JP2883504B2 - Stacked semiconductor - Google Patents

Stacked semiconductor

Info

Publication number
JP2883504B2
JP2883504B2 JP34840092A JP34840092A JP2883504B2 JP 2883504 B2 JP2883504 B2 JP 2883504B2 JP 34840092 A JP34840092 A JP 34840092A JP 34840092 A JP34840092 A JP 34840092A JP 2883504 B2 JP2883504 B2 JP 2883504B2
Authority
JP
Japan
Prior art keywords
crystal
thin film
type
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34840092A
Other languages
Japanese (ja)
Other versions
JPH05275745A (en
Inventor
進治 兼岩
弘之 細羽
雅文 近藤
智彦 ▲吉▼田
尚宏 須山
俊雄 幡
健 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP34840092A priority Critical patent/JP2883504B2/en
Publication of JPH05275745A publication Critical patent/JPH05275745A/en
Application granted granted Critical
Publication of JP2883504B2 publication Critical patent/JP2883504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、III−V族半導体薄
膜を備え、発光ダイオードやレーザダイオード等の半導
体発光素子を構成する積層半導体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated semiconductor having a group III-V semiconductor thin film and constituting a semiconductor light emitting device such as a light emitting diode or a laser diode.

【0002】[0002]

【従来の技術】窒素NをV族元素とするIII−V族半
導体は、エネルギーギャップEgが広い(例えば、Al
NはEg=6.28eV,GaNはEg=3.39e
V,InNはEg=1.95eVである。)ことから、
可視および紫外域の発光材料として早期実用化が望まれ
ている。
2. Description of the Related Art A group III-V semiconductor in which nitrogen N is a group V element has a wide energy gap Eg (for example, Al
N is Eg = 6.28 eV, GaN is Eg = 3.39 eV
Vg and InN are Eg = 1.95 eV. )
Early commercialization as a light emitting material in the visible and ultraviolet regions is desired.

【0003】現在、上記実用化に向けて、GaNを中心
として精力的に研究が進められている。GaNは窒素の
解離圧が極めて高く基板となる大型単結晶の作製が困難
であるため、異種基板上へのエピタキシャル成長により
GaN薄膜が形成される。GaNは通常はウルツ鉱型結
晶構造をとるため、六方晶系であるサファイアが基板と
してよく用いられている。しかし、ウルツ鉱型結晶はV
族元素が正常な格子位置に入りにくいため、不純物を添
加しない結晶においても、V族空格子点による高い自由
電子濃度により通常n型伝導性を示す。従って、ウルツ
鉱型結晶は、p型半導体を得ることが非常に困難で、添
加したp型不純物も容易に活性化せず高抵抗化する。そ
のため、ウルツ鉱型結晶は、半導体発光素子に不可欠な
pn接合の形成が非常に困難である。
[0003] At present, research is being vigorously pursued with a focus on GaN for practical use. Since GaN has a very high dissociation pressure of nitrogen and makes it difficult to produce a large single crystal serving as a substrate, a GaN thin film is formed by epitaxial growth on a heterogeneous substrate. Since GaN usually has a wurtzite crystal structure, sapphire having a hexagonal system is often used as a substrate. However, wurtzite crystals have a V
Since a group element is unlikely to enter a normal lattice position, even a crystal to which an impurity is not added usually shows n-type conductivity due to a high free electron concentration due to a group V vacancy. Therefore, it is very difficult to obtain a p-type semiconductor from a wurtzite crystal, and the added p-type impurity is not easily activated and has a high resistance. For this reason, it is very difficult for the wurtzite crystal to form a pn junction essential for a semiconductor light emitting device.

【0004】これに対し、閃亜鉛鉱型結晶構造を持つG
aAs、InP等のIII−V族半導体においては、不
純物添加により容易にn型,p型半導体が得られてい
る。したがって、GaNにおいても閃亜鉛鉱型結晶とす
ればp型半導体が容易に得られる。GaNの結晶構造は
ウルツ鉱型が最も安定であるが、閃亜鉛鉱型も準安定相
として存在する。次の表1に窒素NをV族元素とするI
II−V族半導体の格子定数a,c及びエネルギーギャ
ップEgを示す。また、図7に閃亜鉛鉱型上記窒素化物
を混晶とした場合の格子定数a及びエネルギーギャップ
Egの値を図示する。
On the other hand, G having a zinc blende type crystal structure
In III-V semiconductors such as aAs and InP, n-type and p-type semiconductors are easily obtained by adding impurities. Therefore, a p-type semiconductor can be easily obtained also from GaN by using a zinc blende type crystal. The wurtzite type is the most stable crystal structure of GaN, but the zinc blende type also exists as a metastable phase. The following Table 1 shows that when nitrogen N is a V element,
2 shows lattice constants a and c and an energy gap Eg of a II-V group semiconductor. FIG. 7 shows the values of the lattice constant a and the energy gap Eg when the zinc blende type nitride is mixed.

【0005】[0005]

【表1】 [Table 1]

【0006】現在、閃亜鉛鉱型結晶構造のGaN半導体
薄膜を、同じく立方晶系であるSi結晶基板やGaAs
結晶基板、もしくはβ−SiC結晶基板上に、分子線エ
ピタキシャル成長によって積層した積層半導体が開発さ
れている。
At present, a GaN semiconductor thin film having a zinc blende type crystal structure is formed on a cubic Si crystal substrate or GaAs.
2. Description of the Related Art A stacked semiconductor has been developed in which a semiconductor is stacked on a crystal substrate or a β-SiC crystal substrate by molecular beam epitaxial growth.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記積層半
導体では、結晶基板として用いられているSiやGaA
sは、半導体薄膜であるGaNとの格子不整合が極めて
大きく、格子不整合率が20%以上にも達するので、G
aN結晶中に多くの格子欠陥が存在するという問題があ
る。
However, in the above laminated semiconductor, Si or GaAs used as a crystal substrate is used.
Since s has a very large lattice mismatch with GaN, which is a semiconductor thin film, and a lattice mismatch ratio of 20% or more, G
There is a problem that many lattice defects exist in the aN crystal.

【0008】また、上記積層半導体で、結晶基板として
用いられているβ−SiCは、SiやGaAsに比べ
て、上記格子不整合は小さいものの、結晶基板の作製が
困難である上に、結晶基板が硬いため加工が困難である
ので、汎用性が悪いという問題がある。さらに、立方晶
系のSi,GaAs結晶基板と立方晶系のGaN半導体
薄膜との間の格子不整合を緩和するための立方晶系のバ
ッファ層としては、上述の作製が難しいβ−SiC結晶
基板以外には存在しない。
In the above-mentioned laminated semiconductor, β-SiC used as a crystal substrate has a small lattice mismatch as compared with Si or GaAs, but it is difficult to produce a crystal substrate. However, there is a problem that the versatility is poor because the processing is difficult because of its hardness. Further, as a cubic buffer layer for relaxing lattice mismatch between a cubic Si, GaAs crystal substrate and a cubic GaN semiconductor thin film, a β-SiC crystal substrate, which is difficult to manufacture as described above, There is no other than.

