JP2888266B2 - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JP2888266B2
JP2888266B2 JP4159110A JP15911092A JP2888266B2 JP 2888266 B2 JP2888266 B2 JP 2888266B2 JP 4159110 A JP4159110 A JP 4159110A JP 15911092 A JP15911092 A JP 15911092A JP 2888266 B2 JP2888266 B2 JP 2888266B2
Authority
JP
Japan
Prior art keywords
transfer
charge transfer
transfer device
regions
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4159110A
Other languages
Japanese (ja)
Other versions
JPH065835A (en
Inventor
弘三 織原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4159110A priority Critical patent/JP2888266B2/en
Publication of JPH065835A publication Critical patent/JPH065835A/en
Application granted granted Critical
Publication of JP2888266B2 publication Critical patent/JP2888266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電荷転送装置、特に浮遊
拡散層を有する電荷検出部を備えたCCD電荷転送装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge transfer device, and more particularly to a CCD charge transfer device provided with a charge detection section having a floating diffusion layer.

【0002】[0002]

【従来の技術】図3はCCD電荷転送装置の出力部の平
面構成を示す。4は転送チャネル、5〜9は転送電極、
10,11はバリア領域、12は出力ゲート電極、13
はリセット電極、14は浮遊拡散層、15はリセットド
レイン、16は出力アンプである。以下に出力動作を簡
単に説明する。転送チャネル4を転送されてきた信号電
荷は一定の周期で、所定の電位に固定された出力ゲート
電極12下を通って浮遊拡散層14に転送される。信号
電荷の大小に応じて変化する浮遊拡散層の電位を出力ア
ンプ16によって外部に検出する。信号電荷は電荷転送
と同一の周期で、リセット電極13を導通状態にするこ
とによって、リセットドレイン15に排出されると同時
に基準電位VRDに設定される。
2. Description of the Related Art FIG. 3 shows a plan configuration of an output section of a CCD charge transfer device. 4 is a transfer channel, 5 to 9 are transfer electrodes,
10 and 11 are barrier regions, 12 is an output gate electrode, 13
Is a reset electrode, 14 is a floating diffusion layer, 15 is a reset drain, and 16 is an output amplifier. The output operation will be briefly described below. The signal charge transferred through the transfer channel 4 is transferred to the floating diffusion layer 14 at a constant cycle, under the output gate electrode 12 fixed at a predetermined potential. The output amplifier 16 detects the potential of the floating diffusion layer, which changes according to the magnitude of the signal charge, to the outside. The signal charge is discharged to the reset drain 15 and set to the reference potential V RD at the same time as the charge transfer by turning the reset electrode 13 into a conductive state.

【0003】図4は従来のCCD電荷転送装置における
図3のA−A′に沿った断面構造を示す。1はN型シリ
コン基板、2はPウェル層、3はN型埋込層を示す。図
3と同一の構成要素には同一番号を付している。
FIG. 4 shows a cross-sectional structure taken along line AA 'of FIG. 3 in a conventional CCD charge transfer device. 1 denotes an N-type silicon substrate, 2 denotes a P-well layer, and 3 denotes an N-type buried layer. The same components as those in FIG. 3 are denoted by the same reference numerals.

【0004】[0004]

【発明が解決しようとする課題】図3および図4に示し
たCCD電荷転送装置を2次元イメージセンサの水平シ
フトレジスタに適用する場合には、転送電荷量を確保す
るために転送チャネル幅を20〜30μm程度とするの
が一般的である。一方、浮遊拡散層は検出感度向上のた
めに面積をできるだけ小さくして容量を低減することが
望ましく、その幅は8μm以下程度に設計する。このた
め、出力部付近ではチャネル幅の絞り込みが必要とな
る。
When the CCD charge transfer device shown in FIGS. 3 and 4 is applied to a horizontal shift register of a two-dimensional image sensor, the transfer channel width is set to 20 in order to secure a transfer charge amount. Generally, it is about 30 μm. On the other hand, it is desirable to reduce the capacitance of the floating diffusion layer by reducing the area as much as possible to improve the detection sensitivity, and the width thereof is designed to be about 8 μm or less. Therefore, it is necessary to narrow down the channel width near the output unit.

【0005】また、図4に示すように、通常はPウェル
層2およびN型埋込層3の不純物濃度は転送方向に沿っ
て一定である。
[0005] As shown in FIG. 4, the impurity concentrations of the P-well layer 2 and the N-type buried layer 3 are usually constant along the transfer direction.

【0006】これらのことから、転送チャネルの絞り込
み部分では狭チャネル効果のために転送方向に向かって
電位が浅くなり、特に高速動作が要求される撮像装置で
はこの部分で転送効率が低下して再生画像が著しく劣化
するという問題が生じる。
For these reasons, the potential becomes shallower in the transfer direction due to the narrow channel effect in the narrowed-down portion of the transfer channel. There is a problem that the image is significantly deteriorated.

【0007】本発明の目的は、上述のような従来の欠点
を除去した新しい電荷転送装置を提供することにある。
An object of the present invention is to provide a new charge transfer device which eliminates the above-mentioned conventional disadvantages.

