JP3862122B2 - Metal corrosion monitoring method and metal corrosion prevention method - Google Patents

Metal corrosion monitoring method and metal corrosion prevention method Download PDF

Info

Publication number
JP3862122B2
JP3862122B2 JP17732898A JP17732898A JP3862122B2 JP 3862122 B2 JP3862122 B2 JP 3862122B2 JP 17732898 A JP17732898 A JP 17732898A JP 17732898 A JP17732898 A JP 17732898A JP 3862122 B2 JP3862122 B2 JP 3862122B2
Authority
JP
Japan
Prior art keywords
metal
potential
water
change
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17732898A
Other languages
Japanese (ja)
Other versions
JP2000009674A (en
Inventor
一 井芹
裕 米田
邦幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP17732898A priority Critical patent/JP3862122B2/en
Publication of JP2000009674A publication Critical patent/JP2000009674A/en
Application granted granted Critical
Publication of JP3862122B2 publication Critical patent/JP3862122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属腐食モニタリング方法及び金属腐食防止方法に関する。さらに詳しくは、本発明は、金属が水に接触する系において、微生物主体の汚れ付着による金属の電位変化と水の酸化性変化を測定し、それぞれの結果から、金属配管などの腐食発生の危険性を予知するとともに、腐食を引き起こす要因を速やかに推定し、適切な対策を講じることを可能とする金属腐食モニタリング方法及び金属腐食防止方法に関する。
【0002】
【従来の技術】
一般に、冷却水系のような淡水環境においては、ステンレス鋼などの耐食性金属は不動態化しており、耐食的な材料として知られている。しかし、過剰な酸化剤の存在により水の酸化性が強まった場合や、表面への微生物主体の汚れの付着といった環境の変化により電位が貴化し、すきま腐食、孔食、応力腐食割れなどの局部腐食が発生するおそれがある(中原正大、材料と環境、第41巻、第1号、56頁、1992年)。このように、金属材料の電位上昇は腐食の危険性が高まっていることを示すものであり、電位が上昇しないように管理することが重要である。
従来より、金属の腐食をモニタリングする方法として、金属と水とが接触している系において、該金属の自然電位をモニタリングする方法が知られている(特開平5−98476号公報)。しかし、従来の腐食電位の経時的な測定だけでは、電位上昇による腐食の危険性を予知することはできても、電位上昇の要因を速やかに推定し、迅速に適切な対策を講じることは困難であった。
【0003】
【発明が解決しようとする課題】
本発明は、金属が水に接触する系において、金属配管などの腐食発生の危険性を予知するとともに、腐食を引き起こす要因を速やかに推定し、適切な対策を講じることを可能とする金属腐食モニタリング方法及び金属腐食防止方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、金属が水に接触する系において、微生物主体の汚れ付着による金属の電位変化を測定することにより、金属の腐食発生の危険性を予知し、さらに、水の酸化性の変化を測定して両者を比較することにより、腐食の要因を的確かつ迅速に推測することが可能となることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)金属が水に接触する系において、微生物主体の汚れ付着による金属の電位変化を経時的に測定し、他方において、水の酸化性変化を経時的に測定することを特徴とする金属腐食モニタリング方法、
(2)微生物主体の汚れ付着による金属の電位変化を水に接触する金属の電位変化より求め、水の酸化性変化を酸化還元性を測定する電極の電位変化より求める第(1)項記載の金属腐食モニタリング方法、
(3)微生物主体の汚れ付着による金属の電位変化を水に接触する金属の電位変化より求め、水の酸化性変化を水に接触しかつ水との接触面に汚れが付着していない同一材質の金属の電位の測定により求める第(1)項記載の金属腐食モニタリング方法、
(4)第(1)項記載の方法において、微生物主体の汚れ付着による金属の電位上昇傾向のみがあったときは、微生物主体の汚れ付着を抑制する薬剤の薬注量を増加する制御を行い、微生物主体の汚れ付着による金属の電位の上昇とともに水の酸化性も上昇したときは、前記薬注量を減少する制御を行う金属腐食防止方法、及び、
(5)薬剤が酸化性物質を含む水処理薬剤である第 ( ) 項記載の金属腐食防止方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明は、モニタリングを実施する水系の水(以下、試験水という。)に接触する金属材料について、微生物主体の汚れ付着による金属の電位変化と、水の酸化性変化を測定することにより、金属材料の腐食モニタリングを行うとともに、腐食の要因を推定して適切な対策を講じるものである。本発明方法を適用する金属材料に特に制限はないが、低合金鋼、ステンレス鋼、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、クロム、クロム合金、モリブデン、モリブデン合金、タングステン、タングステン合金などの耐食性合金に特に好適に適用することができる。これらの耐食性合金は、通常の淡水環境中においては、表面に形成される不動態皮膜によって小さな腐食速度を示すものである。
微生物主体の汚れ付着による金属の電位変化は、試験水に接触し、かつ周囲から電気的に絶縁された金属片と、同じ試験水中に浸漬した参照電極(基準電極)の間の電位差を経時的に測定することによりモニタリングすることができる。電位測定用の金属片には導線を接続し、その導線を介して電位を測定する。電位測定方法に特に制限はなく、例えば、ポテンショメーター、デジタルマルチメーター、テスター、電圧入力のA/D変換機器を利用したコンピューターによる測定などを挙げることができる。また、電位測定を、全てコンピューターを用いて実施することもできる。