【0009】上述の問題点があるので、現時点では、発
光ダイオード、レーザダイオード等の半導体発光素子の
作製はおろか、閃亜鉛鉱型結晶構造のGaNのドーピン
グ特性を云々する段階まで開発が進んでいない。
Due to the above-mentioned problems, at present, the development of semiconductor light-emitting devices such as light-emitting diodes and laser diodes has not been advanced to the point where the doping characteristics of GaN having a zinc blende type crystal structure are described. .

【0010】そこで、本発明の目的は、格子欠陥が少な
くて、n型、p型の不純物ドーピングが容易で良質な半
導体薄膜を備え、発光ダイオードやレーザダイオード等
の半導体発光素子の作製に適した積層半導体を提供する
ことにある。
Accordingly, an object of the present invention is to provide a high quality semiconductor thin film having few lattice defects, easy n-type and p-type impurity doping, and suitable for manufacturing a semiconductor light emitting device such as a light emitting diode or a laser diode. It is to provide a laminated semiconductor.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の積層半導体は、基板と、窒化物αN(α
は、Al,Ga,Inのうちのいずれか1つ、もしくは
Al,Ga,Inのうちの少なくとも2つの混合物)か
らなる閃亜鉛鉱型結晶構造のIII−V族半導体薄膜と
の間に、ルチル型結晶構造を有する結晶薄膜をバッファ
層として形成したことを特徴としている。
According to a first aspect of the present invention, there is provided a multi- layer semiconductor comprising a substrate, a nitride αN (α
Is any one of Al, Ga, In, or
A mixture of at least two of Al, Ga, and In)
Group III-V semiconductor thin film having a zinc blende type crystal structure
Buffer the crystal thin film with rutile crystal structure between
It is characterized by being formed as a layer.

【0012】また、結晶薄膜として、金属酸化物MO2
(Mは、Ti,V,Mn,Ru,Sn,Os,Pbのう
ちのいずれか1つ、またはTi,V,Mn,Ru,S
n,Os,Pbのうちの少なくとも2つの混合物)を用
いたことが望ましい。
Further , as a crystal thin film , metal oxide MO 2
(M is any one of Ti, V, Mn, Ru, Sn, Os, Pb, or Ti, V, Mn, Ru, S
It is desirable to use a mixture of at least two of n, Os, and Pb).

【0013】また、上記結晶薄膜として、金属弗化物M
2(Mは、Mg,V,Mn,Fe,Co,Ni,Zn
のうちのいずれか1つ、またはMgV,Mn,Fe,
Co,Ni,Znのうちの少なくとも2つの混合物)を
用いたことが望ましい。
Further, as the crystal thin film , a metal fluoride M
F 2 (M is Mg, V, Mn, Fe, Co, Ni, Zn
One of Mg , V, Mn, Fe,
It is desirable to use a mixture of at least two of Co, Ni, and Zn).

【0014】[0014]

【作用】本発明によれば、上記基板としてSiやGaA
sを用いた場合でも、上記窒化物αNとの格子不整合率
がSi、GaAs結晶基板に比べて小さいバッファ層と
してのルチル型結晶構造を有する結晶薄膜によって、上
記窒化物αNからなる閃亜鉛鉱型結晶構造のIII−V
族半導体薄膜の格子欠陥が従来例に比べて少なくなる。
According to the present invention, Si or GaAs is used as the substrate.
Even when s is used, the zinc blende composed of the nitride αN is formed by a crystal thin film having a rutile type crystal structure as a buffer layer having a lattice mismatch ratio with the nitride αN smaller than that of the Si or GaAs crystal substrate. III-V of type crystal structure
The lattice defect of the group III semiconductor thin film is reduced as compared with the conventional example.

【0015】したがって、請求項1に記載の発明によれ
ば、n型、p型不純物ドーピングが容易な閃亜鉛鉱型結
晶構造の上記半導体薄膜の品質が向上し、高品質な発光
ダイオードやレーザダイオード等の半導体発光素子の作
製に適した積層半導体が実現される。
Therefore, according to the first aspect of the present invention, the quality of the above-mentioned semiconductor thin film having a zinc blende type crystal structure in which n-type and p-type impurity doping is easy is improved, and a high-quality light emitting diode or laser diode is obtained. Thus, a laminated semiconductor suitable for manufacturing a semiconductor light-emitting element such as described above is realized.

【0016】尚、閃亜鉛鉱型結晶が立方晶系であるのに
対し、ルチル型結晶は、正方晶系である。立方晶系の結
晶は、その結晶自体が規定する結晶軸aの長さと結晶軸
bの長さと結晶軸cの長さが等しいのに対し、正方晶系
の結晶は、その結晶軸aの長さと結晶軸bの長さが等し
いが、結晶軸cの長さは、結晶軸aおよび結晶軸bの長
さと等しくない。しかし、上記結晶軸cに垂直な結晶面
(001)においては、立方晶および正方晶の両方とも
結晶軸a=結晶軸bの正方形格子を組む。したがって、
正方晶系であるルチル型結晶構造を有する結晶薄膜の結
晶面(001)上に、上記面(001)と垂直方向に上
記閃亜鉛鉱型結晶構造のIII−V族半導体薄膜を結晶
成長させることで、上記ルチル型結晶構造の結晶薄膜
上記閃亜鉛鉱型結晶構造のIII−V族半導体薄膜との
間の結晶構造の相違が両者間の積層構造に何等悪影響を
及ぼさないようにできる。
The zinc blende type crystal has a cubic system, whereas the rutile type crystal has a tetragonal system. A cubic crystal has the same length of the crystal axis a, b, and c as defined by the crystal itself, whereas a tetragonal crystal has the length of the crystal axis a. And the length of the crystal axis b are equal, but the length of the crystal axis c is not equal to the length of the crystal axis a and the crystal axis b. However, in the crystal plane (001) perpendicular to the crystal axis c, both the cubic crystal and the tetragonal crystal form a square lattice with the crystal axis a = the crystal axis b. Therefore,
Crystal growth of a group III-V semiconductor thin film having the zincblende crystal structure on a crystal plane (001) of a crystal thin film having a tetragonal rutile-type crystal structure in a direction perpendicular to the plane (001). Thus, the difference in crystal structure between the rutile-type crystal thin film and the zinc-blende-type III-V semiconductor thin film can have no adverse effect on the laminated structure between them.