【0008】[0008]

【課題を解決するための手段】本発明によれば、浮遊拡
散層に隣接する転送チャネルの絞り込み部分において、
複数の転送電極直下に形成された埋込みチャネルを構成
する拡散層が、同一導電型で互いに不純物濃度が異なる
少なくとも3つの領域からなり、前記各領域は、領域間
の境界が前記転送電極直下に位置し、かつ電荷の転送方
向に沿って漸次電位が深くなるような不純物分布を有す
る電荷転送装置が得られる。
According to the present invention, in a narrowing portion of a transfer channel adjacent to a floating diffusion layer,
A diffusion layer forming a buried channel formed immediately below the plurality of transfer electrodes includes at least three regions having the same conductivity type and different impurity concentrations, and each of the regions has a boundary between the regions positioned immediately below the transfer electrode. Thus, a charge transfer device having an impurity distribution such that the potential gradually increases in the charge transfer direction can be obtained.

【0009】[0009]

【実施例】図1は本発明による電荷転送装置の第1実施
例を説明するための、図3A−A′に沿った断面構造図
およびN型埋込層の不純物濃度分布を示す模式図であ
る。本実施例では、チャネルの絞り込み部分におけるN
型埋込層が、転送方向に沿って順に不純物濃度が高くな
った3つの領域3,3′,3″で形成されており、チャ
ネル幅が一定の場合には転送方向に沿って電位が深くな
るように設定されている。これにより、チャネル幅の絞
り込みに伴う転送方向に逆らった電位勾配を緩和し、転
送効率を改善することが可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view taken along FIG. 3A-A 'and a schematic view showing an impurity concentration distribution of an N-type buried layer for explaining a first embodiment of a charge transfer device according to the present invention. is there. In the present embodiment, N
The mold buried layer is formed of three regions 3, 3 ', 3 "in which the impurity concentration is sequentially increased along the transfer direction. When the channel width is constant, the potential is deep along the transfer direction. This makes it possible to alleviate the potential gradient against the transfer direction due to the narrowing of the channel width and to improve the transfer efficiency.

【0010】図2は本発明による電荷転送装置の第2実
施例を説明するための、図3A−A′に沿った断面構造
図およびPウェル層の不純物濃度分布を示す模式図であ
る。本実施例では、チャネルの絞り込み部分におけるP
ウェル層が、転送方向に沿って徐々に不純物濃度が低く
なるように形成されており、第1の実施例と同様にチャ
ネル幅が一定の場合には転送方向に沿って電位が深くな
るように設定されている。このため、チャネル幅の絞り
込みに伴う転送方向に逆らった電位勾配を緩和し、転送
効率の向上を図ることが可能となる。
FIG. 2 is a sectional structural view taken along FIG. 3A-A 'and a schematic view showing an impurity concentration distribution of a P-well layer for explaining a second embodiment of the charge transfer device according to the present invention. In this embodiment, P
The well layer is formed so that the impurity concentration gradually decreases along the transfer direction, and as in the first embodiment, when the channel width is constant, the potential becomes deeper along the transfer direction. Is set. Therefore, the potential gradient against the transfer direction due to the narrowing of the channel width can be reduced, and the transfer efficiency can be improved.

【0011】第1実施例においては、N型埋込層が不純
物濃度の異なる3つの領域で形成された例を示したが、
不純物濃度の異なる3つ以上の領域あるいは不純物濃度
が徐々に変化するような領域によって形成することも可
能である。また、第2実施例においては、転送方向に沿
って徐々に不純物濃度が低くなるように形成されたPウ
ェル層の例を示したが、段階的に不純物濃度が変化する
複数の領域で形成することも可能である。さらに、第1
実施例と第2実施例を組み合わせて、N型埋込層および
Pウェル層の両方の不純物濃度を変化させることによっ
ても本発明を実現できる。
In the first embodiment, an example is shown in which the N-type buried layer is formed of three regions having different impurity concentrations.
It is also possible to form the region with three or more regions having different impurity concentrations or a region in which the impurity concentration changes gradually. Further, in the second embodiment, the example of the P well layer formed so that the impurity concentration gradually decreases along the transfer direction has been described, but the P well layer is formed of a plurality of regions where the impurity concentration changes stepwise. It is also possible. Furthermore, the first
The present invention can also be realized by changing the impurity concentrations of both the N-type buried layer and the P-well layer by combining the embodiment with the second embodiment.

【0012】[0012]

【発明の効果】以上述べたように本発明では、浮遊拡散
層に隣接した転送チャネルの絞り込み部分において、転
送方向に沿って電位が深くなるように不純物濃度分布を
設定することにより、狭チャネル効果による転送方向に
逆らった電位勾配を緩和することができるため、従来に
比べて大幅な転送効率の向上を実現し極めて良好な再生
画像を得ることが可能となる。
As described above, according to the present invention, the narrow channel effect is obtained by setting the impurity concentration distribution so that the potential becomes deeper along the transfer direction in the narrowed portion of the transfer channel adjacent to the floating diffusion layer. , The potential gradient opposite to the transfer direction can be reduced, so that the transfer efficiency can be greatly improved as compared with the related art, and an extremely excellent reproduced image can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示すCCD電荷転送装置
の断面構造図およびN型埋込層の不純物濃度分布の模式
図である。
FIG. 1 is a cross-sectional structural view of a CCD charge transfer device and a schematic diagram of an impurity concentration distribution of an N-type buried layer according to a first embodiment of the present invention.

【図2】本発明の第2実施例を示すCCD電荷転送装置
の断面構造図およびPウェル層の不純物濃度分布の模式
図である。
FIG. 2 is a sectional view of a CCD charge transfer device according to a second embodiment of the present invention and a schematic diagram of an impurity concentration distribution in a P-well layer.

【図3】CCD電荷転送装置の出力部の平面構成図であ
る。
FIG. 3 is a plan view of an output section of the CCD charge transfer device.

【図4】従来例を示すCCD電荷転送装置の断面構造図
である。
FIG. 4 is a sectional structural view of a CCD charge transfer device showing a conventional example.

【符号の説明】[Explanation of symbols]

1 N型シリコン基板 2 Pウェル層 3,3′,3″ N型埋込層 4 転送チャネル 5〜9 転送電極 10,11 バリア領域 12 出力ゲート電極 13 リセット電極 14 浮遊拡散層 15 リセットドレイン 16 出力アンプ REFERENCE SIGNS LIST 1 N-type silicon substrate 2 P-well layer 3, 3 ′, 3 ″ N-type buried layer 4 transfer channel 5 to 9 transfer electrode 10, 11 barrier region 12 output gate electrode 13 reset electrode 14 floating diffusion layer 15 reset drain 16 output Amplifier

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/339 H01L 27/14 - 27/148 H01L 29/762 - 29/768 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/339 H01L 27/14-27/148 H01L 29/762-29/768

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 浮遊拡散層に隣接する転送チャネルの絞
り込み部分において、複数の転送電極直下に形成された
埋込みチャネルを構成する拡散層が、同一導電型で互い
に不純物濃度が異なる少なくとも3つの領域からなり、
前記各領域は、領域間の境界が前記転送電極直下に位置
し、かつ電荷の転送方向に沿って漸次電位が深くなるよ
うな不純物分布を有することを特徴とする電荷転送装
置。
In a narrowed portion of a transfer channel adjacent to a floating diffusion layer, a diffusion layer forming a buried channel formed immediately below a plurality of transfer electrodes is formed of at least three regions having the same conductivity type and different impurity concentrations from each other. Become
The charge transfer device according to claim 1, wherein each of the regions has an impurity distribution such that a boundary between the regions is located immediately below the transfer electrode, and the potential gradually increases in the charge transfer direction.
JP4159110A 1992-06-18 1992-06-18 Charge transfer device Expired - Fee Related JP2888266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4159110A JP2888266B2 (en) 1992-06-18 1992-06-18 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4159110A JP2888266B2 (en) 1992-06-18 1992-06-18 Charge transfer device

Publications (2)

Publication Number Publication Date
JPH065835A JPH065835A (en) 1994-01-14
JP2888266B2 true JP2888266B2 (en) 1999-05-10

Family

ID=15686465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4159110A Expired - Fee Related JP2888266B2 (en) 1992-06-18 1992-06-18 Charge transfer device

Country Status (1)

Country Link
JP (1) JP2888266B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2723063B2 (en) * 1994-12-26 1998-03-09 日本電気株式会社 Charge transfer device
JP4981255B2 (en) * 2005-01-24 2012-07-18 オンセミコンダクター・トレーディング・リミテッド Charge coupled device and solid-state imaging device

Also Published As

Publication number Publication date
JPH065835A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
US4518978A (en) Solid state image sensor
GB1394520A (en) Charge coupled device area imaging array
US4087832A (en) Two-phase charge coupled device structure
US6693671B1 (en) Fast-dump structure for full-frame image sensors with lod antiblooming structures
JP2888266B2 (en) Charge transfer device
JPH02211640A (en) Charge transfer device
JPH055179B2 (en)
US5844234A (en) Amplification type solid-state imaging device having a center of the source region displaced from a pixel center
JPS63310172A (en) Charge transfer device
US4086609A (en) Double split-electrode for charge transfer device
JPH01251756A (en) Charge-coupled device
JP3006022B2 (en) Solid-state imaging device
JPS6365668A (en) Solid-state image sensor
JP3108696B2 (en) Method for manufacturing charge-coupled image sensor device
CA1080355A (en) Double split-electrode for charge transfer device
JPS5965470A (en) Output structure of charge coupled device
JP2611634B2 (en) Charge transfer element
JPS63140574A (en) Charge-coupled device
JPH0682823B2 (en) Solid-state imaging device
JP3152920B2 (en) Charge transfer device and method of manufacturing the same
JPH0760895B2 (en) Charge coupled device and driving method thereof
JPS63313862A (en) Charge transfer device
JPH079982B2 (en) Charge transfer device
JPS62260362A (en) Solid-state image pickup device
JPH01300561A (en) Charge-coupled device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990120

LAPS Cancellation because of no payment of annual fees