JPH09113519A - Very small probe approaching device - Google Patents

Very small probe approaching device

Info

Publication number
JPH09113519A
JPH09113519A JP26746795A JP26746795A JPH09113519A JP H09113519 A JPH09113519 A JP H09113519A JP 26746795 A JP26746795 A JP 26746795A JP 26746795 A JP26746795 A JP 26746795A JP H09113519 A JPH09113519 A JP H09113519A
Authority
JP
Japan
Prior art keywords
probe
sample
microprobe
sample surface
approaching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26746795A
Other languages
Japanese (ja)
Other versions
JP2883952B2 (en
Inventor
Masatoshi Yasutake
正敏 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP26746795A priority Critical patent/JP2883952B2/en
Publication of JPH09113519A publication Critical patent/JPH09113519A/en
Application granted granted Critical
Publication of JP2883952B2 publication Critical patent/JP2883952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To bring the distance between the surface of the sample and a probe close to the distance of several mm to several Å without breaking the probe by continuously adjusting the feeding amount of a Z-driving mechanism in a scanning probe microscope and a very small probe machine. SOLUTION: A small probe approaching device is provided with a magnetic directly-driven force generating part 101 (e.g. a voice coil motor) to drive a canti-lever 2 or a shaft to support the sample, and a damper part 81 is provided on a force transmitting part 61. In the damper part 81, a heater is fitted, the visco-elastic body (e.g. silicone rubber) is filled internally, the electromagnetic fluid is filled, an electrode is fitted, and the electric field is applied from the outside to vary or stabilize the visco-elasticity of the visco-elastic body or the electromagnetic fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、走査プローブ顕微
鏡(SPM) 及微細領域加工装置のセンサーおよび加工針で
ある微小のプローブを破損することなしに、試料最表面
まで接近させる微小プローブ接近装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope (SPM) and a microprobe approaching device for approaching the outermost surface of a sample without damaging a microprobe which is a sensor and a working needle of a fine area working device. It is a thing.

【0002】[0002]

【従来技術】SPMの探針を試料面に接近させ、試料の形
状及さまざま物理量(電位、磁気、摩擦、静電容量、
等)を測定するためには、試料表面と探針間の距離をÅ
程度の精度で制御する必要がある。一方試料の交換及試
料と探針間の位置合わせ等の作業には、試料と探針間の
距離が数mm以上あるのが望ましい。従って短時間で探針
を測定領域に入れるためには、試料表面と探針間の距離
が離れている時は高速で接近させ、両者の距離が近ずく
と低速に切り替え試料面最近傍まで接近させる。この高
速から低速への切り替え点の検出は、たとえば特開平6-
74754 の特許にあるように、試料と探針間に働く長距離
力(カンチレバーの振動振幅が空気抵抗により試料面に
近ずくと減衰する)を検出して速度の切り替えを行って
も良い。又特開平03-040355 にあるように光学顕微鏡を
備えた装置の場合対物レンズの焦点距離をもちいて計測
し、速度切り替え点を求めてもよい。しかしいずれのz
粗動系も、駆動系にモーターとネジあるいはテコ等の縮
小系を採用しており、1 ステップあたりの移動量を5nm
程度にしている。これでも最後の1 ステップは、試料表
面と探針間の距離をÅ程度の精度で制御するには大き
く、試料と探針の衝突を防ぐためには、試料台の下のピ
エゾ素子を含めたz サーボ系をアクティブにしておきz
粗動駆動系が停止するまでの数nmの距離だけ試料台を動
かす。このときz サーボ系の移動速度の方が、モーター
の1 ステップの立ち上がりより早い必要がある。またz
粗動駆動系の終点検出は、カンチレバーの振動振幅の減
衰量または、探針が試料に接触する場合はカンチレバー
のそり量を検出することにより行なう。
2. Description of the Related Art The probe of SPM is brought close to the sample surface, and the shape and various physical quantities of the sample (electric potential, magnetism, friction, capacitance,
Etc.), the distance between the sample surface and the probe should be Å
It is necessary to control with a degree of accuracy. On the other hand, it is desirable that the distance between the sample and the probe is several mm or more for operations such as replacement of the sample and alignment between the sample and the probe. Therefore, in order to put the probe into the measurement area in a short time, when the distance between the sample surface and the probe is distant, the probe approaches at high speed, and when the distance between them decreases, it switches to low speed and approaches to the nearest sample surface Let This switching point from high speed to low speed is detected, for example, by Japanese Patent Laid-Open No.
As in the patent of 74754, the long range force acting between the sample and the probe (the vibration amplitude of the cantilever is attenuated as it approaches the sample surface due to air resistance) may be used to switch the speed. In the case of a device equipped with an optical microscope as disclosed in Japanese Patent Laid-Open No. 03-040355, the focal length of the objective lens may be used for measurement to obtain the speed switching point. But any z
The coarse motion system also uses a motor and a reduction system such as a screw or lever for the drive system, and the amount of movement per step is 5 nm.
It is about. Even in this case, the last step is large to control the distance between the sample surface and the probe with an accuracy of about Å.To prevent the sample from colliding with the probe, the piezo element under the sample stage is included. Keep the servo system active z
The sample stage is moved by a distance of several nm until the coarse drive system stops. At this time, the moving speed of the z servo system must be faster than the one step rise of the motor. Also z
The detection of the end point of the coarse motion drive system is performed by detecting the amount of attenuation of the vibration amplitude of the cantilever or the amount of warp of the cantilever when the probe contacts the sample.

【0003】[0003]

【発明が解決しようとする課題】本発明は、走査プロー
ブ顕微鏡のz 粗動に関するものである。特にz 駆動機構
の送り量を無段階で調節でき、探針を破壊することなし
に試料表面と探針間の距離を数mmから数Åの距離に接近
させることが可能になる。
The present invention relates to z coarse motion of scanning probe microscopes. In particular, the feed amount of the z drive mechanism can be adjusted steplessly, and the distance between the sample surface and the probe can be approached from several mm to several Å without breaking the probe.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本願発明は、微小プローブを有し、このプローブを数
mmから数Åの距離に近接させ試料表面の形状およびさま
ざま物理量(電位、磁気、摩擦、静電容量、等)を測定
する走査プローブ顕微鏡または前記微小プローブを試料
表面に近接させ試料表面を加工する微小領域加工機の微
小プローブ接近装置において、前記試料と前記微小プロ
ーブとを近接させるのに前記試料またはプローブを支持
する軸を動かす電磁的な直動の力発生機構(たとえばボ
イスコイルモーター等)を有しこの力伝達部にダンパー
機構および直動用の軸受けを有することを特徴とする。
In order to solve the above-mentioned problems, the present invention has a minute probe,
The sample surface is processed by bringing a scanning probe microscope that measures the shape and various physical quantities (electric potential, magnetism, friction, capacitance, etc.) of the sample surface close to the sample surface from mm to a few Å or close the sample surface to the sample surface. In a microprobe approaching device of a microregion processing machine, an electromagnetic direct-acting force generating mechanism (for example, a voice coil motor) that moves an axis that supports the sample or the probe to bring the sample and the microprobe into close proximity is provided. The force transmitting portion has a damper mechanism and a linear motion bearing.

【0005】[0005]

【発明の実施の形態】図1 に本願発明における微小プロ
ーブ接近装置の構成をしめす。試料をz 方向に動かす、
z 粗動系は、力発生部(101 )力伝達部(61)ダンパー
部(81)が駆動要素であり、端部に探針( 微小プロー
ブ) を有する変位センサーであるカンチレバー(2 )と
変位検出機構(1 )及変位検出器コントローラー(131
)は、駆動機構の送り速度の切り替え点及終点の検出
を行い、力発生部コントローラー(111 )の制御を行
う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of a microprobe approaching device according to the present invention. Move the sample in the z direction,
z In the coarse movement system, the force generating part (101), the force transmitting part (61) and the damper part (81) are the driving elements, and the displacement cantilever (2) which is a displacement sensor having a probe (micro probe) at the end is displaced. Detection mechanism (1) and displacement detector controller (131
) Detects the switching point and the end point of the feed rate of the drive mechanism, and controls the force generator controller (111).

【0006】[0006]

【実施例】図2 にz 粗動系の具体例をしめす。構成は、
試料(4 )の下に、試料(4 )をxyz に走査するxyz 微
動機構(5 )たとえばヒエゾスキャナーを用いた3 次元
スキャナーがある。その下に試料を上下するスピンドル
(6 )とダンパーハウジング(7 )と粘弾性体(8 )で
ダンパーを構成している。スピンドル(6 )はダンパー
ハウジングの上下2箇所に配された直動用スピンドル軸
受け(16)により(例えば図4に示すような軸受けやス
ピンドルを使う)z 方向のみの移動に規制され下部に
は、コイル(9 )が巻かれており磁石(10)とともにス
ピーカー等で使われているボイスコイルモーターを形成
している。図4(a)は図2におけるA−A’断面図で
スピンドル6がダンパーハウジング7の上下部分に設け
られたスピンドル軸受け16とスピンドルに設けられた
凹部と噛み合う状況を示す。図4(b)はスピンドル6
が軸受け16と噛み合う部分のスピンドル6の角柱形状
部分を示す斜視図である。コイル(9 )には、定電流源
(11)が取り付けられておりコイル電流コントローラー
(12)により制御される。試料(4 )の上には、変位セ
ンサーとしてカンチレバー(2 )とカンチレバー励振用
ピエゾ(3 )が有り、カンチレバー端部には微小プロー
ブ( 探針) が設けられている。カンチレバーの変位検出
器(1 )及変位検出器コントローラーである終点検出器
(13)により、レバーの変位を検出している。
[Example] Fig. 2 shows a specific example of the z coarse movement system. The configuration is
Below the sample (4) is the xyz fine movement mechanism (5) that scans the sample (4) in xyz, for example a three-dimensional scanner using a piezo scanner. Below that, a damper is composed of a spindle (6) for moving the sample up and down, a damper housing (7) and a viscoelastic body (8). The spindle (6) is restricted to move in the z direction only (for example, by using a bearing or spindle as shown in Fig. 4) by the direct-acting spindle bearings (16) arranged at the upper and lower parts of the damper housing, and the coil is placed at the bottom. (9) is wound to form a voice coil motor used in speakers etc. together with the magnet (10). FIG. 4A is a sectional view taken along the line AA ′ in FIG. 2 and shows a situation in which the spindle 6 meshes with the spindle bearings 16 provided in the upper and lower portions of the damper housing 7 and the recesses provided in the spindle. FIG. 4B shows the spindle 6
FIG. 6 is a perspective view showing a prismatic portion of the spindle 6 in a portion that meshes with the bearing 16. A constant current source (11) is attached to the coil (9) and controlled by a coil current controller (12). A cantilever (2) and a cantilever excitation piezo (3) are provided as displacement sensors on the sample (4), and a microprobe (probe) is provided at the end of the cantilever. The displacement of the lever is detected by the displacement detector (1) of the cantilever and the end point detector (13) which is the displacement detector controller.

【0007】次にz 粗動系の動作を示す。最初試料表面
と探針間の距離が離れている時、定電流源(11)より電
流I0をコイル(9 )に流す。永久磁石(10)の磁界と電
流I0により、スピンドル(6 )を上下する方向に力F0が
発生する。この力F0の大きさは、粘弾性体(8 )の弾性
限界応力(σS )を越えるようにセットしこの力を取り
去った後も歪量εI0= ε0-εs が残る。(図3参照)こ
の力F0によって、ダンパーハウジング(7 )内の粘弾性
体(8 )の粘性抵抗を受けながらスピンドル(6 )は、
振動することなしに微少量εI0だけ移動する。ここで粘
弾性体(8 )の粘性抵抗を大きくしスピンドル(6 )を
微少振動させずに移動させることは、探針が試料表面と
衝突しないために重要である。今までの駆動系のパルス
モーター等は、ダンパー等の減衰機構がなく駆動時に微
少振動が発生しやすかった。つぎに試料表面と探針間の
距離がある距離以内に近ずいた時(この検出は、前記の
特開平6-74754 、特開平03-040355 の方法による。)定
電流源(11)よりの電流をI1に変え力F1を発生させる。
このときの歪量は、εI1= ε1-εs となる。従って電流
をI0からI1へ連続的に変化させることにより歪量を連続
的に可変できる。この点は、パルスモーター駆動のz 粗
動系と異なり送り量の刻みを細かく設定できる。
Next, the operation of the z coarse movement system will be described. First, when the distance between the sample surface and the probe is long, a current I0 is made to flow from the constant current source (11) to the coil (9). Due to the magnetic field of the permanent magnet (10) and the current I0, a force F0 is generated in the vertical direction of the spindle (6). The magnitude of this force F0 is set so as to exceed the elastic limit stress (σ S) of the viscoelastic body (8) and the strain amount εI0 = ε0-εs remains even after this force is removed. (See Fig. 3) This force F0 causes the spindle (6) to move while receiving the viscous resistance of the viscoelastic body (8) in the damper housing (7).
It moves only a small amount εI0 without vibrating. Here, it is important to increase the viscous resistance of the viscoelastic body (8) and move the spindle (6) without causing microvibration so that the probe does not collide with the sample surface. Until now, pulse motors and the like in drive systems have had no damping mechanism such as dampers, and were susceptible to minute vibrations when driven. Next, when the distance between the sample surface and the probe approaches within a certain distance (this detection is performed by the method of the above-mentioned JP-A-6-74754 and JP-A-03-040355), the constant current source (11) The current is changed to I1 and the force F1 is generated.
The strain amount at this time is εI1 = ε1-εs. Therefore, the amount of strain can be continuously changed by continuously changing the current from I0 to I1. In this respect, unlike the z coarse movement system driven by a pulse motor, the increment of the feed amount can be set finely.

【0008】z 粗動の終点検出信号が終点検出器(13)
より発生し力F1が取り去られたとき、スピンドル(6 )
は、およそεs だけ引き戻され、試料表面と探針間の距
離が離れる方向すなわち探針20が試料表面と接触しない
方向に動く。この移動量が大きく試料表面と探針間の距
離が離れ過ぎたときは、z サーボ系をアクティブにして
おきx,y,z 微動機構5 のピエゾスキャナーを伸ばし移動
量εs をキャンセルする。
Z The coarse end point detection signal is the end point detector (13).
When the more generated force F1 is removed, the spindle (6)
Is pulled back by about ε s and moves in a direction in which the distance between the sample surface and the probe is increased, that is, the probe 20 does not contact the sample surface. When the amount of movement is large and the distance between the sample surface and the probe is too large, the z servo system is activated and the piezo scanner of the x, y, z fine movement mechanism 5 is extended to cancel the amount of movement εs.

【0009】また粘弾性体(8 )の弾性限界をさげ(3
図のεs を小さくしたり)また粘性抵抗を下げるために
ダンパーハウジングの外側に温度可変用ヒーター(14)
を設置し単位力当たりのz 粗動の移動速度を可変でき
る。またヒータ温度を制御して粘弾性体(8 )の粘弾性
を安定化できる。
Further, the elastic limit of the viscoelastic body (8) is lowered (3
Heater for temperature change (14) on the outside of the damper housing to reduce εs in the figure) and to reduce viscous resistance.
Can be installed to change the moving speed of z coarse motion per unit force. Further, the viscoelasticity of the viscoelastic body (8) can be stabilized by controlling the heater temperature.

【0010】また粘弾性体とヒーターの組み合わせによ
るダンパーと同様の効果は、電磁流体を前記ダンパー部
に充填しダンパーの内側に電極を配した構成でも実現可
能である。電極に外部より電圧を印加し電磁流体の弾性
および粘性を可変できる。
Further, the same effect as that of the damper by the combination of the viscoelastic body and the heater can be realized by a structure in which the damper portion is filled with the electromagnetic fluid and the electrode is arranged inside the damper. The elasticity and viscosity of the electromagnetic fluid can be changed by applying a voltage to the electrodes from the outside.

【0011】[0011]

【発明の効果】前記の機構によりz 粗動の送り量をコイ
ルに流す電流を調節するだけで小さく設定でき、あわせ
て粘弾性体の大きな粘性抵抗ににより移動軸が振動する
ことなしに測定領域に移動できるため、探針が試料面に
衝突することを回避できる。またダンパー部に取り付け
られた温度可変機構により、粘弾性体の粘性抵抗を可変
できをz 軸の移動時の単位力当たりの移動速度を可変で
き、z 粗動の時間を短縮できる。
With the above mechanism, the feed amount of z coarse movement can be set to a small value by simply adjusting the current flowing through the coil, and the viscoelastic body's large viscous resistance can also prevent the moving axis from vibrating. Since it can be moved to, it is possible to avoid the probe from colliding with the sample surface. In addition, the temperature variable mechanism attached to the damper section can change the viscous resistance of the viscoelastic body and the moving speed per unit force during the movement of the z-axis, thus shortening the z coarse movement time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】z 粗動系の概念図である。FIG. 1 is a conceptual diagram of a z coarse movement system.

【図2】粘弾性体を用いたz 粗動系の実施例である。FIG. 2 is an example of a z coarse movement system using a viscoelastic body.

【図3】粘弾性体の応力ー歪の関係を示す模式図であ
る。
FIG. 3 is a schematic diagram showing a stress-strain relationship of a viscoelastic body.

【図4】直動用スピンドル軸受けを示す図である。FIG. 4 is a diagram showing a direct-acting spindle bearing.

【符号の説明】[Explanation of symbols]

1 変位検出器 2 カンチレバー 6 スピンドル 8 粘弾性体 9 コイル 10 磁石 1 Displacement detector 2 Cantilever 6 Spindle 8 Viscoelastic body 9 Coil 10 Magnet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 微小プローブを有し、このプローブを数
mmから数Åの距離に近接させ試料表面の形状およびさま
ざま物理量(電位、磁気、摩擦、静電容量、等)を測定
する走査プローブ顕微鏡または前記微小プローブを試料
表面に近接させ試料表面を加工する微小領域加工機の微
小プローブ接近装置において、前記試料と前記微小プロ
ーブとを近接させるのに前記試料またはプローブを支持
する軸を動かす電磁的な直動の力発生機構(たとえばボ
イスコイルモーター等)を有しこの力伝達部にダンパー
機構および直動用の軸受けを有することを特徴とする微
小プローブ接近装置。
1. A micro probe, which has a number of probes
The sample surface is processed by bringing a scanning probe microscope that measures the shape and various physical quantities (electric potential, magnetism, friction, capacitance, etc.) of the sample surface close to the sample surface from mm to a few Å or close the sample surface to the sample surface. In a microprobe approaching device of a microregion processing machine, an electromagnetic direct-acting force generating mechanism (for example, a voice coil motor) that moves an axis that supports the sample or the probe to bring the sample and the microprobe into close proximity is provided. A microprobe approaching device having a damper mechanism and a linear motion bearing in the force transmitting portion.
【請求項2】 請求項1において前記ダンパー部に粘弾
性体(たとえばシリコン系のゴム類)を充填することを
特徴とする微小プローブ接近装置。
2. The microprobe approaching device according to claim 1, wherein the damper portion is filled with a viscoelastic body (for example, silicone rubber).
【請求項3】 請求項2においてダンパー部に温度可変
のための機構(たとえばヒーターと温度コントローラ
ー)を付加し粘弾性体の粘弾性を可変または、安定化さ
せることを特徴とする微小プローブ接近装置。
3. The microprobe approaching device according to claim 2, wherein a mechanism for changing the temperature (for example, a heater and a temperature controller) is added to the damper part to change or stabilize the viscoelasticity of the viscoelastic body. .
【請求項4】 請求項2においてダンパー部に電磁流体
を充填すると共に電極を取り付けて外部から電界を印加
し、電磁流体の粘弾性を可変または、安定化させること
を特徴とする微小プローブ接近装置。
4. A microprobe approaching device according to claim 2, wherein the damper part is filled with the electromagnetic fluid, and an electrode is attached to apply an electric field from the outside to change or stabilize the viscoelasticity of the electromagnetic fluid. .
JP26746795A 1995-10-16 1995-10-16 Micro probe access device Expired - Fee Related JP2883952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26746795A JP2883952B2 (en) 1995-10-16 1995-10-16 Micro probe access device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26746795A JP2883952B2 (en) 1995-10-16 1995-10-16 Micro probe access device

Publications (2)

Publication Number Publication Date
JPH09113519A true JPH09113519A (en) 1997-05-02
JP2883952B2 JP2883952B2 (en) 1999-04-19

Family

ID=17445253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26746795A Expired - Fee Related JP2883952B2 (en) 1995-10-16 1995-10-16 Micro probe access device

Country Status (1)

Country Link
JP (1) JP2883952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807799A1 (en) * 1996-05-13 1997-11-19 Seiko Instruments Inc. Probe Scanning Apparatus
CN105510636A (en) * 2014-09-24 2016-04-20 中国科学院宁波材料技术与工程研究所 Nano-magnetism-electricity-heat multi-parameter coupling in situ detection system and detection method thereof
CN106841689A (en) * 2017-03-27 2017-06-13 贵州大学 Make the probe rod vibration absorber and method of tunneling scanning microscope probe equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506867B2 (en) 1997-02-07 2004-03-15 セイコーインスツルメンツ株式会社 Probe scanning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807799A1 (en) * 1996-05-13 1997-11-19 Seiko Instruments Inc. Probe Scanning Apparatus
US6078044A (en) * 1996-05-13 2000-06-20 Seiko Instruments Inc. Probe scanning apparatus
CN105510636A (en) * 2014-09-24 2016-04-20 中国科学院宁波材料技术与工程研究所 Nano-magnetism-electricity-heat multi-parameter coupling in situ detection system and detection method thereof
CN106841689A (en) * 2017-03-27 2017-06-13 贵州大学 Make the probe rod vibration absorber and method of tunneling scanning microscope probe equipment

Also Published As

Publication number Publication date
JP2883952B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US6323483B1 (en) High bandwidth recoiless microactuator
US6604295B2 (en) Microscopic geometry measuring device
KR101440450B1 (en) Active damping of high speed scanning probe microscope components
JP4832296B2 (en) Atomic force microscope probe
USRE33387E (en) Atomic force microscope and method for imaging surfaces with atomic resolution
US7301257B2 (en) Motion actuator
KR100255578B1 (en) Fine positioning apparatus with atomic resolution
JP2883952B2 (en) Micro probe access device
JP3390318B2 (en) Micro positioning mechanism, scanning probe microscope and micro area processing machine using the same
JP3602434B2 (en) High precision moving mechanism
KR100971467B1 (en) Device for varying stiffness of probe and electro-mechanical device using the same
Yong et al. A z-scanner design for high-speed scanning probe microscopy
JP3179380B2 (en) Scanning probe microscope
JP2001221733A (en) Fine control
US6076397A (en) Positioning apparatus
KR100527967B1 (en) Probe scanning device
JPH09264897A (en) Scanning probe microscope
JP3128512B2 (en) Probe scanning device
JPS63154961A (en) Focus adjustment device for cryogenic ultrasonic microscope
JP2009276318A (en) Stage scanner and scanning probe microscope
JP2000346779A (en) Scanning probe microscope
JPH03146801A (en) Coarse adjustment mechanism for piezodriven probe unit
Hongzhuang et al. DYNAMIC CHARACTERISTICS AND CONTROL OF ROTARY PRECISION POSITIONING DEVICE DRIVING BY IMPACT FORCE OF PIEZOELECTRIC BIMORPHS
JP2000346778A (en) Probe scanning apparatus
JPH06249611A (en) Scanning tunneling microscope

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100212

LAPS Cancellation because of no payment of annual fees