電位測定用の金属片と試験水の接触方法は、電位測定用の金属片が周囲の配管などから電気的に絶縁されていて、電位測定時に使用する導線と電位測定用金属片の接続部が試験水と直接接触しない状態であれば特に制限はなく、例えば、テストピース状の金属片に導線を取り付けた電極状のものを試験水中に浸漬する方法や、電気的に絶縁した金属管内に試験水を通水する方法などを挙げることができる。
【0006】
水の酸化性変化を測定する方法に特に制限はなく、例えば、酸化還元電極などの酸化還元性を測定する電極の電位変化を測定する方法や、試験水との接触面に汚れが付着していない金属片の電位を測定する方法などを挙げることができる。試験水との接触面に汚れが付着していない金属片の電位を測定する方法は、水の酸化性が強まることにより、水に接触する金属片の電位が上昇する現象を利用したものである。電位測定方法に特に制限はなく、例えば、ポテンショメーター、デジタルマルチメーター、テスター、電圧入力のA/D変換機器を利用したコンピューターによる測定などを挙げることができる。酸化還元性を測定する電極を用いる場合には、電極の端子間の電位差を測定し、また、試験水との接触面に汚れが付着していない金属片の電位を測定する場合には、参照電極との間の電位差を測定する。
酸化還元性を測定する電極の浸漬方法は、電極が周囲の配管などから電気的に絶縁されていて、試験水と接触していれば特に制限はない。試験水との接触面に汚れが付着していない電位測定用の金属片と試験水の接触方法は、電位測定用の金属片が周囲の配管などから電気的に絶縁されていて、電位測定時に使用する導線と電位測定用の金属片の接続部が試験水と直接接触しない状態であれば特に制限はなく、テストピース状の金属片に導線を取り付けた電極状のものを試験水中に浸漬する方法や、電気的に絶縁した金属管内に試験水を通水する方法などを挙げることができる。
【0007】
金属材料の腐食挙動を観察する上では、微生物主体の汚れ付着による金属の電位変化を測定する条件と、水の酸化性変化による電位変化を測定する条件を一致させることが好ましい。すなわち、水の酸化性変化による電位変化の測定は、微生物主体の汚れ付着による金属の電位変化の測定用の金属片と同一材質、同一形状で、試験水と接触する表面に汚れが付着しない状態にしたものを用いることが好ましい。また、試験水と金属片の接触面における水の流速や温度などの環境条件も、微生物主体の汚れ付着による金属の電位変化を測定する条件と、水の酸化性変化による電位変化を測定する条件と同一になるよう調整することが好ましい。
試験水と接触する金属片の表面に汚れを付着させない方法に特に制限はく、例えば、金属片と接触する試験水の汚れ成分をフィルターによりろ過する方法、金属片の表面をブラッシング、超音波洗浄などにより定期的に洗浄する方法などを挙げることができる。洗浄の頻度は、金属片の表面に汚れが付着しない状態を維持することができれば特に制限はない。
汚れの付着が可能な状態に保った微生物主体の汚れ付着による金属の電位変化を測定する金属片の電位は、微生物主体の汚れ付着により上昇するが、汚れ付着がない場合にも水の酸化性が強まることにより上昇する。このとき、水の酸化性の変化を測定しておくことによって、電位上昇の原因が微生物主体の汚れ付着によるものか、あるいは水の酸化性が強まったことによるものか速やかに判定することができる。
このモニタリング結果を利用することにより、酸化性物質を含む水処理薬剤、特に、微生物的な汚れを抑制するバイオファウリングコントロール剤の薬注量を制御することが可能となる。例えば、水の酸化性は変化せず、汚れの付着が可能な状態に保った金属片の電位が上昇傾向を示した場合には、薬注量を増加する制御を行うことにより、微生物主体の汚れ付着を抑制することが可能となる。また、水の酸化性変化を測定し、酸化性が強まりすぎて腐食が懸念されると判断された場合には、薬注量を減少する制御を行うことにより、酸化性物質を含む薬剤の過剰添加による腐食の危険性を未然に防ぐことが可能となる。
【0008】
図1は、本発明方法の実施の一態様を示す説明図である。本態様においては、金属として耐食性金属製テストピースに導線を取り付けた電極を用い、フィルターにより微生物主体の汚れを除いて汚れの付着を防止する。試験水は、A及びBの2つのラインに通水される。ラインAは、金属への汚れの付着が可能なラインであり、ラインBは金属への汚れの付着を防止したラインである。試験水は、送水管1より入り、枝分かれしてA及びBの両ラインに導かれ、定流量弁2を介してA及びBの両ラインの流量が一定になるように調整される。ラインAは、金属製の電極3aと参照電極4を挿入したカラム5を備え、ラインBは、金属製の電極3bと参照電極4を挿入したカラム5を備えている。両ラインの金属製の電極、参照電極及びカラムは、同一の形状及び構造を有する。ラインBは、さらにフィルター6を備え、ろ過により汚れを除去して、金属製の電極への汚れの付着を防止する。参照電極を基準とした電極3a及び3bの電位変化を、電位測定機器7により測定し、電極3a及び3bの電位から腐食の危険性の有無及び原因の推定を行う。例えば、電極3a及び3bの電位が、ともに一定の値を保持して安定に推移する場合は、腐食の危険性はないものと判断される。電極3aのみに電位上昇が認められた場合は、実機は微生物主体の汚れが付着する傾向にあり、金属材料の腐食の危険性が高まる傾向にあると判断される。電極3a及び3bの電位がともに上昇した場合は、系内の酸化性の上昇による腐食の危険性が高まる傾向にあると判断され、例えば、酸化性物質を含む水処理薬剤を使用している場合などは、その過剰添加のおそれがあり、薬注量を調整する必要がある。
【0009】
図2は、本発明方法の実施の他の態様を示す説明図である。本態様においては、金属として金属製チューブに導線を取り付けたものを用い、チューブ内に試験水を通水し、チューブ内の汚れを洗浄機器により定期的に除去することにより、微生物主体の汚れの付着を防止するとともに、電位測定によるモニタリング結果にもとづいて、冷水塔への水処理薬剤の薬注量を制御する。試験水は、A及びBの2つのラインに通水される。ラインAは、金属への汚れの付着が可能なラインであり、ラインBは、金属への汚れの付着を防止したラインである。試験水は、送水管1より入り、枝分かれしてA及びBの両ラインに導かれ、定流量弁2を介してA及びBの両ラインの流量が一定になるよう調整される。ラインAには、金属製チューブ8a及び参照電極4が設置され、ラインBには、金属製チューブ8b及び参照電極4が設置されている。両ラインの金属製チューブ及び参照電極は、同一の形状を有する。ラインBは、さらに金属製チューブ8bに汚れが付着しないように、定期的にブラシなどによりチューブ内を洗浄するための洗浄器具9を備えている。参照電極を基準とした金属製チューブ8a及び8bの電位変化を、電位測定機器7により測定し、金属製チューブ8a及び8bの電位から腐食の危険性の有無及び原因の推定を行う。例えば、金属製チューブ8a及び8bの電位が、ともに一定の値を保持して安定に推移する場合は、腐食の危険性はないものと判断される。金属製チューブ8aのみに電位上昇が認められた場合は、実機は微生物主体の汚れが付着する傾向にあり、耐食性金属材料の腐食の危険性が高まる傾向にあると判断される。金属製チューブ8a及び8bの電位がともに上昇した場合は、系内の酸化性の上昇による腐食の危険性が高まる傾向にあると判断され、例えば、酸化性物質を含む水処理薬剤を使用している場合などは、その過剰添加のおそれがあり、薬注量を調整する必要がある。電位測定機器によるモニタリング結果は、制御機器10に入力され、薬注ポンプ11を制御して、薬液タンク12から冷水塔13への水処理薬剤の薬注量を適正に制御する。
