JP3867357B2 - Metal corrosion monitoring method - Google Patents

Metal corrosion monitoring method Download PDF

Info

Publication number
JP3867357B2
JP3867357B2 JP21326297A JP21326297A JP3867357B2 JP 3867357 B2 JP3867357 B2 JP 3867357B2 JP 21326297 A JP21326297 A JP 21326297A JP 21326297 A JP21326297 A JP 21326297A JP 3867357 B2 JP3867357 B2 JP 3867357B2
Authority
JP
Japan
Prior art keywords
corrosion
potential
dirt
water
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21326297A
Other languages
Japanese (ja)
Other versions
JPH1151849A (en
Inventor
一 井芹
邦幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP21326297A priority Critical patent/JP3867357B2/en
Publication of JPH1151849A publication Critical patent/JPH1151849A/en
Application granted granted Critical
Publication of JP3867357B2 publication Critical patent/JP3867357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水に接触した耐食性金属の腐食をモニタリング(監視、検出又は推定)する方法に関し、詳しくは、耐食性金属の腐食を予知するとともに、腐食の要因を速やかに推定し、適切かつ迅速な防食対策を講じることを可能とする腐食モニタリング方法に関する。
【0002】
【従来の技術】
冷却水系のような淡水環境下においては、ステンレス鋼などの耐食性金属は一般に不動態化しているが、これらの耐食性金属であっても、例えば、過剰な酸化剤の存在や金属表面への微生物汚れの付着等の環境変化によって、すきま腐食、孔食、応力腐食割れなどの局部腐食が発生する可能性がある(中原正大;材料と環境,41(1),56(1992))。環境変化によって耐食性金属の腐食が進行する場合、当該金属の腐食電位が変化することが知られており、従って、腐食をモニタリングする方法として、従来、金属と水とが接触している系において、金属の腐食電位を測定する方法(特開平5−98476号公報)が知られている。
【0003】
【発明が解決しようとする課題】
しかし、腐食電位の測定だけでは、電位変化によって腐食の進行を予知することはできるが、この電位変化の要因が何であるか、即ち、腐食の要因が何であるかを推定することは困難であった。
【0004】
従って、電位変化によって腐食の進行を予知できても、これを受けて迅速かつ適切な防食対策を講じることができないという問題があった。
【0005】
本発明は、上記従来の問題点を解決し、腐食を予知するだけでなく、腐食の要因も速やかに推定することができ、これにより適切かつ迅速な防食対策を講じることを可能とする耐食性金属の腐食モニタリング方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の金属の腐食モニタリング方法は、液体中の耐食性金属の腐食をモニタリングする方法において、該耐食性金属の腐食電位の変化と、該水系の汚れの付着量とを測定し、この測定結果に基づいてモニタリングする金属の腐食モニタリング方法であって、測定の結果、腐食電位が増大しないときは、腐食の進行はないと判定し、腐食電位と汚れの付着量が共に増大するときは、腐食が進行し、その原因が汚れにあると判定し、腐食電位は増大するが、汚れの付着量は増大していないときは、腐食が進行し、その原因は汚れ以外であると推定することを特徴とする。
【0007】
このように腐食電位と、該水系の汚れ付着量とに基づいてモニタリングすることにより、腐食の予知とその要因の推定が速やかに行える。即ち、腐食電位が増大しないとき、腐食の進行はないと判定できる。腐食電位と汚れ付着量が共に増大するときは、腐食が進行し、その原因が汚れにあると判定できる。また、腐食電位は増大するが、汚れ付着量は増大していないときは、腐食が進行し、その原因は汚れ以外であると推定できる。
【0008】
本発明において、耐食性金属としては、ステンレス鋼、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、クロム、クロム合金、モリブデン、モリブデン合金、タングステン、又はタングステン合金が挙げられる。
【0009】
耐食性金属の汚れの付着量は差圧変化により測定するのが好ましく、また、汚れ付着量は、腐食電位を測定している耐食性金属に対して測定するのが好ましい。
【0010】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
【0011】
本発明の金属の腐食モニタリング方法では、モニタリングを実施する水系の水(以下、「試験水」と称す。)に接触した耐食性金属の腐食電位とその水系における汚れの付着量とを同時にモニタリングすることによって、腐食の進行状況を予知すると共に腐食の要因を推定する。汚れの付着は腐食進行の要因となる場合が多く、汚れの付着量をモニタリングすることによって、腐食の要因が推定でき、従って腐食の要因に応じて当該水系に有効な防食対策を判定できる。
【0012】
腐食電位は、試験水と接触し、かつ周囲から電気的に絶縁された耐食性金属と、同水中に浸漬した参照電極(基準電極)との間の電位差を経時的に測定することによってモニタリングする。
【0013】
腐食電位測定用耐食性金属には、導線を接続し、この導線を介して電位を測定する。電位測定は、ポテンショメーター、デジタルマルチメーター、テスタ、電圧入力のA/D変換機器を利用したコンピューターによる測定など、どのような方法でも良い。
【0014】
腐食電位測定用耐食性金属と試験水の接触方法は、腐食電位測定用耐食性金属が周囲の配管などから電気的に絶縁されていて、腐食電位測定時に使用する導線と電位測定用耐食性金属の接続部が試験水と直接触れないようになっていればどのような方法でもよいが、一般的には、電気的に絶縁した耐食性金属製の電位測定用チューブ内に試験水を通水するのが望ましい。また、このチューブを加熱しながら腐食電位を測定してもよく、この場合、加熱方法としては蒸気等の加熱流体を用いる方法、或いは、電気エネルギーによる面状発熱体を用いる方法などがある。
【0015】
なお、このチューブ内を流通させる試験水の流速も同時にモニタリングするのが望ましい。
【0016】
一方、モニタリングを実施する水系の汚れの付着量を知る方法としては、浸漬したゴム板への汚れの付着量を定期的に測定する方法や、汚れの付着によるチューブ内の差圧変化から付着量を知る方法(NACE Standard RP0189−89,NACE International,Houston,USA)などが知られている。これらのうちのどのような方法でもよく、特に制限はないが、腐食電位を測定している腐食電位測定用耐食性金属面への汚れ付着量を直接測定するのが望ましい。
【0017】
本発明では、特に、モニタリングを行う水系内の耐食性金属配管を流れる水の流速と同じ流速で、試験水を通水している、該耐食性金属よりなる試験チューブについて、腐食電位の測定と汚れ付着量の測定を行うのが望ましい。
【0018】
腐食電位の測定と汚れ付着量の測定は、コンピューターを利用して実施してもよい。また、白金電極などを用いて、試験水の酸化還元電位を同時に測定し、試験水の酸化性の評価を同時に行うこともできる。
【0019】
このような本発明の方法によって腐食のモニタリングができる耐食性金属としては、ステンレス鋼、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、クロム、クロム合金、モリブデン、モリブデン合金、タングステン、タングステン合金等を挙げることができる。
【0020】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0021】
実施例1
図1に示した試験水系で耐食性金属の腐食モニタリングを実施した。図1において、1は腐食電位測定用試験チューブ、2は参照電極(KCl飽和銀・塩化銀電極)、3は電位測定装置、4は差圧測定装置、5は定流量弁、6は送水ポンプ、7はタンク、8は試験水である。
【0022】
この試験では、試験チューブ1としてステンレス鋼(SUS316)製のものを用いた。内径16mmの試験チューブ1に送水ポンプ6で試験水を通水し、電位測定装置3で試験チューブ1の電位を測定するとともに、差圧測定装置4により試験チューブ1両端の差圧変化を調べることにより、試験チューブ1内に付着する汚れの量を測定した。
【0023】
試験水系には定流量弁5を組み込み、試験チューブ1内の流速が常に0.5m/secになるように設定した。試験水8には、実機冷却水を模擬した合成濃縮水を用い、実機冷却水系より採取した汚れ成分を1日に一度タンク7にバッチ投入した。試験水の温度は30℃とした。水処理薬剤としては、スケール成分の析出を防ぐための合成ポリマーのみを添加し、防食剤、バイオファウリングコントロール剤等は使用しなかった。
【0024】
通水試験開始3日後から、汚れの付着に伴う試験チューブ1の差圧上昇が観測され、これと対応するように、試験チューブ1の腐食電位もまた上昇傾向を示した。
【0025】
そこで、腐食電位上昇の原因が汚れ成分の付着にあると推定し、汚れ剥離剤を用いて、汚れ除去処理を行ったところ、差圧、腐食電位ともに低下した。
【0026】
この試験期間中の腐食電位の変化と差圧の変化をそれぞれ図2,3に示した。
【0027】
実施例2
図4に示した実機冷却水系を模擬したパイロットプラントを用いて、実施例1と同様の方法で、耐食性金属の腐食をモニタリングした。図4において、11は試験チューブ、12は参照電極(KCl飽和銀・塩化銀電極)、13は電位測定装置、14は差圧測定装置、15は定流量弁、16は送水ポンプ、17は冷却塔、18は冷却塔ピット、19は充填材、20はファン、21は熱交換器、22は加熱蒸気、23はブロー水である。
【0028】
パイロットプラントの運転条件は、循環水量を340L/min、保有水量を310L、熱交換器21の冷却水入口水温を30℃、熱交換器21の出口水温を40℃に設定した。
【0029】
この試験では、試験チューブ11として内径16mmのステンレス鋼(SUS316)製チューブを用いた。
【0030】
パイロットプラントの冷却水送水管より枝管を引き、モニタリング装置に試験水を導水した。
【0031】
腐食電位モニタリング用試験チューブ11内の試験水流速は、定流量弁15を用いて0.5m/secに調整した。試験水には厚木市水を濃縮して用いた。添加薬剤としては、防食剤としてリン酸系防食剤、スケール防止剤としてアクリル酸系合成ポリマーを添加した。また、スライム・コントロール剤として次亜塩素酸ナトリウムを残留塩素濃度が常時0.3mg−Cl2 /Lとなるように、連続注入した。