【0017】また、上記請求項1に記載の発明におい
て、ルチル型結晶構造を有する結晶薄膜として、金属酸
化物MO2(Mは、Ti,V,Mn,Ru,Sn,O
s,Pbのうちのいずれか1つ、またはTi,V,M
n,Ru,Sn,Os,Pbのうちの少なくとも2つの
混合物)や金属弗化物MF2(Mは、Mg,V,Mn,
Fe,Co,Ni,Znのうちのいずれか1つ、または
Mg,V,Mn,Fe,Co,Ni,Znのうちの少な
くとも2つの混合物)を用いた場合には、上記積層半導
体は、上記窒化物αNとの格子不整合率が特に小さくな
り、上記窒化物αNからなる閃亜鉛鉱型結晶構造のII
I−V族半導体薄膜の格子欠陥が従来例に比べて特に少
なくなる。したがって、n型,p型不純物ドーピングが
容易な閃亜鉛鉱型結晶構造の上記半導体薄膜の品質が特
に向上し、高品質な発光ダイオードやレーザダイオード
等の半導体発光素子の作製に特に適した積層半導体が実
現される。
According to the first aspect of the present invention, as the crystal thin film having a rutile type crystal structure, metal oxide MO 2 (M is Ti, V, Mn, Ru, Sn, O
any one of s, Pb, or Ti, V, M
a mixture of at least two of n, Ru, Sn, Os, and Pb) and a metal fluoride MF 2 (M is Mg, V, Mn,
In the case of using any one of Fe, Co, Ni, and Zn, or a mixture of at least two of Mg, V, Mn, Fe, Co, Ni, and Zn), The lattice mismatch rate with the nitride αN becomes particularly small, and the zinc-blende-type crystal structure of the nitride αN II
Lattice defects of the IV group semiconductor thin film are particularly reduced as compared with the conventional example. Therefore, the quality of the semiconductor thin film having a zinc blende crystal structure in which n-type and p-type impurity doping is easy is particularly improved, and a laminated semiconductor particularly suitable for manufacturing a high-quality semiconductor light-emitting device such as a light-emitting diode or a laser diode. Is realized.

【0018】[0018]

【実施例】以下、本発明を図示の実施例により詳細に説
明する。図1に参考例としてのルチル型結晶構造を有し
た結晶基板を用いた場合の実施例を示す。この実施例
は、ルチル型結晶構造を有するTiO2の結晶基板1の
結晶面(001)上に、窒化物CaNからなる閃亜鉛鉱
型結晶構造のIII−V族半導体薄膜2を積層したもの
である。上記GaNの積層の方法としては、ガリウム源
としてトリメチルガリウム(CH33Gaを使用し、窒
素源としてアンモニアNH3を使用した有機金属気相エ
ピタキシャル法(MOVPE)を用いた。次の表2に示
すように、上記結晶面(001)におけるTiO2とG
aNとの格子不整合率Δaは約2%であり、従来例に比
べて、格子欠陥が非常に少ない良好な積層半導体が得ら
れた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 shows a rutile-type crystal structure as a reference example .
An example in which a crystal substrate is used is shown. In this embodiment, a group III-V semiconductor thin film 2 of zinc blende type crystal structure made of nitride CaN is laminated on a crystal plane (001) of a TiO 2 crystal substrate 1 having a rutile type crystal structure. is there. As a method for stacking the GaN, a metal organic vapor phase epitaxy (MOVPE) using trimethylgallium (CH 3 ) 3 Ga as a gallium source and ammonia NH 3 as a nitrogen source was used. As shown in the following Table 2, TiO 2 and G on the crystal plane (001)
The lattice mismatch rate Δa with aN was about 2%, and a good laminated semiconductor with very few lattice defects was obtained as compared with the conventional example.

【0019】[0019]

【表2】 [Table 2]

【0020】つまり、この実施例によれば、n型および
p型不純物ドーピングが容易な閃亜鉛鉱型結晶構造のI
II−V族半導体薄膜2の品質を従来例に比べて大巾に
向上でき、高性能な発光ダイオードやレーザダイオード
等の半導体発光素子の作製に適した積層半導体を実現で
きる。
In other words, according to this embodiment, the zinc-blende-type crystal structure having an easy n-type and p-type impurity doping is provided.
The quality of the II-V semiconductor thin film 2 can be greatly improved as compared with the conventional example, and a stacked semiconductor suitable for manufacturing a high performance semiconductor light emitting device such as a light emitting diode or a laser diode can be realized.

【0021】上記積層半導体のX線回折分析を行なった
所、GaNの結晶面(002)の鋭い回折ピークが観察
され閃亜鉛鉱型GaN単結晶の成長が確認された。ま
た、上記X線回折の回折角より計算したGaNの格子定
数は4.49Åであり、従来報告されている値と一致し
ていた。
X-ray diffraction analysis of the above laminated semiconductor revealed that a sharp diffraction peak of the GaN crystal plane (002) was observed, confirming the growth of zinc blende-type GaN single crystal. The lattice constant of GaN calculated from the diffraction angle of the X-ray diffraction was 4.49 °, which was consistent with the conventionally reported value.

【0022】上記実施例のGaN半導体薄膜2の電気的
性質は、ノンドープでは高抵抗であるが、Znドープ,
Seドープにより、それぞれキャリア濃度1016〜10
19cm-3の範囲で低抵抗のP型半導体,N型半導体を実
現できる。そして、上記TiO2結晶基板1は、酸素の
解離によりn型の伝導性を示すので、TiO2結晶基板
1上にn型GaN半導体薄膜、p型GaN半導体薄膜を
順に積層することによって、高性能な紫外光LEDを作
製できる。
The electrical properties of the GaN semiconductor thin film 2 of the above embodiment are high resistance when non-doped,
The carrier concentration is 10 16 to 10 respectively by Se doping.
P-type semiconductors and N-type semiconductors with low resistance can be realized in the range of 19 cm -3 . Then, the TiO 2 crystal substrate 1, since an n-type conductivity by dissociation of oxygen by laminating an n-type GaN semiconductor thin film, a p-type GaN semiconductor thin film in this order on TiO 2 crystal substrate 1, high-performance It is possible to manufacture an ultra-violet LED.

【0023】この具体的実施例を図4に示す。本実施例
は、ルチル型結晶構造を有するTiO2結晶基板1の結
晶面(001)上に、窒化物GaNからなる閃亜鉛鉱型
結晶構造のIII−V族半導体薄膜を、n型GaN半導
体薄膜31,p型GaN半導体薄膜32の順に積層して
発光層としたものである。また、ドーピング原料として
は、n型にはセレンSe、p型には亜鉛Znを用い、さ
らに、前記n型GaN半導体薄膜31及びp型GaN半
導体薄膜32のキャリア濃度はともに1×1018cm-3
になるように調整した。
FIG. 4 shows this specific embodiment. In the present embodiment, a group III-V semiconductor thin film having a zinc blende type crystal structure made of nitride GaN is provided on a crystal plane (001) of a TiO 2 crystal substrate 1 having a rutile type crystal structure, and an n-type GaN semiconductor thin film. 31 and a p-type GaN semiconductor thin film 32 are laminated in this order to form a light emitting layer. As the doping material, selenium Se is used for the n-type and zinc Zn is used for the p-type. Further, the carrier concentration of each of the n-type GaN semiconductor thin film 31 and the p-type GaN semiconductor thin film 32 is 1 × 10 18 cm − Three
It was adjusted to become.

【0024】前記TiO2結晶基板1は、酸素の解離に
よりn型の伝導性を示すので、前記TiO2基板1側に
n型オーム性電極33、前記p型GaN半導体薄膜32
側にp型オーム性電極34を形成することにより電流注
入が可能となる。注入された電子及び正孔は、前記n型
GaN半導体薄膜31とp型GaN半導体薄膜32の界
面に存在するpn接合において再結合し発光する。閃亜
鉛鉱型結晶構造のGaNの禁制帯幅は、表1に示すよう
に3.45eVであるので、本実施例の積層構造は36
0nmの紫外光を発する発光ダイオードとして機能する
ことが確認された。以上を参考例する。
Since the TiO 2 crystal substrate 1 exhibits n-type conductivity due to dissociation of oxygen, the n-type ohmic electrode 33 and the p-type GaN semiconductor thin film 32 are provided on the TiO 2 substrate 1 side.
By forming the p-type ohmic electrode 34 on the side, current injection becomes possible. The injected electrons and holes recombine at the pn junction existing at the interface between the n-type GaN semiconductor thin film 31 and the p-type GaN semiconductor thin film 32 to emit light. As shown in Table 1, the bandgap of GaN having a zinc blende type crystal structure is 3.45 eV.
It was confirmed to function as a light emitting diode that emits 0 nm ultraviolet light. The above is a reference example.

【0025】図2に請求項2の発明の第一の実施例を示
す。この実施例は、Si半導体基板11の結晶面(00
1)上に、ルチル型結晶構造を有するZnF2結晶薄膜
12をバッファ層として積層し、上記ZnF2結晶薄膜
12の結晶面(001)上に、GaとInの混合物の窒
化物Ga1-xInxN(x=0.4)からなる閃亜鉛鉱型
結晶構造のIII−V族半導体薄膜13を積層したもの
である。上記ZnF2結晶薄膜12の積層方法として、
ZnF2固体ソースを使用した分子線エピタキシャル法
(MBE)を用い、上記Ga1-xInxN薄膜13の積層
方法として、Ga,Inそれぞれの固体ソースと、プラ
ズマ分解させた窒素ガスソースを使用した分子線エピタ
キシャル法(MBE)を用いた。
FIG. 2 shows a first embodiment of the present invention. In this embodiment, the crystal plane (00
1) A ZnF 2 crystal thin film 12 having a rutile crystal structure is laminated thereon as a buffer layer, and a nitride Ga 1-x of a mixture of Ga and In is formed on the crystal plane (001) of the ZnF 2 crystal thin film 12. It is obtained by laminating group III-V semiconductor thin films 13 having a zinc blende type crystal structure made of In x N (x = 0.4). As a method of laminating the ZnF 2 crystal thin film 12,
Using a molecular beam epitaxy method (MBE) using a ZnF 2 solid source, the Ga 1-x In x N thin film 13 is laminated using a solid source of Ga and In and a nitrogen gas source which is plasma-decomposed. Molecular beam epitaxy (MBE) was used.

【0026】上記ルチル型結晶構造のZnF2結晶薄膜
12は、表1に示す閃亜鉛鉱型結晶構造のGaNの格子
定数a=4.49ÅとInNの格子定数a=5.01Å
の中間の格子定数a=4.7034Åを持つ(表2参
照)。したがって、上記Ga1-xInxN薄膜13のIn
混晶比xを0.4にすることによって、上記Ga1-x
xN薄膜13を上記ZnF2結晶薄膜12に格子整合さ
せることができ、格子不整合率を約0%にすることがで
きる。したがって、上記Ga1-xInxN薄膜13の格子
欠陥を実質的になくすことができる。
In the ZnF 2 crystal thin film 12 having the rutile type crystal structure, the lattice constant a = 4.49 ° of GaN and the lattice constant a of InN = 5.01 ° of the zinc blende type crystal structure shown in Table 1.
Has an intermediate lattice constant a = 4.7034 ° (see Table 2). Therefore, the In 1 of the Ga 1-x In x N thin film 13
By setting the mixed crystal ratio x to 0.4, the above Ga 1-x I
The n x N thin film 13 can be lattice matched to the ZnF 2 crystal thin film 12, it is possible to lattice mismatch ratio to about 0%. Therefore, lattice defects of the Ga 1-x In x N thin film 13 can be substantially eliminated.

【0027】したがって、この実施例によれば、従来例
と同じSi半導体基板11を使用したにもかかわらず、
n型およびp型不純物ドーピングが容易な閃亜鉛鉱型結
晶構造のGa1-xInxN薄膜13の品質を従来例に比べ
て大巾に向上でき、高性能な発光ダイオードやレーザダ
イオード等の半導体発光素子の作製に適した積層半導体
を実現できる。
Therefore, according to this embodiment, despite the use of the same Si semiconductor substrate 11 as the conventional example,
The quality of the Ga 1-x In x N thin film 13 having a zinc-blende-type crystal structure in which n-type and p-type impurity doping is easy can be greatly improved as compared with the conventional example, and high-performance light-emitting diodes and laser diodes can be used. A stacked semiconductor suitable for manufacturing a semiconductor light emitting element can be realized.

【0028】上記Ga1-xInxN薄膜13は、GaNと
InNとの混晶であるので、紫外発光用のGaNよりも
エネルギーギャップが下がる。したがって、上記実施例
を用いれば、可視発光素子が作製可能となる。上記Si
半導体基板11の上に上記ZnF2結晶薄膜12に替え
て、上記ZnF2結晶薄膜12よりも格子定数の大きな
バッファ層を積層すれば、格子不整合率を増加させるこ
となく、上記Ga1-xInxN薄膜13のIn混晶比を
0.4より大きくできるので、上記発光素子の発光を長
波長化できる。
Since the Ga 1-x In x N thin film 13 is a mixed crystal of GaN and InN, the energy gap is smaller than that of GaN for ultraviolet light emission. Therefore, by using the above embodiment, a visible light emitting element can be manufactured. The above Si
In place of the ZnF 2 crystal thin film 12 on the semiconductor substrate 11, if stacking a large buffer layer lattice constant than the ZnF 2 crystal thin film 12, without increasing the lattice mismatch ratio, the Ga 1-x Since the In mixed crystal ratio of the In x N thin film 13 can be made larger than 0.4, the light emission of the light emitting element can be made longer wavelength.

【0029】上記実施例のIII−V族半導体薄膜を発
光層とした半導体発光素子の具体例を図5に従って説明
する。本実施例は、Si半導体基板11の結晶面(00
1)上に、ルチル型結晶構造を有するZnF2結晶薄膜
12をバッファ層として積層し、前記ZnF2結晶薄膜
12の結晶面(001)上に、GaとInの混合物の窒
化物Ga1-xInxN(x=0.4)からなる閃亜鉛鉱型
結晶構造のIII−V族半導体薄膜をn型Ga1-xInx
N半導体薄膜41、p型Ga1-xInxN半導体薄膜42
の順に積層し、前記n型Ga1-xInxN半導体薄膜41
にn型オーム性電極43を、前記p型Ga1-xInxN半
導体薄膜42にp型オーム性電極44を形成したもので
ある。また、ドーピングの原料としては、n型にはS
i、p型にはBeを用いた。
A specific example of the semiconductor light emitting device using the group III-V semiconductor thin film of the above embodiment as a light emitting layer will be described with reference to FIG. In the present embodiment, the crystal plane (00
1) A ZnF 2 crystal thin film 12 having a rutile-type crystal structure is stacked thereon as a buffer layer, and a nitride Ga 1-x of a mixture of Ga and In is formed on a crystal plane (001) of the ZnF 2 crystal thin film 12. A group III-V semiconductor thin film having a zinc blende type crystal structure made of In x N (x = 0.4) was converted into n-type Ga 1-x In x
N semiconductor thin film 41, p-type Ga 1-x In x N semiconductor thin film 42
And the n-type Ga 1-x In x N semiconductor thin film 41
An n-type ohmic electrode 43 is formed, and a p-type ohmic electrode 44 is formed on the p-type Ga 1-x In x N semiconductor thin film. As a doping material, n-type S
Be was used for the i and p types.

【0030】前記両Ga1-xInxN半導体薄膜41,4
2においても図4に示す実施例の両GaN半導体薄膜3
1,32と同等の電気的性質を示すことから、前記両オ
ーム電極43,44からの電流注入が可能であった。前
記両Ga1-xInxN半導体薄膜41,42は、GaNと
InNとの混晶であるので、紫外発光用のGaNよりも
エネルギーギャップが下がり、可視発光素子が作製可能
となる。また、前記両Ga1-xInxN(x=0.4)半
導体薄膜41,42の界面に存在するpn接合からは4
40nmの青色発光が観測され、発光ダイオードとして
機能することが確認された。
The two Ga 1-x In x N semiconductor thin films 41, 4
2, both GaN semiconductor thin films 3 of the embodiment shown in FIG.
Since the same electrical properties as those of the first and second ohmic electrodes 43 and 44 were obtained, current injection from both the ohmic electrodes 43 and 44 was possible. Since the Ga 1-x In x N semiconductor thin films 41 and 42 are a mixed crystal of GaN and InN, the energy gap is lower than that of GaN for ultraviolet light emission, and a visible light emitting device can be manufactured. The pn junction existing at the interface between the two Ga 1-x In x N (x = 0.4) semiconductor thin films 41 and 42 is 4
Blue light emission of 40 nm was observed, and it was confirmed to function as a light emitting diode.

【0031】また、前記Si半導体基板11の上に前記
ZnF2結晶薄膜12に替えて、該ZnF2結晶薄膜12
よりも格子定数の大きなバッファ層を積層すれば、上記
実施例と同様に、前記発光素子の発光波長を長波長化す
ることができ、青色から赤色までの全可視領域の発光が
可能である例えば、x=0.8において550nmの
緑色発光が、x=1において650nmの赤色発光が得
られる。
Further, instead of the ZnF 2 crystal thin film 12 on the Si semiconductor substrate 11, the ZnF 2 crystal thin film 12
If a buffer layer having a larger lattice constant is stacked, the emission wavelength of the light emitting element can be made longer, and light can be emitted in the entire visible region from blue to red, as in the above embodiment . For example, green light emission of 550 nm is obtained at x = 0.8, and red light emission of 650 nm is obtained at x = 1.

【0032】図3に請求項2の第二の実施例を示す。こ
の実施例は、GaAs半導体基板21の結晶面(00
1)上に、ルチル型結晶構造を有するバッファ層として
のSn1-zMnz2(z=0.1)結晶薄膜22を積層
し、上記Sn1-zMnz2(z=0.1)結晶薄膜22
の結晶面(001)上に、Al1-yInyN(y=0.
5),Ga1-xInxN(x=0.4),Al1-yIny
(y=0.5)夫々からなる閃亜鉛鉱型結晶構造のII
I−V族半導体薄膜23,24,25を順に積層したも
のである。上記各薄膜22,23,24,25は、夫々
分子線エピタキシャル法で積層され、この積層時の上記
Sn1-zMn1-z2結晶薄膜22の結晶成長にはSnお
よびMnの固体ソースと酸素のガスソースを用いた。ま
た、上記Al1-yInyN(y=0.5)の成長原料とし
ては、トリメチルアルミニウム(CH33Alとトリエ
チルインジウム(CH3CH23InとNNジメチルヒ
ドラジン(CH3222を用い、Ga1-xInxN(x
=0.4)の成長原料としては、トリメチルガリウム
(CH33Gaとトリメチルインジウム(CH3CH2
3InとNNジメチルヒドラジン(CH3222を用
いた。
FIG. 3 shows a second embodiment of the present invention. In this embodiment, the crystal plane (00
1) A Sn 1-z Mn z O 2 (z = 0.1) crystal thin film 22 as a buffer layer having a rutile type crystal structure is laminated thereon, and the Sn 1-z Mn z O 2 (z = 0) .1) Crystal thin film 22
On the crystal plane (001) of Al 1-y In y N (y = 0.
5), Ga 1-x In x N (x = 0.4), Al 1-y In y N
(Y = 0.5) Zinc-blende-type crystal structure II
It is obtained by sequentially stacking IV group semiconductor thin films 23, 24, and 25. Each of the thin films 22, 23, 24, and 25 is laminated by a molecular beam epitaxy method, and a Sn and Mn solid source is used for crystal growth of the Sn 1-z Mn 1-z O 2 crystal thin film 22 in this lamination. And a gas source of oxygen. In addition, as growth materials for the above Al 1-y In y N (y = 0.5), trimethyl aluminum (CH 3 ) 3 Al, triethyl indium (CH 3 CH 2 ) 3 In, and NN dimethyl hydrazine (CH 3 ) with 2 N 2 H 2, Ga 1 -x In x N (x
= 0.4) as the growth raw materials are trimethylgallium (CH 3 ) 3 Ga and trimethylindium (CH 3 CH 2 ).
3 In and NN dimethylhydrazine (CH 3 ) 2 N 2 H 2 were used.

【0033】上記実施例において、上記Al1-yIny
(y=0.5)からなる薄膜23との格子不整合率がS
iやGaAs結晶基板に比べて非常に小さいバッファ層
としてのルチル型結晶構造を有するSn1-zMnz
2(z=0.1)結晶薄膜22をGaAs半導体基板2
1上に形成したので、半導体基板として従来と同じGa
As半導体基板21を用いたにもかかわらず、上記Al
1-yInyN(y=0.5)からなる閃亜鉛鉱型結晶構造
のIII−V族半導体薄膜23の格子欠陥をほとんどな
くすることができる。
In the above embodiment, the above Al 1-y In y N
(Y = 0.5), the lattice mismatch with the thin film 23 is S
Sn 1-z Mn z O having a rutile-type crystal structure as a buffer layer much smaller than i or GaAs crystal substrates
2 (z = 0.1) The crystalline thin film 22 is
1, the same Ga substrate as the conventional semiconductor substrate is used.
Despite the use of the As semiconductor substrate 21, the above Al
Lattice defects in the group III-V semiconductor thin film 23 having a zinc blende type crystal structure made of 1-y In y N (y = 0.5) can be almost eliminated.

【0034】また、薄膜23,24,25は、同じ閃亜
鉛鉱型結晶構造のIII−V族半導体薄膜であり、格子
不整合は存在しないので、薄膜23の上の薄膜24,2
5には、当然、格子欠陥がほとんど生じない。
The thin films 23, 24 and 25 are group III-V semiconductor thin films having the same zinc blende type crystal structure, and have no lattice mismatch.
5 naturally has almost no lattice defects.

【0035】つまり、この実施例によれば、半導体基板
として従来と同じGaAs半導体基板を用いても、n型
およびp型不純物ドーピングが容易な閃亜鉛鉱型結晶構
造のIII−V族半導体薄膜23,24,25の格子欠
陥がほとんどない積層半導体を実現でき、高性能な発光
ダイオードやレーザダイオード等の半導体発光素子の作
製に適した積層半導体を実現できる。
In other words, according to this embodiment, even if the same GaAs semiconductor substrate as the conventional one is used as the semiconductor substrate, the zinc-blende group III-V semiconductor thin film 23 with which n-type and p-type impurity doping is easy. , 24, and 25 can be realized, and a high-performance stacked semiconductor suitable for manufacturing a semiconductor light emitting device such as a light emitting diode or a laser diode can be realized.

【0036】また、この実施例は、AlInN/GaI
nN/AlInNダブルヘテロ構造をとっているので、
適当なドーピングを行えば電流注入による可視光レーザ
発振が可能なレーザダイオードを実現できる。
In this embodiment, AlInN / GaI
Since it has an nN / AlInN double hetero structure,
By performing appropriate doping, a laser diode capable of emitting visible light laser by current injection can be realized.

【0037】上記実施例のIII−V族半導体薄膜を発
光層とした半導体発光素子の具体例を図6に従って説明
する。本実施例は、n型GaAs半導体基板51の結晶
面(001)上に、ルチル型結晶構造を有するバッファ
層としてのSn1-zMnz2(z=0.1)結晶薄膜2
2の結晶面(001)上に、n型Al1-yIny(y=
0.5)52、ノンドープGa1-xInxN(x=0.
4)53、p型Al1-yInyN(y=0.5)54夫々
からなる閃亜鉛鉱型結晶構造のIII−V族半導体薄膜
52,53,54を順に積層したものである。さらに、
前記n型GaAs半導体基板51側にn型オーム性電極
55、前記p型Al1-yInyN半導体薄膜54側にSi
N等からなる絶縁膜56を介してp型オーム性電極57
が形成されている。尚、前記絶縁膜56には電流注入の
ためのストライプ58が形成されている。また、ドーピ
ング原料としては、N型にはSi,P型にはBeを用い
た。本実施例は、Al1-yInyN/Ga1-xInxN/A
1-yInyNダブルヘテロ構造をとっており、前記n型
オーム性電極55及びp型オーム電極57から電流注入
を行えば、レーザ発振が可能となる。この場合、図5に
示す実施例と同様440nmの青色レーザ光が得られ、
より高効率の発光ダイオードの構造として利用できる。
A specific example of the semiconductor light emitting device using the group III-V semiconductor thin film of the above embodiment as a light emitting layer will be described with reference to FIG. In this embodiment, a Sn 1 -z Mnz O 2 (z = 0.1) crystal thin film 2 as a buffer layer having a rutile crystal structure is formed on a crystal plane (001) of an n-type GaAs semiconductor substrate 51.
The n-type Al 1-y In y (y =
0.5) 52, non - doped Ga 1-x In x N (x = 0.
4) A group III-V semiconductor thin film 52, 53, 54 having a zinc-blende-type crystal structure composed of 53 and p-type Al 1-y In y N (y = 0.5) 54 is sequentially laminated. further,
An n-type ohmic electrode 55 is provided on the n-type GaAs semiconductor substrate 51 side, and Si is provided on the p-type Al 1-y In y N semiconductor thin film 54 side.
A p-type ohmic electrode 57 via an insulating film 56 made of N or the like
Are formed. The insulating film 56 has a stripe 58 for current injection. As doping materials, Si was used for the N-type and Be was used for the P-type. In this embodiment, Al 1-y In y N / Ga 1-x In x N / A
It has an l 1-y In y N double hetero structure, and laser oscillation becomes possible if current is injected from the n-type ohmic electrode 55 and the p-type ohmic electrode 57. In this case, blue laser light of 440 nm is obtained as in the embodiment shown in FIG.
It can be used as a structure of a light emitting diode with higher efficiency.

【0038】また、活性層となるノンドープGa1-x
xN半導体薄膜53のIn混晶比xを大きくできる適
当なルチル型結晶構造を有するバッファ層を用いれば、
発振波長の長波長化が可能となる。
Further, non - doped Ga 1-x I
The use of a buffer layer having n x N suitable rutile crystal structure can be increased In composition ratio x of the semiconductor thin film 53,
The oscillation wavelength can be made longer.

【0039】尚、上記請求項2に記載の発明の第一およ
び第二の実施例において、半導体基板としてSi半導体
基板およびGaAs半導体基板を用いたが、上記半導体
基板としてルチル型結晶基板(例えばSnO2基板)を
用い、このルチル型結晶基板上にバッファ層としてルチ
ル型結晶薄膜(例えばRuO2薄膜)を形成し、このル
チル型結晶薄膜上に、窒素NをV族元素とする閃亜鉛鉱
型結晶構造のIII−V族半導体薄膜(例えばGaN薄
膜)を積層してもよい。尚、このGaN薄膜にpn接合
を形成し、電流注入による発光を行えば、図4に示す実
施例と同様に紫外光発光ダイオードとして使用できる。
In the first and second embodiments of the present invention, a Si semiconductor substrate and a GaAs semiconductor substrate are used as semiconductor substrates, but a rutile type crystal substrate (for example, SnO 2) is used as the semiconductor substrate. A rutile-type crystal thin film (for example, a RuO 2 thin film) as a buffer layer on the rutile-type crystal substrate, and a zinc-blende type using nitrogen N as a group V element on the rutile-type crystal thin film. A group III-V semiconductor thin film having a crystal structure (for example, a GaN thin film) may be laminated. If a pn junction is formed in this GaN thin film and light emission is performed by current injection, it can be used as an ultraviolet light emitting diode as in the embodiment shown in FIG.

【0040】また、上記バッファ層としてルチル型結晶
の多層構造およびルチル型結晶の組成傾斜型構造を採用
することが、高性能な半導体発光素子の作製に有効であ
ることは言うまでもない。
It is needless to say that employing a multilayer structure of a rutile crystal and a compositionally graded structure of a rutile crystal as the buffer layer is effective for manufacturing a high-performance semiconductor light emitting device.

【0041】バッファ層としてルチル型結晶の多層構造
を採用した請求項2に記載の発明の積層半導体の構造例
として、AlN/MnO2/PbO2/Si基板があげら
れる。この場合、発光層がAlNであるので200nm
の紫外光が得られる。
An AlN / MnO 2 / PbO 2 / Si substrate is an example of the structure of the laminated semiconductor according to the second aspect of the present invention in which a multilayer structure of a rutile crystal is employed as the buffer layer. In this case, since the light emitting layer is made of AlN, 200 nm
UV light is obtained.

【0042】また、バッファ層としてルチル型結晶の組
成傾斜型構造を採用した請求項2の積層半導体の構造例
として、Ga1-xInxN(x=0.25)/Mn1-w
w2(w=0→1)/GaP基板があげられる。この
場合、400nmの紫外光が得られる。
Further, as a structural example of the laminated semiconductor according to the second aspect of the present invention, wherein the composition gradient type structure of the rutile crystal is adopted as the buffer layer, Ga 1 -x In x N (x = 0.25) / Mn 1 -w M
g w F 2 (w = 0 → 1) / GaP substrate. In this case, 400 nm ultraviolet light is obtained.

【0043】[0043]

【発明の効果】以上の説明より明らかなように、請求項
1に記載の発明の積層半導体は、基板と、窒化物αN
(αは、Al,Ga,Inのうちのいずれか1つ、もし
くはAl,Ga,Inのうちの少なくとも2つの混合
物)からなる閃亜鉛鉱型結晶構造の III−V族半導体
薄膜との間に、ルチル型結晶構造を有する結晶薄膜をバ
ッファ層として形成したものである。したがって、請求
項1に記載の発明によれば、上記基板として、従来と同
じSiやGaAsを用いた場合でも、上記窒化物αNと
の格子不整合率がSi,GaAs結晶基板に比べて小さ
いバッファ層としてのルチル型結晶構造を有する結晶薄
膜によって、上記窒化物αNからなる閃亜鉛鉱型結晶構
造のIII−V族半導体薄膜の格子欠陥を従来例に比べ
て少なくすることができる。したがって、請求項1の発
明によれば、従来例と同じ基板を用いても、n型,p型
不純物ドーピングが容易な閃亜鉛鉱型結晶構造の上記半
導体薄膜の品質を従来例に比べて向上でき、高品質な半
導体発光素子の作製に適した積層半導体を実現できる。
As is clear from the above description, the laminated semiconductor according to the first aspect of the present invention comprises a substrate, a nitride αN
(Α is any one of Al, Ga, In, if
Or a mixture of at least two of Al, Ga, and In
Group III-V semiconductor having a zinc blende type crystal structure
A crystal thin film having a rutile crystal structure is
It is formed as a buffer layer. Therefore, the claim
According to the invention described in Item 1, the substrate is the same as the conventional substrate.
Even when Si or GaAs is used, the nitride αN
Lattice mismatch is smaller than that of Si and GaAs crystal substrates.
Crystal with rutile-type crystal structure as a thin buffer layer
Depending on the film, the zinc-blende type crystal structure composed of the nitride αN
Lattice defects of III-V semiconductor thin films
Can be reduced. Therefore, the invention of claim 1
According to the description, even if the same substrate as the conventional example is used, n-type and p-type
The above half of zinc blende type crystal structure which is easy to dope impurities
The quality of the conductor thin film can be improved compared to the
A laminated semiconductor suitable for manufacturing a conductor light emitting element can be realized.

【0044】また、上記請求項1に記載の発明におい
て、ルチル型結晶構造を有する結晶薄膜として、金属酸
化物MO2(Mは、Ti,V,Mn,Ru,Sn,O
s,Pbのうちのいずれか1つ、またはTi,V,M
n,Ru,Sn,Os,Pbのうちの少なくとも2つの
混合物)や金属弗化物MF2(MはMg,V,Mn,F
e,Co,Ni,Znのうちのいずれか1つ、またはM
g,V,Mn,Fe,Co,Ni,Znのうちの少なく
とも2つの混合物)を用いた場合には、上記ルチル型結
晶構造を有する結晶薄膜は、上記窒化物αNとの格子不
整合率が特に小さくなり、上記窒化物αNからなる閃亜
鉛鉱型結晶構造のIII−V族半導体薄膜の格子欠陥を
従来例に比べて特に少なくすることができる。したがっ
て、n型,p型不純物ドーピングが容易な閃亜鉛鉱型結
晶構造の上記半導体薄膜の品質を特に向上でき、高品質
な発光ダイオードやレーザダイオード等の半導体発光素
子の作製に特に適した積層半導体を実現できる。
[0044] Further, in the invention described in the claim 1, as a crystalline thin film having a rutile crystal structure, the metal oxide MO 2 (M is, Ti, V, Mn, Ru , Sn, O
any one of s, Pb, or Ti, V, M
n, Ru, Sn, Os, Pb) or metal fluoride MF 2 (M is Mg, V, Mn, F
e, one of Co, Ni, Zn, or M
g, V, Mn, a mixture of at least two of Fe, Co, Ni, and Zn), the crystal thin film having the rutile-type crystal structure has a lattice mismatch with the nitride αN. Particularly, the lattice defects of the group III-V semiconductor thin film having a zinc blende type crystal structure composed of the nitride αN can be particularly reduced as compared with the conventional example. Therefore, the quality of the semiconductor thin film having a zinc blende type crystal structure that can be easily doped with n-type and p-type impurities can be particularly improved, and a laminated semiconductor particularly suitable for manufacturing a high-quality semiconductor light emitting device such as a light emitting diode or a laser diode. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に記載の発明の実施例の積層構造を表
わす模式図である。(参考図)
FIG. 1 is a schematic view showing a laminated structure according to an embodiment of the present invention. (Reference diagram)

【図2】請求項2に記載の発明の第一の実施例の積層構
造を表わす模式図である。
FIG. 2 is a schematic view showing a laminated structure according to a first embodiment of the present invention.

【図3】請求項2に記載の発明の第二の実施例の積層構
造を表わす模式図である。
FIG. 3 is a schematic view showing a laminated structure according to a second embodiment of the present invention.

【図4】図1に示す半導体薄膜を発光層とした実施例を
示す模式図である。
FIG. 4 is a schematic diagram showing an example in which the semiconductor thin film shown in FIG. 1 is used as a light emitting layer.

【図5】図2に示す半導体薄膜を発光層とした実施例を
示す模式図である。
FIG. 5 is a schematic view showing an example in which the semiconductor thin film shown in FIG. 2 is used as a light emitting layer.

【図6】図3に示す半導体薄膜を発光層とした実施例を
示す模式図である。
FIG. 6 is a schematic diagram showing an example in which the semiconductor thin film shown in FIG. 3 is used as a light emitting layer.

【図7】閃亜鉛鉱型窒化物混晶の格子定数と禁制帯幅を
表わす図である。
FIG. 7 is a diagram showing a lattice constant and a forbidden band width of a zinc blende type nitride mixed crystal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲吉▼田 智彦 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 須山 尚宏 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 幡 俊雄 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 大林 健 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 平5−283744(JP,A) 特開 平3−211888(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 33/00 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor ▲ Yoshi ▼ Tomohiko Tadashi 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside (72) Inventor Naohiro Suyama 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Toshio Hata 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka Prefecture Inside Sharp Corporation (72) Inventor Ken Takeshi 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka Sharp Corporation (56 References JP-A-5-283744 (JP, A) JP-A-3-211888 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 33/00 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板と、窒化物αN(αは、Al,G
a,Inのうちのいずれか1つ、もしくはAl,Ga,
Inのうちの少なくとも2つの混合物)からなる閃亜鉛
鉱型結晶構造のIII−V族半導体薄膜との間に、ルチ
ル型結晶構造を有する結晶薄膜をバッファ層として形成
したことを特徴とする積層半導体。
A substrate and a nitride αN (α is Al, G
a, In, one of Al, Ga,
Zinc blend comprising at least two of In)
Between the III-V semiconductor thin film having an ore-type crystal structure;
Of a crystal thin film with a crystal structure as a buffer layer
A laminated semiconductor characterized by the following.
【請求項2】 上記結晶薄膜として、金属酸化物MO 2
(Mは、Ti,V,Mn,Ru,Sn,Os,Pbのう
ちのいずれか1つ、またはTi,V,Mn,Ru,S
n,Os,Pbのうちの少なくとも2つの混合物)を用
いたことを特徴とする請求項1に記載の積層半導体。
2. The method according to claim 1, wherein the crystalline thin film is a metal oxide MO 2.
(M is Ti, V, Mn, Ru, Sn, Os, Pb
Any one of Ti, V, Mn, Ru, S
a mixture of at least two of n, Os and Pb)
The stacked semiconductor according to claim 1, wherein
【請求項3】 上記結晶薄膜として、金属弗化物MF 2
(Mは、Mg,V,Mn,Fe,Co,Ni,Znのう
ちのいずれか1つ、またはMg,V,Mn,Fe,C
o,Ni,Znのうちの少なくとも2つの混合物)を用
いたことを特徴とする請求項1に記載の積層半導体。
3. The method according to claim 1, wherein the crystal thin film is a metal fluoride MF 2.
(M is Mg, V, Mn, Fe, Co, Ni, Zn
Any one of the following, or Mg, V, Mn, Fe, C
o, Ni, and Zn).
The stacked semiconductor according to claim 1, wherein
JP34840092A 1992-01-28 1992-12-28 Stacked semiconductor Expired - Fee Related JP2883504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34840092A JP2883504B2 (en) 1992-01-28 1992-12-28 Stacked semiconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-12792 1992-01-28
JP1279292 1992-01-28
JP34840092A JP2883504B2 (en) 1992-01-28 1992-12-28 Stacked semiconductor

Publications (2)

Publication Number Publication Date
JPH05275745A JPH05275745A (en) 1993-10-22
JP2883504B2 true JP2883504B2 (en) 1999-04-19

Family

ID=26348457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34840092A Expired - Fee Related JP2883504B2 (en) 1992-01-28 1992-12-28 Stacked semiconductor

Country Status (1)

Country Link
JP (1) JP2883504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812051B2 (en) 2001-05-21 2004-11-02 Nec Corporation Method of forming an epitaxially grown nitride-based compound semiconductor crystal substrate structure and the same substrate structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181386A (en) * 1994-12-22 1996-07-12 Matsushita Electric Ind Co Ltd Semiconductor optical element
JPH10242579A (en) * 1997-02-27 1998-09-11 Sharp Corp Nitride iii-v compound semiconductor device
CN103996757B (en) * 2014-05-30 2016-09-07 西安神光皓瑞光电科技有限公司 One utilizes TiO2nano-pipe array thin film improves the method for LED luminance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812051B2 (en) 2001-05-21 2004-11-02 Nec Corporation Method of forming an epitaxially grown nitride-based compound semiconductor crystal substrate structure and the same substrate structure

Also Published As

Publication number Publication date
JPH05275745A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
US7622398B2 (en) Semiconductor device, semiconductor layer and production method thereof
US5679965A (en) Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US8314415B2 (en) Radiation-emitting semiconductor body
JP2932467B2 (en) Gallium nitride based compound semiconductor light emitting device
US6198112B1 (en) III-V compound semiconductor luminescent device
CN110112273B (en) Deep ultraviolet LED epitaxial structure, preparation method thereof and deep ultraviolet LED
US20100102309A1 (en) ZNO-Based Semiconductor Element
US7943949B2 (en) III-nitride based on semiconductor device with low-resistance ohmic contacts
US7847280B2 (en) Nonpolar III-nitride light emitting diodes with long wavelength emission
US8030682B2 (en) Zinc-blende nitride semiconductor free-standing substrate, method for fabricating same, and light-emitting device employing same
JPH08293624A (en) Light emitting semiconductor device
US20040227150A1 (en) ZnO system semiconductor device
JP2006332611A (en) Nitride semiconductor element
US20230420617A1 (en) Nitride based ultraviolet light emitting diode with an ultraviolet transparent contact
US20120126283A1 (en) High power, high efficiency and low efficiency droop iii-nitride light-emitting diodes on semipolar substrates
JP2883504B2 (en) Stacked semiconductor
US7015515B2 (en) Group III nitride compound semiconductor device having a superlattice structure
US6864502B2 (en) III group nitride system compound semiconductor light emitting element
JP2007042771A (en) P-type wide gap semiconductor
US20090078961A1 (en) Nitride-based light emitting device
JP3192560B2 (en) Semiconductor light emitting device
US20130069035A1 (en) Semiconductor light emitting device
JP2995186B1 (en) Semiconductor light emitting device
KR20160023155A (en) Green light emitting device including quaternary quantum well on a vicinal c-plane
JP7338166B2 (en) semiconductor equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080205

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120205

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees