JP2883952B2 - Micro probe access device - Google Patents
Micro probe access deviceInfo
- Publication number
- JP2883952B2 JP2883952B2 JP26746795A JP26746795A JP2883952B2 JP 2883952 B2 JP2883952 B2 JP 2883952B2 JP 26746795 A JP26746795 A JP 26746795A JP 26746795 A JP26746795 A JP 26746795A JP 2883952 B2 JP2883952 B2 JP 2883952B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- micro
- sample
- access device
- microprobe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【発明の属する技術分野】本発明は、走査プローブ顕微
鏡(SPM) 及微細領域加工装置のセンサーおよび加工針で
ある微小のプローブを破損することなしに、試料最表面
まで接近させる微小プローブ接近装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope (SPM) and a microprobe approaching device for approaching the surface of a sample without damaging a microprobe serving as a sensor and a processing needle of a microregion processing device. Things.
【0002】[0002]
【従来技術】SPMの探針を試料面に接近させ、試料の形
状及さまざま物理量(電位、磁気、摩擦、静電容量、
等)を測定するためには、試料表面と探針間の距離をÅ
程度の精度で制御する必要がある。一方試料の交換及試
料と探針間の位置合わせ等の作業には、試料と探針間の
距離が数mm以上あるのが望ましい。従って短時間で探針
を測定領域に入れるためには、試料表面と探針間の距離
が離れている時は高速で接近させ、両者の距離が近ずく
と低速に切り替え試料面最近傍まで接近させる。この高
速から低速への切り替え点の検出は、たとえば特開平6-
74754 の特許にあるように、試料と探針間に働く長距離
力(カンチレバーの振動振幅が空気抵抗により試料面に
近ずくと減衰する)を検出して速度の切り替えを行って
も良い。又特開平03-040355 にあるように光学顕微鏡を
備えた装置の場合対物レンズの焦点距離をもちいて計測
し、速度切り替え点を求めてもよい。しかしいずれのz
粗動系も、駆動系にモーターとネジあるいはテコ等の縮
小系を採用しており、1 ステップあたりの移動量を5nm
程度にしている。これでも最後の1 ステップは、試料表
面と探針間の距離をÅ程度の精度で制御するには大き
く、試料と探針の衝突を防ぐためには、試料台の下のピ
エゾ素子を含めたz サーボ系をアクティブにしておきz
粗動駆動系が停止するまでの数nmの距離だけ試料台を動
かす。このときz サーボ系の移動速度の方が、モーター
の1 ステップの立ち上がりより早い必要がある。またz
粗動駆動系の終点検出は、カンチレバーの振動振幅の減
衰量または、探針が試料に接触する場合はカンチレバー
のそり量を検出することにより行なう。2. Description of the Related Art An SPM probe is brought close to a sample surface, and the shape and various physical quantities (electric potential, magnetism, friction, capacitance,
), The distance between the sample surface and the probe must be
It is necessary to control with a degree of accuracy. On the other hand, it is desirable that the distance between the sample and the probe is several mm or more for operations such as sample replacement and alignment between the sample and the probe. Therefore, in order to put the probe into the measurement area in a short time, when the distance between the sample surface and the probe is large, the probe should be approached at high speed, and when the distance between them is short, switch to low speed and approach the sample surface nearest. Let it. The detection of the switching point from the high speed to the low speed is performed by, for example,
As disclosed in the patent of 74754, the speed may be switched by detecting a long-range force acting between the sample and the probe (the vibration amplitude of the cantilever attenuates as it approaches the sample surface due to air resistance). In the case of an apparatus having an optical microscope as disclosed in Japanese Patent Application Laid-Open No. 03-040355, measurement may be performed using the focal length of the objective lens to determine the speed switching point. But any z
The coarse movement system also uses a motor and a reduction system such as a screw or lever for the drive system, and the movement amount per step is 5 nm.
About. Even in this case, the last step is large to control the distance between the sample surface and the probe with an accuracy of about Å, and to prevent collision between the sample and the probe, z Activate the servo system z
The sample stage is moved by a distance of several nm until the coarse drive system stops. At this time, the moving speed of the z servo system needs to be faster than the start of one step of the motor. Also z
The end point detection of the coarse drive system is performed by detecting the amount of attenuation of the vibration amplitude of the cantilever or the amount of warpage of the cantilever when the probe contacts the sample.