【0010】
図3は、本発明方法の実施の他の態様を示す説明図である。本態様においては、金属として耐食性金属製テストピースに導線を取り付けた電極を用いて微生物主体の汚れ付着による電位変化を求め、酸化還元性を測定する電極を用いて水の酸化性変化を求める。試験水は、A及びBの2つのラインに通水される。ラインAは、金属への汚れの付着が可能なラインであり、ラインBは酸化還元電極を備えたラインである。試験水は、送水管1より入り、枝分かれしてA及びBの両ラインに導かれ、定流量弁2を介してA及びBの両ラインの流量が一定になるように調整される。ラインAは、耐食性金属製の電極3aと参照電極4を挿入したカラム5を備え、ラインBは、酸化還元電極14を挿入したカラム5を備えている。両ラインのカラムは、ほぼ同一の形状及び構造を有する。ラインBは、さらにフィルター6を備え、ろ過により汚れを除去して、酸化還元電極への汚れの付着を防止する。参照電極を基準とした電極3a及び酸化還元電極14の電位変化を電位測定機器7により測定し、電極3a及び電極14の電位から腐食の危険性の有無及び原因の推定を行う。例えば、電極3a及び電極14の電位が、ともに一定の値を保持して安定に推移する場合は、腐食の危険性はないものと判断される。電極3aのみに電位上昇が認められた場合は、実機は微生物主体の汚れが付着する傾向にあり、耐食性金属材料の腐食の危険性が高まる傾向にあると判断される。電極3a及び電極14の電位がともに上昇した場合は、系内の酸化性の上昇による腐食の危険性が高まる傾向にあると判断され、例えば、酸化性物質を含む水処理薬剤を使用している場合などは、その過剰添加のおそれがあり、薬注量を調整する必要がある。
本発明方法によれば、微生物主体の汚れ付着による金属の電位変化と水の酸化性変化から、腐食の予知や腐食を引き起こす要因の推定を迅速に行うことができると同時に、水系の水処理効果を総合的に評価することができる。また、得られたモニタリング結果をもとにして、酸化性物質を含む水処理薬剤の薬注量を制御し、適正な薬注管理が可能となる。
【0011】
【発明の効果】
本発明方法によれば、微生物主体の汚れ付着による金属の電位変化と水の酸化性変化から、腐食の予知や腐食を引き起こす要因の推定をすみやかに行うことにより、腐食が発生する前に、効果的な腐食防止対策を講ずることが可能となる。また、モニタリング結果をもとにして、酸化性物質を含む水処理薬剤の薬注量を制御し適正な水処理状況を維持管理することが可能となる。
【図面の簡単な説明】
【図1】図1は、本発明方法の実施の一態様を示す説明図である。
【図2】図2は、本発明方法の実施の他の態様を示す説明図である。
【図3】図3は、本発明方法の実施の他の態様を示す説明図である。
【符号の説明】
1 送水管
2 定流量弁
3a 金属製の電極(汚れ付着可能)
3b 金属製の電極(汚れ付着なし)
4 参照電極
5 カラム
6 フィルター
7 電位測定機器
8a 金属製チューブ(汚れ付着可能)
8b 金属製チューブ(汚れ付着なし)
9 洗浄器具
10 制御機器
11 薬注ポンプ
12 薬液タンク
13 冷水塔
14 酸化還元電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal corrosion monitoring method and a metal corrosion prevention method. More specifically, the present invention measures the potential change of the metal and the oxidative change of the water due to the adherence of microorganism-based dirt in a system in which the metal is in contact with water. The present invention relates to a metal corrosion monitoring method and a metal corrosion prevention method capable of predicting the property and promptly estimating factors causing corrosion and taking appropriate measures.
[0002]
[Prior art]
In general, in a fresh water environment such as a cooling water system, a corrosion-resistant metal such as stainless steel is passivated and is known as a corrosion-resistant material. However, when the oxidizing property of water is increased due to the presence of an excessive oxidizing agent, the potential becomes noble due to environmental changes such as adhesion of microorganism-based dirt to the surface, and local areas such as crevice corrosion, pitting corrosion, stress corrosion cracking, etc. Corrosion may occur (Nakahara Masahiro, Materials and Environment, Vol. 41, No. 1, p. 56, 1992). Thus, the potential increase of the metal material indicates that the risk of corrosion is increasing, and it is important to manage the potential so that the potential does not increase.
