JP2878061B2 - Dirt management method for heat exchanger cooling pipe and dirt management device - Google Patents
Dirt management method for heat exchanger cooling pipe and dirt management deviceInfo
- Publication number
- JP2878061B2 JP2878061B2 JP7859993A JP7859993A JP2878061B2 JP 2878061 B2 JP2878061 B2 JP 2878061B2 JP 7859993 A JP7859993 A JP 7859993A JP 7859993 A JP7859993 A JP 7859993A JP 2878061 B2 JP2878061 B2 JP 2878061B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- cooling pipe
- cooling
- heat exchanger
- potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Prevention Of Electric Corrosion (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は熱交換器冷却管の汚れ管
理方法およびその汚れ管理装置に関し、特に冷却管表面
に形成されるスライム等の汚れ除去程度をリアルタイム
に把握し、洗浄過剰による冷却管の保護皮膜損傷による
腐食を最小限にとどめることを可能とした熱交換器冷却
管の汚れ管理方法およびその汚れ管理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dirt management method and a dirt management device for a heat exchanger cooling pipe, and more particularly to real-time monitoring of the degree of dirt removal such as slime formed on the cooling pipe surface and cooling by excessive washing. The present invention relates to a dirt management method and a dirt management device for a heat exchanger cooling pipe, which can minimize corrosion due to damage to a protective coating of the pipe.
【0002】[0002]
【従来の技術】海水を使用する熱交換器冷却管は、冷却
水中の海生物や海土中の泥および冷却管の防食剤として
供給する鉄イオンによる鉄コロイドがその内面に付着
し、設備の熱貫流率の低下を招く問題が生ずる。このよ
うな汚れの中で、問題となるのが海生物の夏期付着であ
り、特に夏期の電力設備において電力需要が緊迫してい
る最中に冷却管内面に汚れとして付着し、発電効率の低
下を招く。このような海生物を含んだネバネバした汚れ
を一般にスライムと呼んでいるが、このスライムを除去
するにはボール洗浄またはブラシ洗浄、ジェット洗浄を
適宜行なう必要がある。しかし、ブラシ洗浄およびジェ
ット洗浄は設備を一時(数日)休止する必要があり、夏
期では設備を休止する必要のないボール洗浄が主に行な
われている。しかし、ボール洗浄による過剰な洗浄は、
冷却管の保護皮膜、特に銅合金部材の保護皮膜を破壊す
ることになり、水の乱れにより腐食環境のきびしい冷却
管の入口部ではインレットアタックを発生させ、最悪の
場合には冷却管の腐食による貫通で設備も突然休止する
事態に陥ることもある。従って、洗浄は必要最小限にと
どめる必要がある。2. Description of the Related Art In a heat exchanger cooling pipe using seawater, iron vesicles supplied by sea ions in the cooling water, mud in the sea soil, and iron ions supplied as an anticorrosive agent for the cooling pipe adhere to the inner surface of the cooling pipe, and the equipment is installed in the cooling pipe. There is a problem that the heat transmission coefficient decreases. Among such dirt, the problem is the adhesion of marine organisms in the summer, especially when the power demand is tight in the summertime power equipment, the dirt adheres to the inner surface of the cooling pipe, and the power generation efficiency decreases. Invite. The sticky dirt containing such marine organisms is generally called slime. To remove the slime, it is necessary to appropriately perform ball washing, brush washing, or jet washing. However, brush cleaning and jet cleaning require a temporary (several days) suspension of equipment, and ball cleaning that does not require suspension of equipment is mainly performed in summer. However, excessive cleaning by ball cleaning
The protective coating of the cooling pipe, especially the protective coating of the copper alloy member, will be destroyed, and turbulence in the water will cause an inlet attack at the entrance of the cooling pipe in a corrosive environment. In some cases, the equipment suddenly stops due to penetration. Therefore, cleaning must be kept to a minimum.
【0003】ところで、汚れの把握方法としては、従来
から真空度偏差を利用する方法が採られているが、この
方法は、冷却管に汚れが付着すると熱貫流率の低下を生
じ、発電プラント等の設備の蒸気側の真空度に影響する
ことを用いて真空度偏差値から汚れの状態を把握する方
法である。かかる真空度偏差は(実測真空度)ー(予想
真空度)の値であり、予想真空度は設備の容量、冷却水
温、冷却水量等によって設備ごとに計算で求めている。[0003] Incidentally, as a method of grasping dirt, a method utilizing the degree of vacuum deviation has conventionally been adopted. However, in this method, when dirt adheres to the cooling pipe, the heat transmission coefficient decreases, and a power plant or the like is deteriorated. This is a method of grasping the state of contamination from the degree of vacuum deviation value by using the influence on the degree of vacuum on the steam side of the equipment. Such a vacuum degree deviation is a value of (actually measured vacuum degree)-(expected vacuum degree), and the expected vacuum degree is obtained by calculation for each equipment based on the capacity of the equipment, cooling water temperature, cooling water amount, and the like.
【0004】しかるに、従来より用いられている真空度
偏差は、発電負荷によって異なる値を示し、また冷却水
温度、冷却機器の効率も含まれてしまい、常に一定条件
での冷却管内面の汚れだけを抽出して管理できないとい
う欠点がある。従って、ボール洗浄にあたっては洗浄に
よる効果は管理できないため、経験的に冷却管1本当り
10回もしくは20回洗浄するということを予め決めて
洗浄している現状である。However, the degree of vacuum deviation conventionally used varies depending on the power generation load, and also includes the temperature of the cooling water and the efficiency of the cooling equipment. There is a drawback that it cannot be extracted and managed. Therefore, since the effect of the cleaning cannot be controlled in the ball cleaning, it is a current situation that the cleaning is empirically determined to be performed 10 or 20 times per one cooling pipe.
【0005】また、冷却管の自然電位を検出して予め設
定した値より大きくなったときに洗浄装置を働かす方法
も知られている(特開平2−157599号公報、特開
平4−278198号公報)。There is also known a method in which the natural potential of the cooling pipe is detected and the cleaning device is activated when the value becomes larger than a preset value (JP-A-2-157599 and JP-A-4-278198). ).
【0006】これらの方法は、検出した自然電位が汚れ
のスライムだけでなく冷却管表面に生成する緑青等の腐
食生成物によっても設定した値より大きくなる場合があ
るため、必ずしも汚れだけを検知できないという欠点が
ある。さらにこれらの方法は、予め基準値を実験や解析
から求めておく必要があるが、施設毎に求めることはも
ちろん、同一施設においても季節等に環境の変化によっ
て基準値を求め直さなければ正確なデータが得られない
という繁雑さがある。[0006] In these methods, since the detected natural potential may become larger than the set value not only due to the slime of the dirt but also due to corrosion products such as patina formed on the surface of the cooling pipe, it is not always possible to detect only the dirt. There is a disadvantage that. Further, in these methods, it is necessary to obtain a reference value from experiments and analysis in advance, but it is necessary to obtain the reference value not only for each facility, but also for the same facility if the reference value is not determined again due to changes in the environment due to seasonal changes. There is the complexity that data cannot be obtained.
【0007】[0007]
【発明が解決しようとする課題】本発明は、これら従来
技術の課題を解消し、最適な洗浄が可能となり、過剰洗
浄による保護皮膜の破壊を防止すると共に、洗浄の目安
がつき、しかも基準値を必要としない、簡便な熱交換器
冷却管の汚れ管理方法およびその汚れ管理装置を提供す
ることを目的とする.DISCLOSURE OF THE INVENTION The present invention solves these problems of the prior art, enables optimal cleaning, prevents the destruction of the protective film due to excessive cleaning, provides a standard for cleaning, and provides a reference value. It is an object of the present invention to provide a simple method for managing dirt of a heat exchanger cooling pipe and a dirt management device which does not require a heat exchanger.