【0003】[0003]
【発明が解決しようとする課題】本発明は、走査プロー
ブ顕微鏡のz 粗動に関するものである。特にz 駆動機構
の送り量を無段階で調節でき、探針を破壊することなし
に試料表面と探針間の距離を数mmから数Åの距離に接近
させることが可能になる。SUMMARY OF THE INVENTION The present invention relates to z-coarse movement of a scanning probe microscope. In particular, the feed amount of the z-drive mechanism can be adjusted steplessly, and the distance between the sample surface and the probe can be reduced from several mm to several mm without breaking the probe.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
に本願発明は、微小プローブを有し、このプローブを数
mmから数Åの距離に近接させ試料表面の形状およびさま
ざま物理量(電位、磁気、摩擦、静電容量、等)を測定
する走査プローブ顕微鏡または前記微小プローブを試料
表面に近接させ試料表面を加工する微小領域加工機の微
小プローブ接近装置において、前記試料と前記微小プロ
ーブとを近接させるのに前記試料またはプローブを支持
する軸を動かす電磁的な直動の力発生機構(たとえばボ
イスコイルモーター等)を有しこの力伝達部にダンパー
機構および直動用の軸受けを有することを特徴とする。In order to solve the above-mentioned problems, the present invention has a small probe, and has a small number of probes.
A scanning probe microscope that measures the shape and various physical quantities (electric potential, magnetism, friction, capacitance, etc.) of the sample surface by approaching a distance of several mm from the mm, or a microprobe close to the sample surface to process the sample surface In the micro-probe approaching device of the micro-area processing machine, an electromagnetic direct-acting force generating mechanism (for example, a voice coil motor or the like) for moving an axis supporting the sample or the probe to bring the sample and the micro-probe close to each other is provided. The force transmitting portion has a damper mechanism and a bearing for linear motion.
【0005】[0005]
【発明の実施の形態】図1 に本願発明における微小プロ
ーブ接近装置の構成をしめす。試料をz 方向に動かす、
z 粗動系は、力発生部(101 )力伝達部(61)ダンパー
部(81)が駆動要素であり、端部に探針( 微小プロー
ブ) を有する変位センサーであるカンチレバー(2 )と
変位検出機構(1 )及変位検出器コントローラー(131
)は、駆動機構の送り速度の切り替え点及終点の検出
を行い、力発生部コントローラー(111 )の制御を行
う。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of a microprobe access device according to the present invention. Move the sample in the z direction,
z In the coarse motion system, the cantilever (2), which is a displacement sensor having a force generation unit (101), a force transmission unit (61), a damper unit (81) as a driving element, and a probe (micro probe) at the end, and a displacement Detection mechanism (1) and displacement detector controller (131
) Detects the switching point and the end point of the feed speed of the drive mechanism, and controls the force generator controller (111).
【0006】[0006]
【実施例】図2 にz 粗動系の具体例をしめす。構成は、
試料(4 )の下に、試料(4 )をxyz に走査するxyz 微
動機構(5 )たとえばヒエゾスキャナーを用いた3 次元
スキャナーがある。その下に試料を上下するスピンドル
(6 )とダンパーハウジング(7 )と粘弾性体(8 )で
ダンパーを構成している。スピンドル(6 )はダンパー
ハウジングの上下2箇所に配された直動用スピンドル軸
受け(16)により(例えば図4に示すような軸受けやス
ピンドルを使う)z 方向のみの移動に規制され下部に
は、コイル(9 )が巻かれており磁石(10)とともにス
ピーカー等で使われているボイスコイルモーターを形成
している。図4(a)は図2におけるA−A’断面図で
スピンドル6がダンパーハウジング7の上下部分に設け
られたスピンドル軸受け16とスピンドルに設けられた
凹部と噛み合う状況を示す。図4(b)はスピンドル6
が軸受け16と噛み合う部分のスピンドル6の角柱形状
部分を示す斜視図である。コイル(9 )には、定電流源
(11)が取り付けられておりコイル電流コントローラー
(12)により制御される。試料(4 )の上には、変位セ
ンサーとしてカンチレバー(2 )とカンチレバー励振用
ピエゾ(3 )が有り、カンチレバー端部には微小プロー
ブ( 探針) が設けられている。カンチレバーの変位検出
器(1 )及変位検出器コントローラーである終点検出器
(13)により、レバーの変位を検出している。FIG. 2 shows a specific example of the z-coarse motion system. The configuration is
Below the sample (4), there is an xyz fine movement mechanism (5) for scanning the sample (4) in xyz, for example, a three-dimensional scanner using a piezo scanner. A damper is constituted by a spindle (6) for raising and lowering the sample, a damper housing (7), and a viscoelastic body (8) thereunder. The spindle (6) is restricted to movement only in the z-direction (for example, using a bearing or a spindle as shown in FIG. 4) by direct-acting spindle bearings (16) arranged at two positions above and below the damper housing. (9) is wound and forms a voice coil motor used in speakers etc. together with the magnet (10). FIG. 4A is a sectional view taken along the line AA ′ in FIG. 2 and shows a situation where the spindle 6 meshes with a spindle bearing 16 provided on the upper and lower portions of the damper housing 7 and a concave portion provided on the spindle. FIG. 4 (b) shows the spindle 6
FIG. 4 is a perspective view showing a prism-shaped portion of the spindle 6 at a portion where the spindle 6 meshes with the bearing 16. A constant current source (11) is attached to the coil (9) and is controlled by a coil current controller (12). On the sample (4), there are a cantilever (2) as a displacement sensor and a piezo (3) for cantilever excitation, and a micro probe (probe) is provided at the end of the cantilever. The displacement of the lever is detected by the cantilever displacement detector (1) and the end point detector (13) which is a displacement detector controller.
【0007】次にz 粗動系の動作を示す。最初試料表面
と探針間の距離が離れている時、定電流源(11)より電
流I0をコイル(9 )に流す。永久磁石(10)の磁界と電
流I0により、スピンドル(6 )を上下する方向に力F0が
発生する。この力F0の大きさは、粘弾性体(8 )の弾性
限界応力(σS )を越えるようにセットしこの力を取り
去った後も歪量εI0= ε0-εs が残る。(図3参照)こ
の力F0によって、ダンパーハウジング(7 )内の粘弾性
体(8 )の粘性抵抗を受けながらスピンドル(6 )は、
振動することなしに微少量εI0だけ移動する。ここで粘
弾性体(8 )の粘性抵抗を大きくしスピンドル(6 )を
微少振動させずに移動させることは、探針が試料表面と
衝突しないために重要である。今までの駆動系のパルス
モーター等は、ダンパー等の減衰機構がなく駆動時に微
少振動が発生しやすかった。つぎに試料表面と探針間の
距離がある距離以内に近ずいた時(この検出は、前記の
特開平6-74754 、特開平03-040355 の方法による。)定
電流源(11)よりの電流をI1に変え力F1を発生させる。
このときの歪量は、εI1= ε1-εs となる。従って電流
をI0からI1へ連続的に変化させることにより歪量を連続
的に可変できる。この点は、パルスモーター駆動のz 粗
動系と異なり送り量の刻みを細かく設定できる。Next, the operation of the z coarse movement system will be described. At first, when the distance between the sample surface and the probe is large, a current I0 flows from the constant current source (11) to the coil (9). Due to the magnetic field of the permanent magnet (10) and the current I0, a force F0 is generated in the direction in which the spindle (6) moves up and down. The magnitude of the force F0 is set so as to exceed the elastic limit stress (σS) of the viscoelastic body (8), and the strain εI0 = ε0−εs remains even after removing this force. (See FIG. 3) By this force F0, the spindle (6) receives the viscous resistance of the viscoelastic body (8) in the damper housing (7),
It moves by a very small amount εI0 without vibrating. Here, it is important to increase the viscous resistance of the viscoelastic body (8) and move the spindle (6) without causing slight vibration, so that the probe does not collide with the sample surface. Conventional drive system pulse motors and the like have no damping mechanism such as a damper and tend to generate minute vibrations when driven. Next, when the distance between the sample surface and the probe approaches a certain distance (this detection is based on the methods described in JP-A-6-74754 and JP-A-03-040355). The current is changed to I1 to generate a force F1.
The strain amount at this time is εI1 = ε1-εs. Therefore, the amount of distortion can be continuously varied by continuously changing the current from I0 to I1. In this point, the increment of the feed amount can be set finely unlike the z-coarse movement system driven by the pulse motor.
【0008】z 粗動の終点検出信号が終点検出器(13)
より発生し力F1が取り去られたとき、スピンドル(6 )
は、およそεs だけ引き戻され、試料表面と探針間の距
離が離れる方向すなわち探針20が試料表面と接触しない
方向に動く。この移動量が大きく試料表面と探針間の距
離が離れ過ぎたときは、z サーボ系をアクティブにして
おきx,y,z 微動機構5 のピエゾスキャナーを伸ばし移動
量εs をキャンセルする。[0008] The end point detection signal of the coarse movement is detected by the end point detector (13).
When the generated force F1 is removed, the spindle (6)
Is pulled back by about εs, and moves in a direction in which the distance between the sample surface and the probe increases, that is, in a direction in which the probe 20 does not contact the sample surface. When the movement amount is large and the distance between the sample surface and the probe is too large, the z servo system is activated and the piezo scanner of the x, y, z fine movement mechanism 5 is extended to cancel the movement amount εs.
【0009】また粘弾性体(8 )の弾性限界をさげ(3
図のεs を小さくしたり)また粘性抵抗を下げるために
ダンパーハウジングの外側に温度可変用ヒーター(14)
を設置し単位力当たりのz 粗動の移動速度を可変でき
る。またヒータ温度を制御して粘弾性体(8 )の粘弾性
を安定化できる。Further, the elastic limit of the viscoelastic body (8) is lowered (3
Heater (14) outside the damper housing to reduce the εs in the figure
Can be installed to change the moving speed of z coarse movement per unit force. Further, the viscoelasticity of the viscoelastic body (8) can be stabilized by controlling the heater temperature.
【0010】また粘弾性体とヒーターの組み合わせによ
るダンパーと同様の効果は、電磁流体を前記ダンパー部
に充填しダンパーの内側に電極を配した構成でも実現可
能である。電極に外部より電圧を印加し電磁流体の弾性
および粘性を可変できる。The same effect as that of a damper by a combination of a viscoelastic body and a heater can also be realized by a structure in which an electromagnetic fluid is filled in the damper portion and electrodes are arranged inside the damper. By applying a voltage to the electrodes from the outside, the elasticity and viscosity of the electromagnetic fluid can be varied.
【0011】[0011]
【発明の効果】前記の機構によりz 粗動の送り量をコイ
ルに流す電流を調節するだけで小さく設定でき、あわせ
て粘弾性体の大きな粘性抵抗ににより移動軸が振動する
ことなしに測定領域に移動できるため、探針が試料面に
衝突することを回避できる。またダンパー部に取り付け
られた温度可変機構により、粘弾性体の粘性抵抗を可変
できをz 軸の移動時の単位力当たりの移動速度を可変で
き、z 粗動の時間を短縮できる。According to the above mechanism, the feed amount of the z-coarse movement can be set small only by adjusting the current flowing through the coil, and at the same time, the moving axis does not vibrate due to the large viscous resistance of the viscoelastic body. Therefore, the probe can be prevented from colliding with the sample surface. Further, the viscous resistance of the viscoelastic body can be varied by the temperature variable mechanism attached to the damper portion, and the moving speed per unit force during the movement of the z-axis can be varied, so that the time of z coarse movement can be reduced.
【図1】z 粗動系の概念図である。FIG. 1 is a conceptual diagram of a z-coarse motion system.
【図2】粘弾性体を用いたz 粗動系の実施例である。FIG. 2 is an embodiment of a z-coarse movement system using a viscoelastic body.
【図3】粘弾性体の応力ー歪の関係を示す模式図であ
る。FIG. 3 is a schematic diagram showing a stress-strain relationship of a viscoelastic body.
【図4】直動用スピンドル軸受けを示す図である。FIG. 4 is a view showing a linear motion spindle bearing.
1 変位検出器 2 カンチレバー 6 スピンドル 8 粘弾性体 9 コイル 10 磁石 DESCRIPTION OF SYMBOLS 1 Displacement detector 2 Cantilever 6 Spindle 8 Viscoelastic body 9 Coil 10 Magnet
Claims (4)
mmから数Åの距離に近接させ試料表面の形状およびさま
ざま物理量(電位、磁気、摩擦、静電容量、等)を測定
する走査プローブ顕微鏡または前記微小プローブを試料
表面に近接させ試料表面を加工する微小領域加工機の微
小プローブ接近装置において、前記試料と前記微小プロ
ーブとを近接させるのに前記試料またはプローブを支持
する軸を動かす電磁的な直動の力発生機構(たとえばボ
イスコイルモーター等)を有しこの力伝達部にダンパー
機構および直動用の軸受けを有することを特徴とする微
小プローブ接近装置。Claims 1. A micro probe having a small number of probes
A scanning probe microscope that measures the shape and various physical quantities (electric potential, magnetism, friction, capacitance, etc.) of the sample surface by approaching a distance of several mm from the mm, or a microprobe close to the sample surface to process the sample surface In the micro-probe approaching device of the micro-area processing machine, an electromagnetic direct-acting force generating mechanism (for example, a voice coil motor or the like) for moving an axis supporting the sample or the probe to bring the sample and the micro-probe close to each other is provided. A micro-probe access device, characterized in that the force transmitting section has a damper mechanism and a bearing for direct movement.
性体(たとえばシリコン系のゴム類)を充填することを
特徴とする微小プローブ接近装置。2. The microprobe access device according to claim 1, wherein the damper portion is filled with a viscoelastic body (for example, silicone rubber).
のための機構(たとえばヒーターと温度コントローラ
ー)を付加し粘弾性体の粘弾性を可変または、安定化さ
せることを特徴とする微小プローブ接近装置。3. The microprobe access device according to claim 2, wherein a mechanism (for example, a heater and a temperature controller) for changing the temperature is added to the damper unit to change or stabilize the viscoelasticity of the viscoelastic body. .
を充填すると共に電極を取り付けて外部から電界を印加
し、電磁流体の粘弾性を可変または、安定化させること
を特徴とする微小プローブ接近装置。4. The microprobe access device according to claim 2, wherein the damper portion is filled with an electromagnetic fluid and an electrode is attached to apply an electric field from the outside to change or stabilize the viscoelasticity of the electromagnetic fluid. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26746795A JP2883952B2 (en) | 1995-10-16 | 1995-10-16 | Micro probe access device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26746795A JP2883952B2 (en) | 1995-10-16 | 1995-10-16 | Micro probe access device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09113519A JPH09113519A (en) | 1997-05-02 |
JP2883952B2 true JP2883952B2 (en) | 1999-04-19 |
Family
ID=17445253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26746795A Expired - Fee Related JP2883952B2 (en) | 1995-10-16 | 1995-10-16 | Micro probe access device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2883952B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3506867B2 (en) | 1997-02-07 | 2004-03-15 | セイコーインスツルメンツ株式会社 | Probe scanning device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0807799B1 (en) * | 1996-05-13 | 2002-10-09 | Seiko Instruments Inc. | Probe Scanning Apparatus |
CN105510636B (en) * | 2014-09-24 | 2018-06-26 | 中国科学院宁波材料技术与工程研究所 | A kind of nano magnetic-electric-thermal many reference amounts coupling in-situ detecting system and its detection method |
CN106841689A (en) * | 2017-03-27 | 2017-06-13 | 贵州大学 | Make the probe rod vibration absorber and method of tunneling scanning microscope probe equipment |
GB2626604A (en) * | 2023-01-30 | 2024-07-31 | Lig Nanowise Ltd | Sample support system |
-
1995
- 1995-10-16 JP JP26746795A patent/JP2883952B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3506867B2 (en) | 1997-02-07 | 2004-03-15 | セイコーインスツルメンツ株式会社 | Probe scanning device |
Also Published As
Publication number | Publication date |
---|---|
JPH09113519A (en) | 1997-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6323483B1 (en) | High bandwidth recoiless microactuator | |
US6604295B2 (en) | Microscopic geometry measuring device | |
KR100255578B1 (en) | Fine positioning apparatus with atomic resolution | |
USRE33387E (en) | Atomic force microscope and method for imaging surfaces with atomic resolution | |
US4724318A (en) | Atomic force microscope and method for imaging surfaces with atomic resolution | |
EP0574234B1 (en) | Automatic tip approach method and apparatus for scanning probe microscope | |
KR20060033798A (en) | Probe for an atomic force microscope | |
JP2883952B2 (en) | Micro probe access device | |
JP2003302579A (en) | Sample stage and microscope or measuring instrument using the same | |
JP3390318B2 (en) | Micro positioning mechanism, scanning probe microscope and micro area processing machine using the same | |
JP3179380B2 (en) | Scanning probe microscope | |
JPH09264897A (en) | Scanning probe microscope | |
JP3128512B2 (en) | Probe scanning device | |
JP3106239B2 (en) | Probe scanning device | |
JPH1010140A (en) | Scanning probe microscope | |
KR100527967B1 (en) | Probe scanning device | |
JP2000346779A (en) | Scanning probe microscope | |
JP3588701B2 (en) | Scanning probe microscope and its measuring method | |
JPH10232240A (en) | Surface observing device | |
JPS63154961A (en) | Focus adjustment device for cryogenic ultrasonic microscope | |
JP2009276318A (en) | Stage scanner and scanning probe microscope | |
JP2002154100A (en) | Fine processing device and fine processing method | |
JPH03146801A (en) | Coarse adjustment mechanism for piezodriven probe unit | |
JP2000346778A (en) | Probe scanning apparatus | |
JPH04348204A (en) | Scanning probe apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090212 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090212 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100212 |
|
LAPS | Cancellation because of no payment of annual fees |