Conventionally, as a method of monitoring corrosion of a metal, a method of monitoring the natural potential of the metal in a system in which the metal and water are in contact is known (Japanese Patent Laid-Open No. Hei 5-98476). However, it is difficult to quickly estimate the cause of the potential rise and take appropriate measures quickly even though the conventional corrosion potential measurement alone can predict the danger of corrosion due to the potential rise. Met.
[0003]
[Problems to be solved by the invention]
The present invention predicts the risk of corrosion of metal pipes and the like in a system in which metal is in contact with water, and also promptly estimates the factors that cause corrosion and can take appropriate measures. The object is to provide a method and a method for preventing metal corrosion.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have measured the change in the potential of the metal due to the adhesion of microorganisms in a system in which the metal is in contact with water. Based on this knowledge, we have found that it is possible to predict the risk of corrosion, and further, by measuring changes in water oxidizability and comparing the two, it is possible to accurately and quickly estimate the cause of corrosion. The invention has been completed.
That is, the present invention
(1) Metal corrosion characterized in that, in a system in which a metal is in contact with water, a change in the potential of the metal due to adhesion of dirt mainly due to microorganisms is measured over time, and on the other hand, an oxidative change in water is measured over time. Monitoring method,
(2) The change in the potential of the metal due to adhesion of dirt mainly from microorganisms is obtained from the change in potential of the metal in contact with water, and the change in oxidation of water is obtained from the change in potential of the electrode that measures redox properties. Metal corrosion monitoring method,
(3) The same material with which the change in the potential of the metal due to the adhesion of dirt mainly from microorganisms is obtained from the change in the potential of the metal in contact with water, and the oxidative change of water is in contact with water and the contact surface with water is not contaminated. The method for monitoring metal corrosion according to item (1), which is obtained by measuring the potential of the metal of
(4) In the method described in (1) , when there is only a tendency for the potential of the metal to increase due to adhesion of microorganism-based dirt, control is performed to increase the dose of a drug that inhibits microorganism-based dirt adhesion. , When the oxidization of water is increased with the increase in the potential of the metal due to adhesion of microorganism-based dirt, a metal corrosion prevention method for performing control to reduce the dosage , and
(5) The method for preventing metal corrosion according to ( 4 ) , wherein the chemical is a water treatment chemical containing an oxidizing substance .
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a metal material that comes into contact with aqueous water (hereinafter referred to as test water) to be monitored, by measuring changes in the potential of the metal due to contamination mainly by microorganisms and changes in the oxidizing properties of water. In addition to monitoring the corrosion of the material, the cause of corrosion is estimated and appropriate measures are taken. The metal material to which the method of the present invention is applied is not particularly limited, but is low alloy steel, stainless steel, nickel, nickel alloy, titanium, titanium alloy, copper, copper alloy, chromium, chromium alloy, molybdenum, molybdenum alloy, tungsten, tungsten It can be particularly suitably applied to corrosion resistant alloys such as alloys. These corrosion-resistant alloys exhibit a small corrosion rate due to the passive film formed on the surface in a normal freshwater environment.
The change in the potential of the metal due to the adhesion of microorganism-based dirt is the time difference between the reference electrode (reference electrode) immersed in the same test water and a metal piece that is in contact with the test water and electrically insulated from the surroundings. It is possible to monitor by measuring at the same time. A lead wire is connected to the metal piece for potential measurement, and the potential is measured through the lead wire. The potential measurement method is not particularly limited, and examples thereof include a potentiometer, a digital multimeter, a tester, and a computer measurement using a voltage input A / D conversion device. In addition, all potential measurements can be performed using a computer.
The method of contacting the metal piece for potential measurement with the test water is that the metal piece for potential measurement is electrically insulated from the surrounding piping, etc., and the connection part between the lead wire used for potential measurement and the metal piece for potential measurement is There is no particular limitation as long as it is not in direct contact with the test water. For example, a test piece-like metal piece with an electrode attached to a test piece is immersed in the test water, or in an electrically insulated metal tube. The method of passing water can be mentioned.
[0006]
There is no particular limitation on the method for measuring the oxidative change of water, for example, a method of measuring the potential change of an electrode for measuring redox properties such as a redox electrode, or contamination on the contact surface with test water. A method of measuring the potential of a metal piece that is not present can be mentioned. The method of measuring the potential of a metal piece that is not contaminated on the contact surface with the test water is based on the phenomenon that the potential of the metal piece that comes into contact with water increases due to increased water oxidation. . The potential measurement method is not particularly limited, and examples thereof include a potentiometer, a digital multimeter, a tester, and a computer measurement using a voltage input A / D conversion device. When using an electrode for measuring oxidation-reduction properties, measure the potential difference between the electrode terminals, and when measuring the potential of a metal piece with no dirt on the contact surface with the test water, refer to The potential difference between the electrodes is measured.
The electrode dipping method for measuring oxidation-reduction properties is not particularly limited as long as the electrode is electrically insulated from surrounding piping and is in contact with test water. The method of contacting the test water with the metal piece for potential measurement, which is not contaminated with the contact surface with the test water, is because the metal piece for potential measurement is electrically insulated from the surrounding piping, etc. There is no particular limitation as long as the connecting part of the lead wire to be used and the metal piece for measuring the potential is not in direct contact with the test water, and an electrode-like one having the lead wire attached to the test piece-like metal piece is immersed in the test water. Examples thereof include a method and a method of passing test water through an electrically insulated metal tube.
[0007]
In observing the corrosion behavior of the metal material, it is preferable that the conditions for measuring the potential change of the metal due to the adhesion of dirt mainly composed of microorganisms coincide with the conditions for measuring the potential change due to the oxidation change of water. In other words, the measurement of the potential change due to the oxidative change of water is the same material and the same shape as the metal piece for measuring the potential change of the metal due to the adhesion of microorganism-based dirt, and the dirt does not adhere to the surface in contact with the test water. It is preferable to use what was made. In addition, the environmental conditions such as the flow rate and temperature of the water at the contact surface between the test water and the metal piece are also the conditions for measuring the potential change of the metal due to the adhesion of dirt mainly by microorganisms and the conditions for measuring the potential change due to the oxidative change of water It is preferable to adjust so that it becomes the same.
There are no particular restrictions on the method of preventing dirt from adhering to the surface of the metal piece that comes into contact with the test water. For example, the method of filtering the dirt component of the test water that comes into contact with the metal piece with a filter, brushing the surface of the metal piece, ultrasonic cleaning For example, a method of cleaning periodically may be used. The frequency of cleaning is not particularly limited as long as it can maintain a state in which dirt does not adhere to the surface of the metal piece.
Measures the potential change of metal due to the adhesion of dirt mainly by microorganisms kept in a state where dirt can be attached. The potential of the metal piece rises due to the adhesion of dirt mainly by microorganisms. It rises by strengthening. At this time, it is possible to quickly determine whether the cause of the potential increase is due to the adhesion of dirt mainly due to microorganisms or due to the increased oxidation of water by measuring the change in the oxidation of water. .
By using this monitoring result, it is possible to control the amount of water treatment agent containing an oxidizing substance, particularly a biofouling control agent that suppresses microbial contamination. For example, if the oxidation potential of water does not change and the potential of the metal piece kept in a state where dirt can be attached tends to increase, by controlling to increase the dosage, It is possible to suppress the adhesion of dirt. In addition, by measuring the oxidative change of water and determining that there is concern about corrosion due to excessive oxidization, excessive control of drugs containing oxidizing substances can be achieved by controlling to reduce the dose. It becomes possible to prevent the risk of corrosion due to the addition.
[0008]
FIG. 1 is an explanatory view showing an embodiment of the method of the present invention. In this embodiment, an electrode in which a conductive wire is attached to a corrosion-resistant metal test piece is used as the metal, and the dirt mainly composed of microorganisms is removed by a filter to prevent the adhesion of dirt. The test water is passed through two lines A and B. Line A is a line that allows dirt to adhere to metal, and line B is a line that prevents dirt from adhering to metal. The test water enters from the water pipe 1, branches and is led to both the A and B lines, and is adjusted through the constant flow valve 2 so that the flow rates of both the A and B lines are constant. Line A includes a column 5 into which a metal electrode 3a and a reference electrode 4 are inserted, and line B includes a column 5 into which a metal electrode 3b and a reference electrode 4 are inserted. Both lines of metal electrodes, reference electrodes, and columns have the same shape and structure. The line B further includes a filter 6 and removes dirt by filtration to prevent the dirt from adhering to the metal electrode. The potential change of the electrodes 3a and 3b with respect to the reference electrode is measured by the potential measuring device 7, and the presence / absence of the risk of corrosion and the cause are estimated from the potentials of the electrodes 3a and 3b. For example, if the potentials of the electrodes 3a and 3b both maintain a constant value and change stably, it is determined that there is no risk of corrosion. When the potential increase is recognized only in the electrode 3a, it is judged that the actual machine tends to adhere dirt mainly composed of microorganisms, and the risk of corrosion of the metal material tends to increase. When the potentials of the electrodes 3a and 3b are both increased, it is judged that the risk of corrosion due to the increase in oxidization in the system tends to increase. For example, when a water treatment chemical containing an oxidizing substance is used There is a risk of excessive addition, and it is necessary to adjust the dosage.
[0009]
FIG. 2 is an explanatory diagram showing another embodiment of the method of the present invention. In this embodiment, a metal tube having a conductive wire attached thereto is used, and test water is passed through the tube, and the dirt in the tube is periodically removed by a cleaning device, thereby removing dirt mainly composed of microorganisms. In addition to preventing adhesion, the amount of the water treatment chemical injected into the cold water tower is controlled based on the monitoring result of potential measurement. The test water is passed through two lines A and B. Line A is a line on which dirt can adhere to the metal, and line B is a line that prevents dirt from adhering to the metal. The test water enters from the water pipe 1, branches and is led to both the A and B lines, and is adjusted through the constant flow valve 2 so that the flow rates of both the A and B lines are constant. The metal tube 8a and the reference electrode 4 are installed in the line A, and the metal tube 8b and the reference electrode 4 are installed in the line B. Both lines of the metal tube and the reference electrode have the same shape. The line B further includes a cleaning tool 9 for periodically cleaning the inside of the tube with a brush or the like so that dirt is not attached to the metal tube 8b. The potential change of the metal tubes 8a and 8b with respect to the reference electrode is measured by the potential measuring device 7, and the presence / absence of the risk of corrosion and the cause are estimated from the potentials of the metal tubes 8a and 8b. For example, if the potentials of the metal tubes 8a and 8b both maintain a constant value and change stably, it is determined that there is no risk of corrosion. When the potential increase is recognized only in the metal tube 8a, it is judged that the actual machine tends to adhere dirt mainly composed of microorganisms, and the risk of corrosion of the corrosion-resistant metal material tends to increase. When the potentials of the metal tubes 8a and 8b are both increased, it is determined that the risk of corrosion due to an increase in oxidization in the system tends to increase. For example, a water treatment chemical containing an oxidizing substance is used. If it is, there is a risk of excessive addition, and it is necessary to adjust the dosage. The monitoring result by the potential measuring device is input to the control device 10, and the chemical injection pump 11 is controlled to appropriately control the chemical injection amount of the water treatment chemical from the chemical liquid tank 12 to the cold water tower 13.
[0010]
FIG. 3 is an explanatory diagram showing another embodiment of the method of the present invention. In this embodiment, a potential change due to adhesion of dirt mainly composed of microorganisms is obtained using an electrode having a lead wire attached to a corrosion-resistant metal test piece as a metal, and an oxidative change of water is obtained using an electrode for measuring oxidation-reduction properties. The test water is passed through two lines A and B. Line A is a line on which dirt can adhere to a metal, and line B is a line provided with a redox electrode. The test water enters from the water pipe 1, branches and is led to both the A and B lines, and is adjusted through the constant flow valve 2 so that the flow rates of both the A and B lines are constant. Line A includes a column 5 into which a corrosion-resistant metal electrode 3a and a reference electrode 4 are inserted, and line B includes a column 5 into which a redox electrode 14 is inserted. Both lines of columns have approximately the same shape and structure. The line B further includes a filter 6 and removes dirt by filtration to prevent the dirt from adhering to the redox electrode. The potential change of the electrode 3a and the redox electrode 14 with reference to the reference electrode is measured by the potential measuring device 7, and the presence or absence of the risk of corrosion and the cause are estimated from the potentials of the electrode 3a and the electrode 14. For example, it is determined that there is no risk of corrosion when the potentials of the electrode 3a and the electrode 14 both maintain a constant value and change stably. When an increase in potential is observed only in the electrode 3a, it is determined that the actual machine tends to adhere dirt mainly composed of microorganisms, and the risk of corrosion of the corrosion-resistant metal material tends to increase. When the potentials of the electrode 3a and the electrode 14 are both increased, it is determined that the risk of corrosion due to the increase in oxidization in the system tends to increase. For example, a water treatment chemical containing an oxidizing substance is used. In some cases, there is a risk of excessive addition, and the dosage should be adjusted.
According to the method of the present invention, the prediction of corrosion and the estimation of the cause of corrosion can be quickly performed from the change in potential of metal and the change in water oxidization due to adhesion of microorganism-based dirt. Can be evaluated comprehensively. In addition, based on the obtained monitoring results, it is possible to control the chemical injection amount of the water treatment chemical containing the oxidizing substance, and to perform proper chemical injection management.
[0011]
【The invention's effect】
According to the method of the present invention, the effect of the corrosion before the occurrence of corrosion can be estimated by promptly estimating the cause of corrosion and the cause of corrosion from the potential change of the metal and the oxidation change of water due to the adhesion of dirt mainly by microorganisms. It is possible to take general anti-corrosion measures. Moreover, based on the monitoring result, it becomes possible to control the chemical injection amount of the water treatment chemical containing the oxidizing substance and to maintain and manage an appropriate water treatment status.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of the method of the present invention.
FIG. 2 is an explanatory view showing another embodiment of the method of the present invention.
FIG. 3 is an explanatory view showing another embodiment of the method of the present invention.
[Explanation of symbols]
1 Water supply pipe 2 Constant flow valve 3a Metal electrode (dirt can be attached)
3b Metal electrode (no contamination)
4 Reference electrode 5 Column 6 Filter 7 Potential measuring device 8a Metal tube (dirt can be attached)
8b Metal tube (no dirt)
DESCRIPTION OF SYMBOLS 9 Cleaning instrument 10 Control apparatus 11 Chemical injection pump 12 Chemical solution tank 13 Cold water tower 14 Redox electrode

Claims (5)

金属が水に接触する系において、微生物主体の汚れ付着による金属の電位変化を経時的に測定し、他方において、水の酸化性変化を経時的に測定することを特徴とする金属腐食モニタリング方法。A metal corrosion monitoring method characterized in that, in a system in which a metal is in contact with water, a change in potential of the metal due to adhesion of dirt mainly composed of microorganisms is measured over time, and on the other hand, an oxidative change in water is measured over time . 微生物主体の汚れ付着による金属の電位変化を水に接触する金属の電位変化より求め、水の酸化性変化を酸化還元性を測定する電極の電位変化より求める請求項1記載の金属腐食モニタリング方法。  The metal corrosion monitoring method according to claim 1, wherein a change in the potential of the metal due to adhesion of dirt mainly due to microorganisms is obtained from a change in the potential of the metal in contact with water, and a change in oxidation of water is obtained from a change in potential of the electrode for measuring redox properties. 微生物主体の汚れ付着による金属の電位変化を水に接触する金属の電位変化より求め、水の酸化性変化を水に接触しかつ水との接触面に汚れが付着していない同一材質の金属の電位の測定により求める請求項1記載の金属腐食モニタリング方法。  The change in the potential of the metal due to the adhesion of dirt mainly from microorganisms is obtained from the change in the potential of the metal in contact with water. The metal corrosion monitoring method according to claim 1, which is obtained by measuring a potential. 請求項1記載の方法において、微生物主体の汚れ付着による金属の電位上昇傾向のみがあったときは、微生物主体の汚れ付着を抑制する薬剤の薬注量を増加する制御を行い、微生物主体の汚れ付着による金属の電位の上昇とともに水の酸化性も上昇したときは、前記薬注量を減少する制御を行う金属腐食防止方法。2. The method according to claim 1, wherein when there is only a tendency of increasing the potential of the metal due to adhesion of microorganism-based dirt, control is performed to increase the dose of a drug that inhibits adhesion of microorganism-based dirt, A method for preventing metal corrosion , wherein when the oxidizability of water increases as the potential of the metal increases due to adhesion, the amount of the chemical injection is controlled to decrease . 薬剤が酸化性物質を含む水処理薬剤である請求項4記載の金属腐食防止方法。The method for preventing metal corrosion according to claim 4, wherein the chemical is a water treatment chemical containing an oxidizing substance.
JP17732898A 1998-06-24 1998-06-24 Metal corrosion monitoring method and metal corrosion prevention method Expired - Fee Related JP3862122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17732898A JP3862122B2 (en) 1998-06-24 1998-06-24 Metal corrosion monitoring method and metal corrosion prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17732898A JP3862122B2 (en) 1998-06-24 1998-06-24 Metal corrosion monitoring method and metal corrosion prevention method

Publications (2)

Publication Number Publication Date
JP2000009674A JP2000009674A (en) 2000-01-14
JP3862122B2 true JP3862122B2 (en) 2006-12-27

Family

ID=16029061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17732898A Expired - Fee Related JP3862122B2 (en) 1998-06-24 1998-06-24 Metal corrosion monitoring method and metal corrosion prevention method

Country Status (1)

Country Link
JP (1) JP3862122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964918A (en) * 2015-06-29 2015-10-07 河海大学 Device and method for measuring corrosion rate of steel bar

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE330218T1 (en) * 2000-02-14 2006-07-15 Kurita Water Ind Ltd WATER BASED WATER TREATMENT PROCESS
JP4533565B2 (en) * 2001-08-30 2010-09-01 株式会社東芝 Metal adhesion monitor
JP4581306B2 (en) * 2001-09-03 2010-11-17 栗田工業株式会社 Carbon steel local corrosion monitoring method and carbon steel local corrosion prevention method
JP6024544B2 (en) * 2013-03-18 2016-11-16 富士通株式会社 Biofilm formation sensor and electronic device cooling system
CN107727564A (en) * 2017-10-24 2018-02-23 天津大学 The electrochemical testing device of metal microbiologic(al) corrosion under current system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964918A (en) * 2015-06-29 2015-10-07 河海大学 Device and method for measuring corrosion rate of steel bar

Also Published As

Publication number Publication date
JP2000009674A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
US6077418A (en) Corrosion monitoring
US5246560A (en) Apparatus for monitoring biofilm activity
EP1292820B1 (en) Dynamic optimization of chemical additives in a water treatment system
JP2001091299A (en) Electric resistance sensor for corrosion rate measurement and manufacturing method therefor, and corrosion rate measuring method using the sensor and the method
JP3862122B2 (en) Metal corrosion monitoring method and metal corrosion prevention method
CN110940714B (en) Analyzing predicted lifetime of a sensor
JP5626380B2 (en) Pitting corrosion monitoring test piece, pitting corrosion monitoring device, and pitting corrosion monitoring method
CA3163618A1 (en) Method and measuring arrangement for determining the internal corrosion rate of steel structures
JP3867357B2 (en) Metal corrosion monitoring method
JP2008209180A (en) Measuring electrode, corrosion monitoring device, and corrosion monitoring method
JP2001004590A (en) Water treatment method of water system
WO2001059442A1 (en) Water-based water treatment method
US7675297B1 (en) Methods for measuring bounding corrosion rates using coupled multielectrode sensors and eliminating the effects of bad electrodes
JP3497806B2 (en) Water quality monitoring device
JP3760657B2 (en) Erosion measuring method and measuring device
JPH11270860A (en) Floor heater with function for detecting deterioration of antifreeze
US5285162A (en) Galvanic current measuring method and apparatus for monitoring build-up of biological deposits on surfaces of dissimilar metal electrodes immersed in water
JP2000162120A (en) Method and device for predicting obstacle of water system
US20220194826A1 (en) Method of dosing biocide into a fluid system
JP5348051B2 (en) Copper pitting corrosion evaluation method
CA2233455A1 (en) Method and apparatus for detecting microbiological fouling in aqueous systems
JP5181352B2 (en) Method and apparatus for measuring residual free chlorine concentration
JP3559253B2 (en) Residual chlorine meter and liquid sterilizer using the same
JP3300327B2 (en) Electrode structure for corrosion rate measurement and corrosion rate measurement method
JP2005024401A (en) Corrosion measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees