JP2876050B2 - Crystal diameter measurement method - Google Patents

Crystal diameter measurement method

Info

Publication number
JP2876050B2
JP2876050B2 JP28246095A JP28246095A JP2876050B2 JP 2876050 B2 JP2876050 B2 JP 2876050B2 JP 28246095 A JP28246095 A JP 28246095A JP 28246095 A JP28246095 A JP 28246095A JP 2876050 B2 JP2876050 B2 JP 2876050B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
line
diameter
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28246095A
Other languages
Japanese (ja)
Other versions
JPH09100194A (en
Inventor
啓一 高梨
静香 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28246095A priority Critical patent/JP2876050B2/en
Publication of JPH09100194A publication Critical patent/JPH09100194A/en
Application granted granted Critical
Publication of JP2876050B2 publication Critical patent/JP2876050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CZ法(チョクラ
ルスキー法)により単結晶を引上げる際に、その単結晶
の直径を光学的に精度よく測定する結晶直径測定方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the diameter of a single crystal with high optical precision when pulling the single crystal by the CZ method (Czochralski method).

【0002】[0002]

【従来の技術】半導体の原料となる単結晶を製造する方
法の一つとしてCZ法による引上げがある。CZ法で
は、図1に示されるように、CZ炉の炉体1に設置され
たるつぼ2内に結晶融液3が満たされ、その融液3から
単結晶4が回転装置6により回転させられながら引上装
置5により引上げられる。このとき、ヒータ7による融
液3の加熱を一様にするために、ヒータ7から液面まで
の距離が一定に維持されるように、るつぼ2が上昇制御
される。
2. Description of the Related Art One of the methods for producing a single crystal as a semiconductor raw material is pulling by a CZ method. In the CZ method, as shown in FIG. 1, a crucible 2 installed in a furnace body 1 of a CZ furnace is filled with a crystal melt 3, and a single crystal 4 is rotated by the rotating device 6 from the melt 3. While being pulled up by the pulling device 5. At this time, in order to make the heating of the melt 3 by the heater 7 uniform, the crucible 2 is controlled to rise so that the distance from the heater 7 to the liquid surface is kept constant.

【0003】引上げ中の単結晶4は、上端部および下端
部においては各々目的とする形状に一致させるのが望ま
しく、また直胴部分や種結晶部分においては目標値に等
しい均一直径とすることが望まれる。加えて、単結晶4
の断面形状の真円からのズレを表わす変形率〔(最大径
−最小径)/最小径〕を許容値以下にする必要もある。
It is desirable that the single crystal 4 being pulled has the same shape as the target at the upper end and the lower end, and the uniform diameter equal to the target value in the straight body portion and the seed crystal portion. desired. In addition, single crystal 4
It is also necessary to set the deformation ratio [(maximum diameter−minimum diameter) / minimum diameter] representing the deviation of the cross-sectional shape from the perfect circle to an allowable value or less.

【0004】一方、結晶品質に関しては、その評価項目
の一つである酸化誘起積層欠陥(以下OSFと称す)の
密度を低く抑える必要がある。OSFとは結晶内に固溶
した酸素が結晶の酸化熱処理の際に酸化物として析出す
る現象が原因で起こる積層欠陥のことである。このOS
Fの密度は引上速度を上昇させれば、結晶をその分急冷
させることができるために低く抑えることができる。そ
のため引上速度を上げる必要がある。引上速度の上昇は
生産効率を向上させる点からも有益である。
On the other hand, regarding the crystal quality, it is necessary to keep the density of oxidation-induced stacking faults (hereinafter referred to as OSF), which is one of the evaluation items, low. OSF refers to stacking faults caused by a phenomenon in which oxygen dissolved in a crystal precipitates as an oxide during heat treatment for oxidizing the crystal. This OS
If the pulling speed is increased, the density of F can be kept low because the crystal can be rapidly cooled by that amount. Therefore, it is necessary to increase the pulling speed. Increasing the pulling speed is also beneficial in improving production efficiency.

【0005】しかしながら、引上速度を上げると、上記
変形率が増大し許容値を超えるために、歩留りが低下す
る。そのため変形率の許容範囲内で引上げ可能な最適引
上速度を設定することが、単結晶の歩留り向上、生産性
向上、品質確保等の点から必要となる。ここに引上げ中
の単結晶の直径を正確に測定し、正確な変形率を算出す
ることの重要性がある。
[0005] However, when the pulling speed is increased, the deformation rate increases and exceeds the allowable value, so that the yield decreases. Therefore, it is necessary to set an optimum pulling speed at which the pulling can be performed within an allowable range of the deformation rate, from the viewpoint of improving the yield of the single crystal, improving the productivity, securing quality, and the like. Here, it is important to accurately measure the diameter of the single crystal being pulled and calculate an accurate deformation rate.

【0006】CZ法による引上げ中に単結晶の直径を測
定する方法としては、引上げられた単結晶の重量から直
径を算出する方法(以下重量法とする)と、一次元CC
Dカメラ等の光学機器を用いて直径を測定する方法(以
下光学法とする)の2つが知られている。
As a method of measuring the diameter of a single crystal during pulling by the CZ method, there are a method of calculating the diameter from the weight of the pulled single crystal (hereinafter referred to as a gravimetric method) and a one-dimensional CC method.
There are two known methods for measuring the diameter using an optical device such as a D camera (hereinafter referred to as an optical method).

【0007】ところで、CZ法による単結晶の引上げで
は、図3に示されるように、単結晶4の外周面に晶癖線
と呼ばれる突起4aが周方向に規則的に生じる。この突
起4aは結晶軸方向に延び、単結晶4の結晶方位に固有
な周方向位置に生じる。変形率を算出する場合この晶癖
線の部分の直径を正確に測定する必要があるが、重量法
では引上げられた単結晶の重量と長さとから結晶直径を
算出する関係から、平均直径しか測定できず、晶癖線の
部分の直径を測定することはできない。その点、光学法
は、融液と単結晶の界面に生じる輝度の高いフュージョ
ンリングの直径を光学的に測定するために、晶癖線の部
分の直径を測定することができる。
By the way, in pulling a single crystal by the CZ method, as shown in FIG. 3, protrusions 4a called habit lines are regularly formed on the outer peripheral surface of the single crystal 4 in the circumferential direction. The projection 4a extends in the crystal axis direction and occurs at a circumferential position unique to the crystal orientation of the single crystal 4. When calculating the deformation rate, it is necessary to accurately measure the diameter of this habit line, but in the gravimetric method, only the average diameter is measured because the crystal diameter is calculated from the weight and length of the pulled single crystal. It is not possible to measure the diameter of the habit line part. In this regard, the optical method can measure the diameter of a habit line portion in order to optically measure the diameter of a high-intensity fusion ring generated at the interface between the melt and the single crystal.

【0008】この光学法では、図1に示されるように、
炉体1の上端部に設けた窓9を通して単結晶4と融液3
の界面が一次元CCDカメラ8により直線的に測光され
る。そして、図2に示されるように、単結晶4の周囲に
生じるフュージョンリングAと一次元CCDカメラ8の
測光ラインB−Bとの交点C,Cでの輝度変化から交点
C,Cの位置を検出し、単結晶4の直径を測定する。
In this optical method, as shown in FIG.
The single crystal 4 and the melt 3 are passed through a window 9 provided at the upper end of the furnace body 1.
Is linearly measured by the one-dimensional CCD camera 8. Then, as shown in FIG. 2, the positions of the intersections C and C are determined from the luminance change at the intersections C and C of the fusion ring A generated around the single crystal 4 and the photometric line BB of the one-dimensional CCD camera 8. Then, the diameter of the single crystal 4 is measured.

【0009】具体的には、単結晶4が1回転する間、交
点C,Cの位置検出を続け、下式により交点C,Cの間
隔W(α)を求めることにより、単結晶4の全周にわた
ってその直径を測定する。 W(α)=L(α)−R(α) L(α),R(α):交点C,Cの位置検出データ α:単結晶の回転角
More specifically, while the single crystal 4 makes one rotation, the position of the intersections C and C is continuously detected, and the distance W (α) between the intersections C and C is obtained by the following equation, whereby the entirety of the single crystal 4 is obtained. Measure its diameter over the circumference. W (α) = L (α) −R (α) L (α), R (α): Position detection data of intersections C, C α: Rotation angle of single crystal

【0010】この場合、一次元CCDカメラ8の測光ラ
インB−Bが結晶中心Oを通るように一次元CCDカメ
ラ8を設置すると、結晶直径が減少したときにフュージ
ョンリングAが単結晶4の陰となり、測定誤差を生じた
り、場合によっては直径測定が不可能になることがあ
る。そのため、通常は一次元CCDカメラ8の測光ライ
ンB−Bが結晶中心Oよりカメラ側(手前側)に設定さ
れる。この場合、一次元CCDカメラ8が測定した交点
C,Cの間隔Wから結晶直径が次式により算出される。 D=(W2 +4a2 1/2 D:結晶直径 W:交差点C,Cの間隔 a:結晶中心Oから測光ラインB−Bまでの距離
In this case, if the one-dimensional CCD camera 8 is installed so that the photometric line BB of the one-dimensional CCD camera 8 passes through the center O of the crystal, the fusion ring A is shaded by the single crystal 4 when the crystal diameter decreases. This may cause a measurement error or, in some cases, make the diameter measurement impossible. Therefore, usually, the photometric line BB of the one-dimensional CCD camera 8 is set on the camera side (front side) of the crystal center O. In this case, the crystal diameter is calculated by the following equation from the distance W between the intersections C, C measured by the one-dimensional CCD camera 8. D = (W 2 + 4a 2 ) 1/2 D: crystal diameter W: distance between intersections C, C a: distance from crystal center O to photometric line BB

【0011】[0011]

【発明が解決しようとする課題】従来の光学法では、前
述した通り、交点C,Cの間隔Wが交点C,Cの位置検
出データ(α),R(α)の差から求められる。単結
晶の結晶方位が(100)の場合、図3に示されるよう
に、単結晶4の外面に90゜の間隔で晶癖線4aが生
じ、一次元CCDカメラ8の測光ラインB−Bが結晶中
心Oを通るときは、結晶中心Oを挟んで対象位置にある
2つの晶癖線4a,4aが同時に測光ラインB−Bを通
過するので、交点C,Cの位置検出データL(α),R
(α)の差から、晶癖線4aの付近も含めて単結晶4の
直径が比較的高精度に全周測定される。
In the conventional optical method, as described above, the interval W between the intersections C, C is obtained from the difference between the position detection data L (α) and R (α) at the intersections C, C. When the crystal orientation of the single crystal is (100), as shown in FIG. 3, crystal habit lines 4a are formed at intervals of 90 ° on the outer surface of the single crystal 4, and the photometric line BB of the one-dimensional CCD camera 8 is formed. When passing through the crystal center O, the two habit lines 4a, 4a located at the target positions across the crystal center O pass through the photometric line BB at the same time, so that the position detection data L (α) of the intersections C, C , R
From the difference of (α), the diameter of the single crystal 4 including the vicinity of the crystal habit line 4a is measured around the entire circumference with relatively high accuracy.

【0012】しかし、実際の引上げでは、前述した通
り、測光ラインB−Bが結晶中心Oから離される。その
場合は、結晶中心Oを挟んで対象位置にある2つの晶癖
線4a,4aは測光ラインB−Bを同時に通過せず、一
方の通過の後に他方が通過する。そのため、交点C,C
の位置検出データL(α),R(α)の差から交点C,
Cの間隔Wを求める従来の光学法では、晶癖線4aの付
近で直径測定精度が著しく低下する。
However, in the actual pulling, the photometric line BB is separated from the crystal center O as described above. In that case, the two habit lines 4a, 4a located at the target positions with the crystal center O interposed therebetween do not pass through the photometric line BB at the same time, but pass through one after the other. Therefore, intersections C and C
From the difference between the position detection data L (α) and R (α)
In the conventional optical method for obtaining the interval W of C, the diameter measurement accuracy is significantly reduced near the habit line 4a.

【0013】また、現在のるつぼの上昇制御において
は、正確な液面位置検出方法が実用化されていないため
に、液面位置に誤差が生じる。その結果、一次元CCD
カメラ8の測光ラインB−Bが初期の設定位置からず
れ、結晶中心Oから測光ラインB−Bまでの距離aが変
動する。そのため、測定された直径Dに誤差が含まれ
る。
In the current crucible lifting control, an error occurs in the liquid level position because an accurate liquid level detection method has not been put to practical use. As a result, one-dimensional CCD
The photometric line BB of the camera 8 shifts from the initial set position, and the distance a from the crystal center O to the photometric line BB fluctuates. Therefore, the measured diameter D includes an error.

【0014】この問題を解決するために、一次元CCD
カメラ8の測光ラインB−Bをそのラインと直角な方向
に移動させ、移動の前後に測定した結晶直径と測光ライ
ンB−Bの移動距離とから真の直径値を求める方法は、
特開昭63−256594号により提案されている。し
かし、この方法によっても測光ラインが結晶中心から離
れていることによって生じる晶癖線付近での直径測定精
度低下は避けられない。
To solve this problem, a one-dimensional CCD
A method of moving the photometric line BB of the camera 8 in a direction perpendicular to the line and obtaining a true diameter value from the crystal diameter measured before and after the movement and the moving distance of the photometric line BB is as follows.
It is proposed by JP-A-63-256594. However, even with this method, a decrease in the accuracy of diameter measurement near the habit line caused by the photometry line being separated from the crystal center is inevitable.

【0015】本発明の目的は、測光ラインが結晶中心か
ら離れていることに起因して生じる晶癖線付近での直径
測定精度の低下を防ぎ、これにより測光ラインが結晶中
心から離れている場合も結晶直径を全周にわたって正確
に測定することができる結晶直径測定方法を提供するこ
とにある。
An object of the present invention is to prevent a decrease in the accuracy of diameter measurement near a habit line caused by a photometry line being separated from a crystal center, thereby preventing the photometry line from being separated from the crystal center. Another object of the present invention is to provide a crystal diameter measuring method capable of accurately measuring the crystal diameter over the entire circumference.

【0016】[0016]

【課題を解決するための手段】CZ法により引上げられ
る単結晶は、前述した通りその結晶方位に固有な外面周
方向位置に晶癖線を生じる。例えば結晶方位が(10
0)の場合は90°おきに晶癖線が生じる。引上げ中の
単結晶は周方向に回転していることから、一次元CCD
カメラの測光ラインを晶癖線が横切るときに、フュージ
ョンリングと測光ラインの交点位置が変動する。(10
0)の場合は90°おきに交点位置が変動する。
As described above, a single crystal pulled by the CZ method has a habit line at a position in the outer circumferential direction specific to the crystal orientation. For example, if the crystal orientation is (10
In the case of (0), habit lines are generated every 90 °. Since the single crystal being pulled is rotating in the circumferential direction, a one-dimensional CCD
When the crystal habit line crosses the photometry line of the camera, the position of the intersection of the fusion ring and the photometry line fluctuates. (10
In the case of 0), the position of the intersection changes every 90 °.

【0017】測光ラインが結晶中心を通るときは、この
交点位置変動が両側の検出位置で同時に生じるが、測光
ラインが結晶中心から離れると、両側の交点位置変動の
発生タイミングにズレが生じる。また、そのタイミング
差は結晶中心から測光ラインまでの距離が長くなるに従
って大となる。
When the photometric line passes through the center of the crystal, the change in the position of the intersection occurs simultaneously at the detection positions on both sides. However, when the photometric line moves away from the center of the crystal, the timing of occurrence of the change in the position of the intersection on both sides is shifted. Further, the timing difference becomes larger as the distance from the crystal center to the photometric line becomes longer.

【0018】本発明の単結晶の直径測定方法は、結晶融
液から単結晶を周方向に回転させながら引上げるCZ法
による単結晶の引上げにおいて、斜め上方に設置された
カメラにより単結晶と融液の界面位置を測光し、単結晶
の周囲に生じるフュージョンリングとカメラの測光ライ
ンとの交点での輝度変化から両側の交点位置を検出する
際に、両側の交点位置をそれぞれ独立に検出し、両方の
検出データから、単結晶の回転に伴い間欠的に生じる晶
癖線による両側の交点位置変動のタイミング差を求め、
そのタイミング差を取り除いて両方の検出データを比較
することにより、測光ラインが結晶中心から離れている
ことに起因して生じる晶癖線付近での直径測定精度の低
下を防ぐものである。
The method for measuring the diameter of a single crystal according to the present invention is a method for pulling a single crystal from a crystal melt by rotating the single crystal in the circumferential direction by the CZ method. When measuring the position of the interface of the liquid and detecting the positions of the intersections on both sides from the change in brightness at the intersection of the fusion ring generated around the single crystal and the photometry line of the camera, the positions of the intersections on both sides are detected independently, From both the detection data, the timing difference of the intersection position change on both sides due to the habit line intermittently generated with the rotation of the single crystal,
By removing the timing difference and comparing the two detection data, it is possible to prevent a decrease in diameter measurement accuracy near the crystal habit line caused by the photometry line being separated from the crystal center.

【0019】また、前記タイミング差を用いることによ
り、結晶中心からラインセンサの測光ラインまでの距離
を補正することが可能である。
Further, by using the timing difference, it is possible to correct the distance from the crystal center to the photometric line of the line sensor.

【0020】[0020]

【発明の実施の形態】以下に本発明の望ましい実施の形
態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0021】本発明の直径測定方法では、図1に示すよ
うに、CZ法の炉体1の外に設置された一次元CCDカ
メラ8が使用される。本例では一次元CCDカメラを用
いたが、二次元CCD等の使用も可能である。このカメ
ラ8は、炉体に形成された窓9を通して、るつぼ1内の
融液面を直線的に測定する。そして、図2に示すよう
に、引上げ中の単結晶4の周囲に生じるフュージョンリ
ングAと一次元CCDカメラ8の測光ラインB−Bを交
差させ、測光ラインB−B上の輝度変化から交点C,C
の位置をそれぞれ独立に検出する。この検出は単結晶4
が1回転する間、その回転角に対応して一定ピッチで継
続する。
In the diameter measuring method of the present invention, as shown in FIG. 1, a one-dimensional CCD camera 8 installed outside the furnace body 1 of the CZ method is used. In this example, a one-dimensional CCD camera is used, but a two-dimensional CCD or the like can be used. The camera 8 linearly measures the melt surface in the crucible 1 through a window 9 formed in the furnace body. Then, as shown in FIG. 2, the fusion ring A generated around the single crystal 4 being pulled and the photometric line BB of the one-dimensional CCD camera 8 intersect, and the intersection C is determined based on the luminance change on the photometric line BB. , C
Are independently detected. This detection is a single crystal 4
Is rotated once, and continues at a constant pitch corresponding to the rotation angle.

【0022】CZ法により引上げられる単結晶は、図3
に示すように、その結晶方位に固有な外面周方向位置に
晶癖線4aを生じる。同図は結晶方位(100)の場合
を示しており、この場合は90°おきに4本の晶癖線4
aが生じる。而して引上げ中の単結晶4は周方向に回転
している。そのため、測光ラインB−Bを晶癖線4aが
横切るときに、交点Cの位置変動が生じる。
The single crystal pulled by the CZ method is shown in FIG.
As shown in (1), a habit line 4a is formed at a position in the outer circumferential direction specific to the crystal orientation. The figure shows the case of the crystal orientation (100). In this case, four habit lines 4 are formed every 90 °.
a occurs. Thus, the single crystal 4 being pulled is rotating in the circumferential direction. Therefore, when the crystal habit line 4a crosses the photometric line BB, the position of the intersection C fluctuates.

【0023】今、測光ラインB−Bが結晶中心Oを通っ
ていると仮定すると、測光ラインB−Bを晶癖線4aを
通過することによって生じる両側の交点C,Cの位置変
動は両側で同じタイミングとなる。つまり、ある晶癖線
4aが測光ラインB−Bを通過するときに、結晶中心O
を挟んで対象位置にある晶癖線4aも測光ラインB−B
を通過する。
Now, assuming that the photometric line BB passes through the crystal center O, the positional fluctuation of the intersections C, C on both sides caused by passing the photometric line BB through the crystal habit line 4a is on both sides. It will be the same timing. That is, when a certain habit line 4a passes through the photometric line BB, the crystal center O
The crystal habit line 4a at the target position across the line is also a photometric line BB
Pass through.

【0024】しかし、実際の引上げでは、測光ラインB
−Bは結晶中心Oから一次元CCDカメラ8の側(手前
側)に離れている。そのため、測光ラインB−Bを晶癖
線4aを通過することによって生じる両側の交点C,C
の位置変動は、両側で異なるタイミングとなる。例えば
単結晶4が時計回りで回転している場合は、左側の測定
位置で測光ラインB−Bを晶癖線4aが通過し交点Cの
位置変動を生じた後、右側の測定位置で測光ラインB−
Bを晶癖線4aが通過し交点Cの位置変動が生じ、ここ
に両側の交点C,Cの位置変動にタイミング差が生じ
る。
However, in actual pulling, the photometric line B
-B is separated from the crystal center O to the one-dimensional CCD camera 8 side (front side). Therefore, the intersections C and C on both sides generated by passing the photometric line BB through the habit line 4a.
Is different timing on both sides. For example, when the single crystal 4 is rotating clockwise, the crystal habit line 4a passes through the photometric line BB at the left measurement position, causing the position of the intersection C to change, and then the photometry line at the right measurement position. B-
The crystal habit line 4a passes through B, and the position of the intersection C changes, and the position of the intersections C and C on both sides changes in timing.

【0025】図4(a)に、結晶方位(100)の単結
晶を時計回りに回転させながら引上げている場合に一次
元CCDカメラで測定される両側の交点位置データL
(α),R(α)の経時変化を示す。単結晶の回転に伴
い両側の交点位置データL(α),R(α)が晶癖線4
aの通過により変動するが、右側の変動は左側の変動よ
りθだけ遅れて検出される。
FIG. 4A shows intersection position data L on both sides measured by a one-dimensional CCD camera when a single crystal having a crystal orientation (100) is pulled while rotating clockwise.
(Α) and R (α) are shown over time. With the rotation of the single crystal, the intersection position data L (α) and R (α) on both sides are changed to the habit line 4.
Although it fluctuates due to the passage of “a”, the fluctuation on the right is detected with a delay of θ from the fluctuation on the left.

【0026】本発明の結晶直径測定方法では、両側の交
点C,Cの位置を独立に検出し、それぞれの交点位置デ
ータL(α),R(α)のズレから両側の交点位置変動
のタイミング差θを求める。そして、このタイミング差
θを取り除くため、下式を用いて、両側の交点C,Cの
間隔W(α)を求める。 W(α)=R(α+θ)−L(α)
In the crystal diameter measuring method of the present invention, the positions of the intersections C, C on both sides are independently detected, and the timing of the change of the intersection positions on both sides is determined from the deviation of the respective intersection position data L (α), R (α). Find the difference θ. Then, in order to remove the timing difference θ, an interval W (α) between the intersections C on both sides is obtained using the following equation. W (α) = R (α + θ) -L (α)

【0027】単結晶4が反時計回りに回転しながら引上
げられる場合は、下式により両側の交点C,Cの間隔W
(α)を求める。 W(α)=R(α)−L(α+θ)
When the single crystal 4 is pulled while rotating counterclockwise, the distance W between the intersections C on both sides is calculated by the following equation.
(Α) is obtained. W (α) = R (α) −L (α + θ)

【0028】これにより、図4(b)に示すように、両
側の交点位置変動のタイミング差が除去される。従っ
て、両側の交点C,Cの間隔W(α)は、図5のように
正確に測定される。測定された間隔W(α)は、下式を
用いて結晶直径D(α)に換算される。 D=(W2 +4a2 1/2
As a result, as shown in FIG. 4B, the timing difference between the intersection positions on both sides is removed. Therefore, the interval W (α) between the intersections C on both sides is accurately measured as shown in FIG. The measured interval W (α) is converted into a crystal diameter D (α) using the following equation. D = (W 2 + 4a 2 ) 1/2

【0029】かくして、単結晶4の直径が晶癖線4aの
近傍についても正確に測定される。
Thus, the diameter of the single crystal 4 is accurately measured also in the vicinity of the habit line 4a.

【0030】ここで、結晶中心から測光ラインB−Bま
での距離aは、融液3の液面位置が上下することに伴い
変化するが、その距離aが変化すると、両側の交点位置
変動のタイミング差θも変化する。すなわち、結晶中心
Oから測光ラインB−Bまでの距離aが大きくなるにつ
れて、タイミング差θも大きくなる。そこで、タイミン
グ差θを用いて下式により距離aを補正する。 a=Wavg /2・sin -1(θ/2) Wavg :前回測定時の平均間隔
Here, the distance a from the center of the crystal to the photometric line BB changes as the liquid level of the melt 3 moves up and down. The timing difference θ also changes. That is, as the distance a from the crystal center O to the photometric line BB increases, the timing difference θ also increases. Therefore, the distance a is corrected by the following equation using the timing difference θ. a = Wavg / 2 · sin -1 (θ / 2) Wavg: average interval of previous measurement

【0031】これにより、融液面のレベル変化による測
定誤差も排除される。
As a result, a measurement error due to a change in the level of the melt surface is also eliminated.

【0032】交点C,Cの位置を検出するピッチは、晶
癖線付近の形状を正確にとらえるために引上げ中の単結
晶の回転角度で2°以下が望ましい。このピッチを1°
にして本発明を実施したところ、従来法では正確に測定
できなかった晶癖線付近を通る直径についても、その直
径を正確に測定でき、直径および変形率ともに誤差が従
来法の場合の半分以下になることが確認された。また、
測定された直径から晶癖線の位置が正確に検出されるよ
うになったため、引上げ中の単結晶の多結晶化監視の自
動化も可能になった。
The pitch for detecting the positions of the intersections C, C is desirably 2 ° or less as the rotation angle of the single crystal being pulled in order to accurately grasp the shape near the habit line. This pitch is 1 °
When the present invention was carried out, the diameter passing around the habit line, which could not be accurately measured by the conventional method, can also be accurately measured, and the error in both the diameter and the deformation ratio is less than half that of the conventional method. It was confirmed that. Also,
Since the position of the habit line can be accurately detected from the measured diameter, the monitoring of the polycrystallization of the single crystal being pulled can be automated.

【0033】[0033]

【発明の効果】以上に説明した通り、本発明の結晶直径
測定方法は、晶癖線による両側交点位置変動のタイミン
グ差を検出し、そのタイミング差による測定誤差を排除
するので、晶癖線付近を含む結晶全周について直径を高
精度に測定することができ、これによる変形率の検出精
度向上等により歩留り改善、生産性改善、品質改善等に
大きな効果を奏する。
As described above, the crystal diameter measuring method of the present invention detects the timing difference of the change of the position of the both-side intersection due to the habit line, and eliminates the measurement error due to the timing difference. The diameter can be measured with high accuracy over the entire circumference of the crystal including the above, and the improvement in the detection accuracy of the deformation rate and the like can greatly improve the yield, the productivity, and the quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CZ法による単結晶引上げの装置構成図であ
る。
FIG. 1 is a diagram showing the configuration of an apparatus for pulling a single crystal by the CZ method.

【図2】単結晶の直径を測定する方法の概念図である。FIG. 2 is a conceptual diagram of a method for measuring the diameter of a single crystal.

【図3】ラインセンサの測光ラインと結晶中心の位置関
係を示す模式平面図である。
FIG. 3 is a schematic plan view showing a positional relationship between a photometric line of a line sensor and a crystal center.

【図4】両側交点の位置データの経時変化を示すグラフ
である。
FIG. 4 is a graph showing a change over time of position data at both-side intersections.

【図5】交点間隔の経時変化を示すグラフである。FIG. 5 is a graph showing a change with time of an intersection interval.

【符号の説明】[Explanation of symbols]

1 炉体 3 融液 4 単結晶 8 一次元CCDカメラ A フュージョンリング B 測光ライン C フュージョンリングと測光ラインの交点 O 結晶中心 Reference Signs List 1 furnace body 3 melt 4 single crystal 8 one-dimensional CCD camera A fusion ring B photometric line C intersection of fusion ring and photometric line O crystal center

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 15/20 - 15/28 C30B 28/00 - 35/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C30B 15/20-15/28 C30B 28/00-35/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶融液から単結晶を周方向に回転させ
ながら引上げるCZ法による単結晶の引上げにおいて、
斜め上方に設置されたカメラにより単結晶と融液の界面
位置を測光し、単結晶の周囲に生じるフュージョンリン
グとカメラの測光ラインとの交点での輝度変化から両側
の交点位置を検出する際に、両側の交点位置をそれぞれ
独立に検出し、両方の検出データから、単結晶の回転に
伴い間欠的に生じる晶癖線による両側の交点位置変動の
タイミング差を求め、そのタイミング差を取り除いて両
方の検出データを比較し両側の交点の間隔を求めること
により単結晶の直径を測定することを特徴とする結晶直
径測定方法。
In the pulling of a single crystal by a CZ method, which pulls a single crystal from a crystal melt while rotating the single crystal in a circumferential direction,
When measuring the position of the interface between the single crystal and the melt using a camera installed diagonally above, and detecting the intersection point on both sides from the luminance change at the intersection of the fusion ring around the single crystal and the photometry line of the camera , Independently detect the intersection positions on both sides, and from both the detected data, find the timing difference of the intersection position change on both sides due to the habit line intermittently generated with the rotation of the single crystal, remove the timing difference, And measuring the diameter of the single crystal by comparing the detection data of the above and the distance between the intersections on both sides.
【請求項2】 前記タイミング差を用いて、結晶中心か
らカメラの測光ラインまでの距離を補正することを特徴
とする請求項1に記載の結晶直径測定方法。
2. The crystal diameter measuring method according to claim 1, wherein a distance from a crystal center to a photometric line of a camera is corrected using the timing difference.
JP28246095A 1995-10-03 1995-10-03 Crystal diameter measurement method Expired - Fee Related JP2876050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28246095A JP2876050B2 (en) 1995-10-03 1995-10-03 Crystal diameter measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28246095A JP2876050B2 (en) 1995-10-03 1995-10-03 Crystal diameter measurement method

Publications (2)

Publication Number Publication Date
JPH09100194A JPH09100194A (en) 1997-04-15
JP2876050B2 true JP2876050B2 (en) 1999-03-31

Family

ID=17652719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28246095A Expired - Fee Related JP2876050B2 (en) 1995-10-03 1995-10-03 Crystal diameter measurement method

Country Status (1)

Country Link
JP (1) JP2876050B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024643B1 (en) 1998-11-06 2000-03-21 住友金属工業株式会社 Crystal cross section measurement method
KR101758980B1 (en) * 2015-06-16 2017-07-17 주식회사 엘지실트론 Ingot growing apparatus and growing method by it

Also Published As

Publication number Publication date
JPH09100194A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
JP5104129B2 (en) Single crystal diameter detection method and single crystal pulling apparatus
CN1079847C (en) System and method for controlling growth of silicon crystal
US8221545B2 (en) Procedure for in-situ determination of thermal gradients at the crystal growth front
KR101579780B1 (en) Method of determining diameter of single crystal, process for producing single crystal using same, and device for producing single crystal
JP2009057216A (en) Silicon single crystal pulling method
US5961716A (en) Diameter and melt measurement method used in automatically controlled crystal growth
JP4089500B2 (en) Method for measuring the position of the melt in the single crystal pulling device
US5660629A (en) Apparatus for detecting the diameter of a single-crystal silicon
JP2876050B2 (en) Crystal diameter measurement method
JP5924090B2 (en) Single crystal pulling method
JP6477356B2 (en) Single crystal manufacturing method and manufacturing apparatus
US6030451A (en) Two camera diameter control system with diameter tracking for silicon ingot growth
US6111262A (en) Method for measuring a diameter of a crystal
JP2979462B2 (en) Single crystal pulling method
JPS63256594A (en) Method for measuring diameter of crystal in cz furnace
JP4930488B2 (en) Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
JP3473313B2 (en) Crystal diameter measurement method
JPH0437038B2 (en)
JP3024643B1 (en) Crystal cross section measurement method
JPS6027686A (en) Apparatus for manufacturing single crystal
JPS62119190A (en) Method and device for controlling diameter of single crystal
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
JPH0196089A (en) Method for controlling diameter of single crystal
JP6090501B2 (en) Single crystal pulling method
JPH052636B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120122

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20140122

LAPS Cancellation because of no payment of annual fees