【0008】[0008]
【課題を解決するための手段】本発明の上記目的は、従
来より用いられている電気防食装置を使用し、通電電流
による変化または通電電流で冷却水中のスライムの汚れ
の程度および除去程度を管理することによって達成され
る。SUMMARY OF THE INVENTION The object of the present invention is to control the degree of slime contamination and the degree of removal of slime in cooling water by a change due to an electric current or an electric current by using a conventionally used cathodic protection device. Is achieved by doing
【0009】すなわち、本発明の熱交換器冷却管の汚れ
管理方法は、冷却水中に設けた電極から冷却水を通して
冷却管が定電位になるように電位測定装置および定電位
制御付直流電源装置を用いて通電し、該冷却管の内面に
付着している汚れの除去を継続するに伴なう通電電流の
減少を電流検出装置で測定すると共に、定間隔後の電流
低減率が零あるいは零に近づいたことを電流判定装置に
よって判別した時に、該冷却管の洗浄装置をOFFする
ことを特徴とする。That is, the method for managing contamination of a heat exchanger cooling pipe according to the present invention comprises a potential measuring device and a DC power supply with constant potential control so that the cooling pipe has a constant potential through the cooling water from an electrode provided in the cooling water. When the current is reduced and the current reduction rate after a fixed interval is reduced to zero or zero, the decrease in the current flowing with the removal of the dirt adhering to the inner surface of the cooling pipe is measured. When the approach is determined by the current determination device, the cleaning device for the cooling pipe is turned off.
【0010】また、本発明の熱交換器冷却管の汚れ管理
装置は、冷却水中に設けた電極と、該電極から冷却管が
定電位になるように通電するための電位測定装置および
定電位制御付直流電源装置と、通電電流値を測定する電
流検出装置と、これら検出された定間隔後の電流低減率
が零あるいは零に近づいた時、ボール洗浄装置をOFF
する制御信号を出力する電流判定装置とを備えてなるこ
とを特徴とする。The present invention also provides a dirt management apparatus for a cooling pipe of a heat exchanger, comprising: an electrode provided in cooling water; a potential measuring device for applying a current from the electrode so that the cooling pipe has a constant potential; A DC power supply unit, a current detection device that measures the value of the energizing current, and a ball cleaning device that is turned off when the detected current reduction rate after a fixed interval is zero or approaches zero.
And a current judging device for outputting a control signal.
【0011】[0011]
【作用】冷却管内面にスライムが形成されるとスライム
の触媒作用によりカソード反応が増加することは知られ
ている。つまり、電気防食装置においてスライムの有無
による洗浄前後の分極曲線を示すと図1となる。It is known that when slime is formed on the inner surface of the cooling pipe, the cathode reaction increases due to the catalytic action of the slime. That is, FIG. 1 shows a polarization curve before and after washing depending on the presence or absence of slime in the cathodic protection device.
【0012】ここで通電電位をH2の発生付近の電位d
より貴なcに設定すると洗浄に従って電流はaからbに
移行する。本発明では、この電流低減率を判別すること
によって行なわれる。Here, the conduction potential is set to a potential d near the generation of H 2.
If the value is set to more noble c, the current changes from a to b according to the cleaning. In the present invention, the determination is made by determining the current reduction rate.
【0013】[0013]
【実施例】以下、本発明の実施例を図2を参照しながら
説明する。図2は本発明の汚れ管理装置を熱交換器の冷
却管に適用した状態を示す構成図であり、同図におい
て、1は通電装置、2はボール洗浄装置、3は通電用電
極、4は照合電極、5は冷却管、6は水室、7は排流マ
イナス点、8は電位測定用マイナス点、9は電流回路
(直流電源装置)、10は定電位検出回路および電位測
定回路(電位測定装置)、11は電流検出装置、12は
電流判定装置、13はスクリーン、14はボール捕集
器、15は制御盤、16はポンプ、17は注入用ノズ
ル、18は循環水管、19は管板をそれぞれ示す。An embodiment of the present invention will be described below with reference to FIG. FIG. 2 is a configuration diagram showing a state in which the dirt management device of the present invention is applied to a cooling pipe of a heat exchanger. In FIG. 2, 1 is an energizing device, 2 is a ball cleaning device, 3 is an energizing electrode, and 4 is an energizing electrode. The reference electrode, 5 is a cooling pipe, 6 is a water chamber, 7 is a drain negative point, 8 is a negative point for measuring potential, 9 is a current circuit (DC power supply), 10 is a constant potential detecting circuit and a potential measuring circuit (potential Measuring device), 11 is a current detecting device, 12 is a current determining device, 13 is a screen, 14 is a ball collector, 15 is a control panel, 16 is a pump, 17 is an injection nozzle, 18 is a circulating water pipe, and 19 is a pipe. The plates are shown respectively.
【0014】図2において、冷却管5はアルミニウム黄
銅管であり、両側は内面をライニングされた鋼板の水室
6および冷却水を導く循環水管18に接続されている。
また、管板19も絶縁されたネ−バル黄銅にて作製され
ている。この冷却管以外の管板面および水室内壁は、絶
縁コーティングを施し、冷却管以外に電流が流れたり、
また他の電位を計測してしまうなどの誤まりを避ける必
要がある。水室6に設けられた通電用電極3と復水器の
排流マイナス点7と電位を計測するだけの照合電極4、
電位測定用マイナス点8が管板19に設けられる。In FIG. 2, the cooling pipe 5 is an aluminum brass pipe, and both sides thereof are connected to a water chamber 6 of a steel sheet lined on the inner surface and a circulating water pipe 18 for guiding cooling water.
The tube sheet 19 is also made of insulated neval brass. Insulation coating is applied to the tube sheet surface and the inner wall of the water chamber other than this cooling pipe,
Further, it is necessary to avoid errors such as measurement of other potentials. A conducting electrode 3 provided in a water chamber 6, a discharge minus point 7 of a condenser, and a reference electrode 4 for merely measuring a potential;
A minus point 8 for potential measurement is provided on the tube sheet 19.
【0015】通電装置1は、電流回路(直流電源装置)
9と定電位検出回路および電位測定回路(電位測定装
置)10より構成される。この通電装置は、外部電源方
式による電気防食装置を兼ねたもので可能であり、既存
の電気防食装置にボール洗浄開始の信号を受けとり、電
流の変化をリアルタイムで表示し減少率が既定値以下と
なったときに、ボール洗浄装置にボール洗浄終了の信号
を出力する装置を付加することで監視が可能である。The power supply device 1 is a current circuit (DC power supply device)
9, a constant potential detecting circuit and a potential measuring circuit (potential measuring device) 10. This energizing device can also be used as an anticorrosion device using an external power supply system, receives a signal for starting ball cleaning in the existing anticorrosion device, displays the change in current in real time, and indicates that the reduction rate is less than a predetermined value. When this happens, monitoring can be performed by adding a device that outputs a signal indicating the end of ball cleaning to the ball cleaning device.
【0016】直流電流は通電電極3から海水を通して冷
却管5に流す。また、管板19には冷却管5の電位を検
出する照合電極4が設けられ通電電位が一定になるよう
に電流が変化するように定電位検出回路および電位測定
回路(電位測定装置)10がある。この照合電極は正確
な電位計測が必要であることから冷却管近傍に設置す
る。A direct current is passed from the electrode 3 to the cooling pipe 5 through seawater. A reference electrode 4 for detecting the potential of the cooling pipe 5 is provided on the tube sheet 19, and a constant potential detection circuit and a potential measurement circuit (potential measurement device) 10 are provided so that the current changes so that the conduction potential becomes constant. is there. This reference electrode is placed near the cooling pipe because accurate potential measurement is required.
【0017】ボール洗浄装置2には、スクリーン13、
ボール捕集器14、制御盤15、ポンプ16、注入用ノ
ズル17より構成される。The ball cleaning device 2 includes a screen 13,
It comprises a ball collector 14, a control panel 15, a pump 16, and an injection nozzle 17.
【0018】ボール洗浄開始時には、制御盤15から電
流判定装置12に洗浄開始の信号が送られ、監視が開始
される。スライムの除去と共に定電位制御にて電位は一
定となるが電流が減少してくる。この電流値を電流検出
装置11で測定し、さらに電流の変化を電流判定装置1
2で電流の減少をリアルタイムで監視する。減少率があ
る値以下(減少曲線がフラット)となったときに電流検
出装置11からボール捕集器14にボール洗浄終了の信
号を送り、洗浄は終了する。At the start of ball cleaning, a control signal is sent from the control panel 15 to the current judging device 12 to start monitoring. As the slime is removed, the potential becomes constant by constant potential control, but the current decreases. This current value is measured by the current detection device 11, and the change in the current is measured by the current determination device 1.
In step 2, the decrease in current is monitored in real time. When the decrease rate becomes equal to or less than a certain value (the decrease curve is flat), a signal for ending the ball washing is sent from the current detecting device 11 to the ball collector 14, and the washing is ended.
【0019】このような監視装置を使って、実際に熱交
換器冷却管に適用した場合のボール洗浄時の通電電流の
変化を図3に示す。また、従来より用いられている真空
度偏差の変化を図4に示す。FIG. 3 shows a change in the current supplied during the ball washing when the monitoring apparatus is actually applied to a heat exchanger cooling pipe. FIG. 4 shows changes in the degree of vacuum deviation conventionally used.
【0020】図3ではボール洗浄に伴ない、通電電流が
減少していく様子が分かる。一方、図4での真空度偏差
ではボール洗浄中に真空度偏差が低下してしまい不自然
な結果がでている。FIG. 3 shows that the energizing current decreases as the ball is washed. On the other hand, with the degree of vacuum deviation in FIG. 4, the degree of vacuum deviation decreases during the ball cleaning, which results in an unnatural result.
【0021】図3において、(イ)はボール洗浄をスラ
イムの除去完了時に中止した場合で、中止後はスライム
の付着に従って徐々に電流が増加する。これに反して
(ロ)のようにボール洗浄を中止しない場合は、限界点
をすぎると保護皮膜の破壊が始まるために電流の急激な
増加が見られる。この低減率は次の様である。低減率=
(29.277−28.250)A/30分=0.03
4In FIG. 3, (a) shows the case where the ball washing is stopped when the slime removal is completed. After the stop, the current gradually increases as the slime adheres. On the other hand, when the ball cleaning is not stopped as in (b), the current suddenly increases because the protective film starts to break down beyond the limit point. This reduction rate is as follows. Reduction rate =
(29.277-28.250) A / 30 min = 0.03
4
【0022】[0022]
【発明の効果】以上述べたように、本発明によって、最
適な洗浄が可能となり、過剰洗浄による保護皮膜の破壊
を防止すると共に、洗浄の目安が可能となる。また、本
発明では、測定した値を基準値と比較する必要がないか
ら、基準値を求めるために要する労力を必要とせず、ま
た得られた基準値の正確性について判断する必要もな
い。As described above, according to the present invention, the optimum cleaning can be performed, the destruction of the protective film due to the excessive cleaning can be prevented, and the cleaning can be estimated. Further, in the present invention, since it is not necessary to compare the measured value with the reference value, no labor is required for obtaining the reference value, and there is no need to judge the accuracy of the obtained reference value.
【図1】 洗浄前後による電流電圧と電位の変化を示す
グラフ。FIG. 1 is a graph showing changes in current voltage and potential before and after washing.
【図2】 本発明の汚れ管理装置を熱交換器の冷却管に
適用した状態を示す構成図。FIG. 2 is a configuration diagram showing a state in which the dirt management device of the present invention is applied to a cooling pipe of a heat exchanger.
【図3】 ボール洗浄時の通電電流の変化を示すグラ
フ。FIG. 3 is a graph showing a change in an energizing current during ball cleaning.
【図4】 ボール洗浄時の真空度偏差の変化を示すグラ
フ。FIG. 4 is a graph showing a change in a degree of vacuum deviation during ball cleaning.
1:通電装置、2:ボール洗浄装置、3:通電用電極、
4:照合電極、5:冷却管、6:水室、7:排流マイナ
ス点、8:電位測定用マイナス点、9:電流回路(電源
装置)、10:定電位検出回路および電位測定回路(電
位測定装置)、11:電流検出装置、12:電流判定装
置、13:スクリーン、14:ボール捕集器、15:制
御盤、16:ポンプ、17:注入用ノズル、18:循環
水管、19:管板。1: energizing device, 2: ball cleaning device, 3: energizing electrode,
4: Reference electrode, 5: Cooling pipe, 6: Water chamber, 7: Negative discharge point, 8: Negative point for potential measurement, 9: Current circuit (power supply device), 10: Constant potential detection circuit and potential measurement circuit ( 11: current detector, 12: current detector, 13: screen, 14: ball collector, 15: control panel, 16: pump, 17: injection nozzle, 18: circulating water pipe, 19: Tube sheet.
Claims (2)
て冷却管が定電位になるように電位測定装置および定電
位制御付直流電源装置を用いて通電し、該冷却管の内面
に付着している汚れの除去を継続するに伴なう通電電流
の減少を電流検出装置で測定すると共に、定間隔後の電
流低減率が零あるいは零に近づいたことを電流判定装置
によって判別した時に、該冷却管の洗浄装置をOFFす
ることを特徴とする熱交換器冷却管の汚れ管理方法。An electric current is applied by using a potential measuring device and a DC power supply device with a constant potential control so that the cooling pipe has a constant potential through the cooling water from an electrode provided in the cooling water, and adheres to an inner surface of the cooling pipe. The current detecting device measures the decrease in the energizing current accompanying the continuation of the removal of the contaminants, and when the current determining device determines that the current reduction rate after the regular interval is zero or approaches zero, the cooling is performed. A dirt management method for a heat exchanger cooling pipe, comprising turning off a pipe cleaning device.
却管が定電位になるように通電するための電位測定装置
および定電位制御付直流電源装置と、通電電流値を測定
する電流検出装置と、これら検出された定間隔後の電流
低減率が零あるいは零に近づいた時、ボール洗浄装置を
OFFする制御信号を出力する電流判定装置とを備えて
なることを特徴とする熱交換器冷却管の汚れ管理装置。2. An electrode provided in cooling water, a potential measuring device and a DC power supply device with a constant potential control for supplying a current from the electrode to the cooling pipe so as to have a constant potential, and a current detection device for measuring a supplied current value. A heat exchanger comprising: a device; and a current judging device that outputs a control signal for turning off the ball cleaning device when the detected current reduction rate after the detected regular interval becomes zero or approaches zero. Cooling pipe dirt management device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7859993A JP2878061B2 (en) | 1993-03-15 | 1993-03-15 | Dirt management method for heat exchanger cooling pipe and dirt management device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7859993A JP2878061B2 (en) | 1993-03-15 | 1993-03-15 | Dirt management method for heat exchanger cooling pipe and dirt management device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06265294A JPH06265294A (en) | 1994-09-20 |
JP2878061B2 true JP2878061B2 (en) | 1999-04-05 |
Family
ID=13666372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7859993A Expired - Fee Related JP2878061B2 (en) | 1993-03-15 | 1993-03-15 | Dirt management method for heat exchanger cooling pipe and dirt management device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2878061B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101414291B1 (en) * | 2013-07-11 | 2014-07-01 | 한국정수공업 주식회사 | Cleaning Method and Apparatus of Heat Exchanger by Observing Corrosion Current |
-
1993
- 1993-03-15 JP JP7859993A patent/JP2878061B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06265294A (en) | 1994-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5581189A (en) | Water purity testing system having reversing polarity | |
JPH07146263A (en) | Estimation method for fouling coefficient of heat exchanger | |
JP2878061B2 (en) | Dirt management method for heat exchanger cooling pipe and dirt management device | |
US20040031697A1 (en) | Electrochemical scale inhibition | |
JP3139938B2 (en) | Cathodic protection current monitor and monitoring system using the same | |
JP3518463B2 (en) | Aqueous water treatment method | |
JP3314645B2 (en) | How to monitor pitting | |
WO1986001837A1 (en) | Corrosion protection for heat exchangers | |
JP3867357B2 (en) | Metal corrosion monitoring method | |
CN109913877B (en) | Easy-to-replace cathode protection device for large drum-shaped rotary filter screen | |
JP3348633B2 (en) | Corrosion protection method and electrolytic protection device for seawater cooling water system equipment by constant potential external power supply system | |
JP3177049B2 (en) | Corrosion protection potential estimation method | |
JP3368539B2 (en) | Industrial cooling water system failure prevention management system and its control method | |
JP3084155B2 (en) | Method and apparatus for estimating corrosion prevention potential of buried pipe | |
JP2000009674A (en) | Method for monitoring metal corrosion and method for preventing metal corrosion | |
JP3084154B2 (en) | Estimation method of anticorrosion potential of buried pipe | |
JP2794772B2 (en) | Prediction method of corrosion of water-based metal | |
JP3117015B2 (en) | Anticorrosive additive device | |
JP6927812B2 (en) | Anticorrosion system and anticorrosion method | |
US20230366103A1 (en) | Methods for controlling and monitoring the degree of cathodic protection for metal structures and buried pipelines using coupled multielectrode sensors | |
EP0324440A1 (en) | Cathodic protection apparatus in systems for the circulation of corrosive liquids | |
JP3250505B2 (en) | Slime or scale adhesion detector | |
JPH0445396A (en) | Operation control device for heat exchanger washing apparatus | |
JPH04278198A (en) | Control method of contamination of copper alloy member | |
JPH1136088A (en) | Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090122 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090122 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100122 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100122 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110122 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20110122 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20120122 |
|
LAPS | Cancellation because of no payment of annual fees |