material. The evaluation was A for those that could be processed soundly, C for those that had cracks and could not be processed during hot rolling, and had a thickness of 30 mm.
The sample that was able to be processed to the point where cracks occurred and the yield was 80% or less was designated as B.

【0019】次に熱間圧延後の板材を、冷間圧延と焼鈍
の繰り返しにより加工して厚さ0.3mmの板材とし、そ
の板材を950℃で15分間加熱後、水中に入れて焼入れ
し、その後、40%の冷間圧延を施して0.2mmの板厚と
し、さらに450℃で2時間の時効処理を行った。
Next, the sheet material after the hot rolling is worked by repeating cold rolling and annealing to obtain a sheet material having a thickness of 0.3 mm. The sheet material is heated at 950 ° C. for 15 minutes, and then quenched in water. Thereafter, the sheet was subjected to cold rolling of 40% to a sheet thickness of 0.2 mm, and further subjected to aging treatment at 450 ° C. for 2 hours.

【0020】このようにして得られた板材につき引張試
験を行い、引張強さ(T.S.)、0.2%耐力、伸びを測定
した。さらに導電率(E.C.%IACS)、ばね限界値(Kb
値)の測定を行った。また製造コストを原料コストおよ
び加工コストの面から定量的に評価し、本発明に係る銅
合金の、小さい断面積を有する鋳造材によって板厚0.2m
mの製品を製造する際の原料コストと加工コストの和を
基準として、大、中、小のランクをつけた。以上の結果
を表1にあわせて示す。
A tensile test was performed on the sheet material thus obtained, and the tensile strength (TS), 0.2% proof stress, and elongation were measured. In addition, conductivity (EC% IACS), spring limit (Kb
Value) was measured. In addition, the production cost was quantitatively evaluated in terms of raw material cost and processing cost, and the copper alloy according to the present invention was cast with a small cross-sectional area to a thickness of 0.2 m.
Based on the sum of raw material costs and processing costs when manufacturing m products, the rankings were large, medium, and small. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、本発明の実施例
No.1〜3は、鋳造材のサイズが大きくても熱間圧延中
に割れが発生せず、またPの含有量が多く、鋳造材のサ
イズが大きいことから製造コストは小である。
As is apparent from Table 1, the embodiment of the present invention is shown.
No. In Nos. 1 to 3, even if the size of the cast material is large, no cracking occurs during hot rolling, the content of P is large, and the size of the cast material is large, so that the production cost is small.

【0023】これに対し比較例No.4〜8は、鋳造材の
サイズが大きくても熱間圧延中に割れが発生しないが、
Pの含有量が少ないため、原料コストが高くなり、製造
コストは中である。また比較例No.9は、Pの含有量は
本発明と同等であるが、鋳造材の結晶粒度が大きいた
め、鋳造材のサイズを小さくしても熱間圧延中に割れが
発生することがあり、製造コストは中である。また比較
例No.10〜12は、Pの含有量および鋳造材サイズは本発
明と同じであるが、結晶粒度が大きいため、熱間圧延中
に割れが発生し、加工不可能である。さらに比較例No.
13は、Mn、Mgの添加により熱間圧延中の割れは改善され
るが、その効果は不十分であり、製造コストは大とな
る。
On the other hand, Comparative Example No. Nos. 4 to 8 have no cracks during hot rolling even if the size of the cast material is large,
Since the content of P is small, the raw material cost is high, and the production cost is medium. In Comparative Example No. No. 9 has the same P content as that of the present invention, but since the grain size of the cast material is large, even if the size of the cast material is reduced, cracks may occur during hot rolling, and the production cost is low. Inside. In Comparative Example No. In Nos. 10 to 12, the content of P and the size of the cast material are the same as those of the present invention, but since the crystal grain size is large, cracks are generated during hot rolling and processing is impossible. Further, Comparative Example No.
No. 13, cracks during hot rolling are improved by the addition of Mn and Mg, but the effect is insufficient, and the production cost increases.

【0024】本発明の銅合金は、前述のようにNi:2.0
〜4.0%、Si:0.4〜1.0%、P:0.01〜0.05%を含み、
残部がCuおよび不可避不純物からなり、鋳造材の結晶粒
度が10mm以下である点に特徴を有するものであるが、こ
の組成にさらにZnを0.05〜1.0%添加して使用すること
もできる。亜鉛の添加は半田付け性の向上に有効であ
る。表2にZnを添加した場合の実施例および比較例を示
す。
The copper alloy of the present invention has a Ni: 2.0
~ 4.0%, Si: 0.4 ~ 1.0%, P: 0.01 ~ 0.05%,
The balance is made up of Cu and unavoidable impurities, and is characterized in that the crystal grain size of the cast material is 10 mm or less. Zn may be further added to this composition in an amount of 0.05 to 1.0%. Addition of zinc is effective for improving solderability. Table 2 shows Examples and Comparative Examples in which Zn was added.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、コ
ネクターやリードフレームなどの電気・電子機器部品に
好適な強度、ばね性および導電性を有するコルソン系銅
合金の、熱間加工時の割れを防止することができるた
め、製品歩留りが向上すると共に、大型鋳造材による製
造が可能となるため、製造能率が大きく向上する。この
ためコルソン系銅合金の製造コストを大幅に低減でき、
使用範囲を拡大できるという工業上顕著な効果が得られ
る。
As described above, according to the present invention, a Corson-based copper alloy having strength, spring property and conductivity suitable for electric and electronic equipment parts such as connectors and lead frames can be produced during hot working. Since cracks can be prevented, the product yield is improved, and manufacturing with a large cast material is possible, so that manufacturing efficiency is greatly improved. For this reason, the production cost of Corson-based copper alloy can be significantly reduced,
An industrially remarkable effect that the range of use can be expanded is obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 661 C22F 1/00 661A 681 681 (72)発明者 吉田 浩一 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (56)参考文献 特開 昭63−130739(JP,A) 特開 平2−290936(JP,A) 特開 昭59−74251(JP,A) 二塚錬成、「銅系リードフレーム材の 開発動向と二、三の問題」、金属、株式 会社アグネ発行、平成元年7月、第59巻 第7号、第77−85頁 (58)調査した分野(Int.Cl.6,DB名) C22C 9/00 - 9/10 C22F 1/08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 661 C22F 1/00 661A 681 681 (72) Inventor Koichi Yoshida 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Kogyo Co., Ltd. (56) References JP-A-63-130739 (JP, A) JP-A-2-290936 (JP, A) JP-A-59-74251 (JP, A) Nittsuka Rensei, “Copper lead frame Materials Development Trends and Some Problems ”, Metals, Agne Co., Ltd., July 1989, Vol. 59, No. 7, pp. 77-85 (58) Fields surveyed (Int. Cl. 6 , (DB name) C22C 9/00-9/10 C22F 1/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ni:2.0〜4.0%(重量%、以下同じ)、
Si: 0.4〜1.0%、P:0.01〜0.05%を含み、残部がCuおよび
不可避不純物からなり、鋳造材の結晶粒度が10mm以下で
あることを特徴とする熱間加工性の良好な高強度銅合
金。
1. Ni: 2.0 to 4.0% (% by weight, the same applies hereinafter);
High strength copper with good hot workability, characterized in that Si: 0.4-1.0%, P: 0.01-0.05%, the balance consists of Cu and unavoidable impurities, and the grain size of the cast material is 10 mm or less. alloy.
【請求項2】 Ni:2.0〜4.0%、Si:0.4〜1.0%、P:
0.01〜0.05%、Zn:0.05〜1.0%を含み、残部がCuおよ
び不可避不純物からなり、鋳造材の結晶粒度が10mm以下
であることを特徴とする熱間加工性の良好な高強度銅合
金。
2. Ni: 2.0-4.0%, Si: 0.4-1.0%, P:
A high-strength copper alloy containing 0.01 to 0.05% and Zn: 0.05 to 1.0%, with the balance being Cu and unavoidable impurities, and having a cast material having a grain size of 10 mm or less.
JP40968690A 1990-12-11 1990-12-11 High strength copper alloy with good hot workability Expired - Lifetime JP2892508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40968690A JP2892508B2 (en) 1990-12-11 1990-12-11 High strength copper alloy with good hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40968690A JP2892508B2 (en) 1990-12-11 1990-12-11 High strength copper alloy with good hot workability

Publications (2)

Publication Number Publication Date
JPH04210439A JPH04210439A (en) 1992-07-31
JP2892508B2 true JP2892508B2 (en) 1999-05-17

Family

ID=18518991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40968690A Expired - Lifetime JP2892508B2 (en) 1990-12-11 1990-12-11 High strength copper alloy with good hot workability

Country Status (1)

Country Link
JP (1) JP2892508B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
二塚錬成、「銅系リードフレーム材の開発動向と二、三の問題」、金属、株式会社アグネ発行、平成元年7月、第59巻第7号、第77−85頁

Also Published As

Publication number Publication date
JPH04210439A (en) 1992-07-31

Similar Documents

Publication Publication Date Title
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP6306632B2 (en) Copper alloy for electronic materials
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2012201977A (en) Cu-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP5544316B2 (en) Cu-Co-Si-based alloys, copper products, electronic parts, and connectors
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
JPH06220594A (en) Production of copper alloy for electric parts having good workability
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP2962139B2 (en) Copper alloy with excellent plating properties and conductivity and thin plate or strip made of this copper alloy
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP2892508B2 (en) High strength copper alloy with good hot workability
JP3941308B2 (en) Copper alloy with excellent hot workability
JP2801361B2 (en) High strength copper alloy with good hot workability
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JP6830135B2 (en) Cu-Ni-Co-Si alloy for electronic components
JPH108167A (en) Copper alloy excellent in hot workability
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JPS61288036A (en) Copper alloy for lead frame and its production
JP2000017354A (en) High-tensile copper alloy excellent in hot workability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110226

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12