【0032】
通水試験開始約1週間後、試験チューブ11の差圧の上昇を伴わない、腐食電位の急激な上昇が認められた。この結果から電位上昇の原因が汚れの付着によるものではなく、通水している試験水にあると推定した。詳しく調査した結果、残留塩素濃度が添加目標値0.3mg−Cl2 /Lから大きく逸脱しており、酸化剤としての作用を持つ次亜塩素酸ナトリウムが過剰に添加されていることがわかった。そこで次亜塩素酸ナトリウムの添加量を減らした結果、腐食電位が低下して元の状態に戻った。このようにして、次亜塩素酸ナトリウムの過剰添加による腐食の進行を未然に防ぐことができた。
【0033】
この試験期間中の腐食電位の経時変化と差圧の経時変化をそれぞれ図5,6に示した。
【0034】
実施例3
実機開放循環冷却水系において、実施例1と同様の方法で、耐食性金属の腐食モニタリングを実施した。この試験では、耐食性金属として実機熱交換器チューブと同じ材質であるステンレス鋼(SUS316)を用いた。冷却水の送水管より枝管を引き、モニタリング装置に冷却水を導水した。モニタリング装置内の腐食電位モニタリング用試験チューブ内の冷却水流速は、実機熱交換器チューブ内の冷却水流速と同じ0.5m/secに定流量弁を用いて調整した。この冷却水系では、水処理薬剤としてリン酸・亜鉛系の防食剤、アクリル酸系合成ポリマーのスケール防止剤を用い、スライム・コントロール剤として次亜塩素酸ナトリウムを用いていた。
【0035】
約1か月間のモニタリング期間中、差圧、腐食電位とも上昇傾向を示さず良好な状況に維持されていた。この試験期間中の腐食電位と差圧の経時変化をそれぞれ図7,8に示した。
【0036】
この試験後、実機熱交換器のステンレス鋼チューブを詳しく調査したが、腐食の発生は認められなかった。
【0037】
【発明の効果】
以上詳述した通り、本発明の金属の腐食モニタリング方法によれば、耐食性金属の腐食を精度良く予知するとともに、その原因を速やかに推定することができ、腐食が発生する前に効果的な防食対策を講じることで運転障害に到るような腐食を未然に防止することができる。
【図面の簡単な説明】
【図1】実施例1で用いた試験装置を示す系統図である。
【図2】実施例1における腐食電位の経時変化を示すグラフである。
【図3】実施例1における差圧の経時変化を示すグラフである。
【図4】実施例2で用いた試験装置を示す系統図である。
【図5】実施例2における腐食電位の経時変化を示すグラフである。
【図6】実施例2における差圧の経時変化を示すグラフである。
【図7】実施例3における腐食電位の経時変化を示すグラフである。
【図8】実施例3における差圧の経時変化を示すグラフである。
【符号の説明】
1,11 試験チューブ
2,12 参照電極
3,13 電位測定装置
4,14 差圧測定装置
5,15 定流量弁
6,16 送水ポンプ
7 タンク
8 試験水
17 冷却塔
18 冷却塔ピット
19 充填材
20 ファン
21 熱交換器
22 加熱蒸気
23 ブロー水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for monitoring (monitoring, detecting or estimating) corrosion of a corrosion-resistant metal in contact with water. More specifically, the present invention predicts corrosion of a corrosion-resistant metal and promptly estimates the cause of corrosion to ensure proper and rapid The present invention relates to a corrosion monitoring method capable of taking anti-corrosion measures.
[0002]
[Prior art]
In freshwater environments such as cooling water systems, corrosion-resistant metals such as stainless steel are generally passivated, but even with these corrosion-resistant metals, for example, the presence of excess oxidizing agents and microbial contamination on the metal surface There is a possibility that local corrosion such as crevice corrosion, pitting corrosion, and stress corrosion cracking may occur due to environmental changes such as adhesion (Nakahara Masahiro; Materials and Environment, 41 (1), 56 (1992)). When corrosion of a corrosion-resistant metal proceeds due to environmental changes, it is known that the corrosion potential of the metal changes, and therefore, as a method for monitoring corrosion, conventionally, in a system where metal and water are in contact, A method for measuring the corrosion potential of a metal (Japanese Patent Laid-Open No. 5-98476) is known.
[0003]
[Problems to be solved by the invention]
However, by measuring the corrosion potential alone, the progress of corrosion can be predicted by the potential change, but it is difficult to estimate what is the cause of this potential change, that is, what is the cause of corrosion. It was.
[0004]
Therefore, even if the progress of corrosion can be predicted by a potential change, there has been a problem that it is impossible to take a quick and appropriate anticorrosion measure.
[0005]
The present invention solves the above-mentioned conventional problems and not only predicts corrosion but also can quickly estimate the cause of corrosion, thereby making it possible to take appropriate and quick anti-corrosion measures. The purpose is to provide a corrosion monitoring method.
[0006]
[Means for Solving the Problems]
The method for monitoring corrosion of a metal according to the present invention is a method for monitoring corrosion of a corrosion-resistant metal in a liquid. In this method, the change in the corrosion potential of the corrosion-resistant metal and the amount of dirt attached to the aqueous system are measured. If the corrosion potential does not increase as a result of the measurement, it is determined that the corrosion has not progressed. If both the corrosion potential and the amount of dirt attached increase, the corrosion proceeds. However, when the cause is determined to be dirt, the corrosion potential increases, but when the amount of dirt attached does not increase, corrosion proceeds, and it is estimated that the cause is other than dirt. To do.
[0007]
Thus, by monitoring based on the corrosion potential and the amount of dirt adhered to the aqueous system, it is possible to quickly predict corrosion and estimate the factor. That is, when the corrosion potential does not increase, it can be determined that there is no progress of corrosion. When both the corrosion potential and the amount of dirt adhered increase, it can be determined that corrosion has progressed and that the cause is dirt. In addition, when the corrosion potential increases but the amount of dirt adhered does not increase, it can be estimated that the corrosion progresses and the cause is other than dirt.
[0008]
In the present invention, the corrosion-resistant metal includes stainless steel, nickel, nickel alloy, titanium, titanium alloy, copper, copper alloy, chromium, chromium alloy, molybdenum, molybdenum alloy, tungsten, or tungsten alloy.
[0009]
The adhesion amount of the corrosion-resistant metal stain is preferably measured by a change in the differential pressure, and the stain adhesion amount is preferably measured for the corrosion-resistant metal whose corrosion potential is being measured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0011]
In the metal corrosion monitoring method of the present invention, the corrosion potential of a corrosion-resistant metal in contact with the water of the water system to be monitored (hereinafter referred to as “test water”) and the amount of dirt attached to the water system are simultaneously monitored. Thus, the progress of corrosion is predicted and the cause of corrosion is estimated. The adhesion of dirt is often a factor of the progress of corrosion, and by monitoring the amount of adhesion of dirt, the cause of corrosion can be estimated, and accordingly, an anti-corrosion measure effective for the water system can be determined according to the cause of corrosion.
[0012]
The corrosion potential is monitored by measuring the potential difference over time between a corrosion-resistant metal in contact with the test water and electrically insulated from the surroundings and a reference electrode (reference electrode) immersed in the same water.
[0013]
A lead wire is connected to the corrosion-resistant metal for measuring the corrosion potential, and the potential is measured through this lead wire. The potential measurement may be performed by any method such as a potentiometer, a digital multimeter, a tester, or a computer using a voltage input A / D converter.
[0014]
Corrosion-resistant metal for corrosion potential measurement and test water contact method is that the corrosion-resistant metal for corrosion potential measurement is electrically insulated from the surrounding piping, etc., and the connection part between the lead wire used for measuring the corrosion potential and the corrosion-resistant metal for potential measurement Any method can be used as long as it does not come into direct contact with the test water, but in general, it is desirable to pass the test water through an electrically insulated corrosion-resistant metal potential measuring tube. . Further, the corrosion potential may be measured while heating the tube. In this case, the heating method includes a method using a heating fluid such as steam or a method using a planar heating element by electric energy.
[0015]
It is desirable to simultaneously monitor the flow rate of the test water flowing through the tube.
[0016]
On the other hand, as a method of knowing the amount of water-based dirt that is monitored, the amount of dirt that adheres to the immersed rubber plate can be measured regularly, or the amount of dirt can be determined from changes in the differential pressure inside the tube due to dirt. (NACE Standard RP0189-89, NACE International, Houston, USA) is known. Any of these methods may be used, and there is no particular limitation. However, it is desirable to directly measure the amount of dirt adhering to the corrosion-resistant metal surface for measuring the corrosion potential.
[0017]
In the present invention, in particular, for a test tube made of the corrosion-resistant metal that passes the test water at the same flow rate as the flow rate of the water flowing through the corrosion-resistant metal pipe in the water system to be monitored, the corrosion potential is measured and the dirt is adhered. It is desirable to measure the quantity.
[0018]
The measurement of the corrosion potential and the amount of dirt adhesion may be performed using a computer. Moreover, the oxidation-reduction potential of the test water can be measured simultaneously using a platinum electrode or the like, and the oxidizability of the test water can be evaluated simultaneously.
[0019]
Corrosion resistant metals that can be monitored for corrosion by the method of the present invention include stainless steel, nickel, nickel alloy, titanium, titanium alloy, copper, copper alloy, chromium, chromium alloy, molybdenum, molybdenum alloy, tungsten, tungsten alloy. Etc.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0021]
Example 1
In the test water system shown in FIG. 1, corrosion monitoring of the corrosion-resistant metal was performed. In FIG. 1, 1 is a test tube for measuring corrosion potential, 2 is a reference electrode (KCl saturated silver / silver chloride electrode), 3 is a potential measuring device, 4 is a differential pressure measuring device, 5 is a constant flow valve, and 6 is a water pump. , 7 is a tank, and 8 is test water.
[0022]
In this test, a test tube 1 made of stainless steel (SUS316) was used. The test water is passed through the test tube 1 having an inner diameter of 16 mm by the water pump 6, the potential of the test tube 1 is measured by the potential measuring device 3, and the differential pressure change at both ends of the test tube 1 is examined by the differential pressure measuring device 4. Thus, the amount of dirt adhering in the test tube 1 was measured.
[0023]
A constant flow valve 5 was incorporated in the test water system, and the flow rate in the test tube 1 was always set to 0.5 m / sec. As the test water 8, synthetic concentrated water simulating actual machine cooling water was used, and the soil components collected from the actual machine cooling water system were batch-fed into the tank 7 once a day. The temperature of the test water was 30 ° C. As a water treatment agent, only a synthetic polymer for preventing precipitation of scale components was added, and an anticorrosive agent, a biofouling control agent and the like were not used.
[0024]
From 3 days after the start of the water flow test, an increase in the differential pressure of the test tube 1 due to the adhesion of dirt was observed. Correspondingly, the corrosion potential of the test tube 1 also showed an increasing tendency.
[0025]
Therefore, it was presumed that the cause of the increase in the corrosion potential was due to the adhesion of the soil component, and when the soil removal treatment was performed using the soil release agent, both the differential pressure and the corrosion potential decreased.
[0026]
The change in corrosion potential and the change in differential pressure during this test period are shown in FIGS.
[0027]
Example 2
Corrosion of the corrosion-resistant metal was monitored in the same manner as in Example 1 using a pilot plant simulating the actual cooling water system shown in FIG. In FIG. 4, 11 is a test tube, 12 is a reference electrode (KCl saturated silver / silver chloride electrode), 13 is a potential measuring device, 14 is a differential pressure measuring device, 15 is a constant flow valve, 16 is a water pump, and 17 is cooling. A tower, 18 is a cooling tower pit, 19 is a filler, 20 is a fan, 21 is a heat exchanger, 22 is heated steam, and 23 is blow water.
[0028]
The operating conditions of the pilot plant were set such that the circulating water amount was 340 L / min, the retained water amount was 310 L, the cooling water inlet water temperature of the heat exchanger 21 was 30 ° C., and the outlet water temperature of the heat exchanger 21 was 40 ° C.
[0029]
In this test, a stainless steel (SUS316) tube having an inner diameter of 16 mm was used as the test tube 11.
[0030]
A branch pipe was drawn from the cooling water supply pipe of the pilot plant, and test water was introduced to the monitoring device.
[0031]
The test water flow rate in the corrosion potential monitoring test tube 11 was adjusted to 0.5 m / sec using the constant flow valve 15. As test water, Atsugi City water was concentrated and used. As additive agents, a phosphoric acid-based anticorrosive agent was added as an anticorrosive agent, and an acrylic acid-based synthetic polymer was added as a scale inhibitor. Further, sodium hypochlorite was continuously injected as a slime control agent so that the residual chlorine concentration was always 0.3 mg-Cl 2 / L.
[0032]
About one week after the start of the water flow test, a rapid increase in the corrosion potential was observed without an increase in the differential pressure in the test tube 11. From this result, it was estimated that the cause of the potential increase was not due to the adhesion of dirt, but the test water being passed. As a result of detailed investigation, it was found that the residual chlorine concentration greatly deviated from the target addition value of 0.3 mg-Cl 2 / L, and sodium hypochlorite having an action as an oxidizing agent was added excessively. . Therefore, as a result of reducing the amount of sodium hypochlorite added, the corrosion potential decreased and the original state was restored. In this way, the progress of corrosion due to excessive addition of sodium hypochlorite could be prevented.
[0033]
The changes over time in the corrosion potential and the change over time in the differential pressure during this test period are shown in FIGS.
[0034]
Example 3
In an actual machine open circulating cooling water system, corrosion monitoring of the corrosion-resistant metal was performed in the same manner as in Example 1. In this test, stainless steel (SUS316), which is the same material as the actual heat exchanger tube, was used as the corrosion-resistant metal. A branch pipe was drawn from the cooling water feed pipe, and the cooling water was introduced to the monitoring device. The cooling water flow rate in the test tube for monitoring the corrosion potential in the monitoring device was adjusted to 0.5 m / sec, which is the same as the cooling water flow rate in the actual heat exchanger tube, using a constant flow valve. In this cooling water system, phosphoric acid / zinc-based anticorrosives and acrylic acid-based synthetic polymer scale inhibitors were used as water treatment chemicals, and sodium hypochlorite was used as a slime control agent.
[0035]
During the monitoring period of about one month, neither the differential pressure nor the corrosion potential showed an increasing trend and was maintained in good condition. The changes over time of the corrosion potential and the differential pressure during the test period are shown in FIGS.
[0036]
After this test, the stainless steel tube of the actual heat exchanger was investigated in detail, but no corrosion was observed.
[0037]
【The invention's effect】
As described in detail above, according to the metal corrosion monitoring method of the present invention, corrosion of a corrosion-resistant metal can be predicted with high accuracy and the cause can be quickly estimated, and effective corrosion prevention before corrosion occurs. By taking countermeasures, it is possible to prevent corrosion that can lead to operational failures.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a test apparatus used in Example 1. FIG.
2 is a graph showing the change with time of corrosion potential in Example 1. FIG.
3 is a graph showing the change over time in the differential pressure in Example 1. FIG.
4 is a system diagram showing a test apparatus used in Example 2. FIG.
5 is a graph showing a change with time in corrosion potential in Example 2. FIG.
6 is a graph showing changes with time in differential pressure in Example 2. FIG.
7 is a graph showing changes with time in corrosion potential in Example 3. FIG.
8 is a graph showing a change with time in differential pressure in Example 3. FIG.
[Explanation of symbols]
1,11 Test tube 2,12 Reference electrode 3,13 Potential measuring device 4,14 Differential pressure measuring device 5,15 Constant flow valve 6,16 Water pump 7 Tank 8 Test water 17 Cooling tower 18 Cooling tower pit 19 Filler 20 Fan 21 Heat exchanger 22 Heated steam 23 Blow water

Claims (3)

液体中の耐食性金属の腐食をモニタリングする方法において、該耐食性金属の腐食電位の変化と、該水系の汚れの付着量とを測定し、この測定結果に基づいてモニタリングする腐食モニタリング方法であって、測定の結果、腐食電位が増大しないときは、腐食の進行はないと判定し、腐食電位と汚れの付着量が共に増大するときは、腐食が進行し、その原因が汚れにあると判定し、腐食電位は増大するが、汚れの付着量は増大していないときは、腐食が進行し、その原因は汚れ以外であると推定することを特徴とする金属の腐食モニタリング方法。In a method for monitoring corrosion of a corrosion-resistant metal in a liquid, a corrosion monitoring method for measuring a change in the corrosion potential of the corrosion-resistant metal and the amount of dirt adhered to the aqueous system, and monitoring based on the measurement result , If the corrosion potential does not increase as a result of the measurement, it is determined that the corrosion has not progressed, and if both the corrosion potential and the amount of dirt adhered increase, it is determined that the corrosion has progressed and the cause is due to the contamination. A method for monitoring corrosion of a metal, characterized in that when the corrosion potential increases but the amount of dirt attached does not increase, corrosion proceeds and it is estimated that the cause is other than dirt . 汚れの付着量を、汚れが付着するチューブ内の差圧変化により測定することを特徴とする請求項1に記載の金属の腐食モニタリング方法。The method for monitoring corrosion of a metal according to claim 1, wherein the amount of dirt adhered is measured by a change in differential pressure in the tube to which dirt adheres. 腐食電位を測定している耐食性金属への汚れ付着量を測定することを特徴とする請求項1又は2に記載の金属の腐食モニタリング方法。 3. The method for monitoring corrosion of a metal according to claim 1, wherein the amount of dirt adhered to the corrosion-resistant metal whose corrosion potential is being measured is measured.
JP21326297A 1997-08-07 1997-08-07 Metal corrosion monitoring method Expired - Fee Related JP3867357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21326297A JP3867357B2 (en) 1997-08-07 1997-08-07 Metal corrosion monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21326297A JP3867357B2 (en) 1997-08-07 1997-08-07 Metal corrosion monitoring method

Publications (2)

Publication Number Publication Date
JPH1151849A JPH1151849A (en) 1999-02-26
JP3867357B2 true JP3867357B2 (en) 2007-01-10

Family

ID=16636193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21326297A Expired - Fee Related JP3867357B2 (en) 1997-08-07 1997-08-07 Metal corrosion monitoring method

Country Status (1)

Country Link
JP (1) JP3867357B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100479A (en) * 2018-06-08 2018-12-28 铃木加普腾钢丝(苏州)有限公司 A kind of steel wire hardened line chloride test device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533565B2 (en) * 2001-08-30 2010-09-01 株式会社東芝 Metal adhesion monitor
JP5852338B2 (en) * 2010-08-19 2016-02-03 株式会社神戸製鋼所 Method for producing surface-treated metal material excellent in scale adhesion control and seawater evaporator
JP6096682B2 (en) * 2014-01-20 2017-03-15 東京瓦斯株式会社 Pitting potential monitoring reference electrode, pitting potential monitoring device
JP2015038422A (en) * 2014-11-25 2015-02-26 三菱重工業株式会社 Heat exchanger and method of estimating residual life of heat exchanger
JP6864358B2 (en) * 2017-10-16 2021-04-28 スガ試験機株式会社 Weather resistance tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100479A (en) * 2018-06-08 2018-12-28 铃木加普腾钢丝(苏州)有限公司 A kind of steel wire hardened line chloride test device

Also Published As

Publication number Publication date
JPH1151849A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
US6419817B1 (en) Dynamic optimization of chemical additives in a water treatment system
JP3196707B2 (en) Corrosion monitoring test specimen, method and apparatus
BR112020005049A2 (en) methods and system.
US4762168A (en) Condenser having apparatus for monitoring conditions of inner surface of condenser tubes
WO2005052213A2 (en) Method of inhibiting corrosion in hot water systems
JP3867357B2 (en) Metal corrosion monitoring method
Oldfield et al. Corrosion considerations in selecting metals for flash chambers
JP3518463B2 (en) Aqueous water treatment method
JP2004101349A (en) Monitoring device and monitoring method for local corrosion, corrosion proofing device for metal member, and evaluation method for anticorrosives
JP3314645B2 (en) How to monitor pitting
WO2001059442A1 (en) Water-based water treatment method
JP3862122B2 (en) Metal corrosion monitoring method and metal corrosion prevention method
Dorsey et al. Cooling Water Monitoring Using Coupled Multielectrode Array Sensors and Other On-line Tools Michael H. Dorsey
Hodgkiess et al. Acid cleaning of thermal desalination plant: do we need to use corrosion inhibitors?
JP2794772B2 (en) Prediction method of corrosion of water-based metal
Singh et al. Introduction to corrosion
EP0224270A1 (en) Method of monitoring the inner surface of copper-alloy condensor tubes
Orlikowski et al. The protection and monitoring of a distribution piping network for potable water supply
Kolman et al. Sodium molybdate as a corrosion inhibitor of mild steel in natural waters part 1: Flow rate effects
Young | Water Handling Systems
JP4581306B2 (en) Carbon steel local corrosion monitoring method and carbon steel local corrosion prevention method
JP4207553B2 (en) Carbon steel local corrosion monitoring method and local corrosion prevention method
Choudhury et al. Corrosion monitoring in desalination plants
Al-Mayouf et al. Galvanic Sensor for Detecting Corrosion during Acid Cleaning of Magnetite in Steam Boilers. Metals 2021, 11, 343
Bassey Asset Integrity and Profitability Enhancement at Three Process Facilities through Corrosion Prevention, Control and Management

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees