JPH0437038B2 - - Google Patents

Info

Publication number
JPH0437038B2
JPH0437038B2 JP24389086A JP24389086A JPH0437038B2 JP H0437038 B2 JPH0437038 B2 JP H0437038B2 JP 24389086 A JP24389086 A JP 24389086A JP 24389086 A JP24389086 A JP 24389086A JP H0437038 B2 JPH0437038 B2 JP H0437038B2
Authority
JP
Japan
Prior art keywords
diameter
single crystal
ring
measurement
peaks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24389086A
Other languages
Japanese (ja)
Other versions
JPS63100097A (en
Inventor
Kiichiro Kitaura
Hideo Makino
Masanao Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP24389086A priority Critical patent/JPS63100097A/en
Publication of JPS63100097A publication Critical patent/JPS63100097A/en
Publication of JPH0437038B2 publication Critical patent/JPH0437038B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はCZ法(チヨクラルスキー法)によ
る単結晶の製造において、単結晶の直径を精度よ
く測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for accurately measuring the diameter of a single crystal in the production of a single crystal by the CZ method (Cyochralski method).

〔従来の技術〕[Conventional technology]

IC、LSI等の製造に使用されるシリコン等の単
結晶の製造方法として、CZ法がよく知られてい
る。この方法は、第4図の原理図に示すように、
ルツボ2に容れたシリコン等の結晶融液4をワイ
ヤ6等によりルツボ2に対して相対的に回転させ
ながら円柱状に引き上げ、凝固させるものであ
る。引き上げられた円柱状の単結晶8は、所定径
のインゴツトに切削加工されるが、この切削加工
時の切削代を少なくし製造歩留りを高める必要性
から、引き上げ中に単結晶8の直径を高精度に測
定することが要求される。そして、この直径測定
は、従来は主に次の方法で行われていた。
The CZ method is well known as a method for manufacturing single crystals of silicon, etc. used in manufacturing ICs, LSIs, etc. This method, as shown in the principle diagram in Figure 4,
A crystalline melt 4 of silicon or the like contained in a crucible 2 is pulled up into a cylindrical shape while being rotated relative to the crucible 2 using a wire 6 or the like and solidified. The pulled cylindrical single crystal 8 is cut into an ingot with a predetermined diameter. Due to the need to reduce the cutting allowance during this cutting process and increase manufacturing yield, the diameter of the single crystal 8 is increased during pulling. Accurate measurement is required. Conventionally, this diameter measurement has been mainly performed by the following method.

引き上げ中の単結晶8の成長部、すなわち凝固
部と結晶融液4との境界には、メニスカスによる
曲率の差が生じ、見かけの幅射率を変えることに
よりいわゆるフユージヨンリング9が発現する。
このフユージヨリング9は、斜め上方から観察す
ることにより半楕円形状に捉えられるので、その
長径方向X−XにCCDカメラ等の一次元ライン
センサ10で撮影することにより、第5図イに示
すようにフユージヨンリング9との交点x,x
(第4図)に対応して2つのピークPa,Pbを有す
るアナログ信号波形が得られる。従来の直径測定
は、第5図イ,ロに示すように、このアナログ信
号波形を2値化し、更に、第5図ロ,ハに示すよ
うに、ピークPaにおいて2値化信号が最初に0
から1に切り換わる画素子Naから、ピークPbに
おいて2値化信号が最後に1から0に切り換わる
画素子Nbまでの画素子数(Na−Nb)に基づい
てNa,Nb間の実長を計算することにより行われ
ていた。しかしながら、このような直径測定方法
では、次のような理由から大きな測定誤差を生じ
ていた。
A difference in curvature due to the meniscus occurs at the boundary between the growing part of the single crystal 8 during pulling, that is, the solidified part, and the crystal melt 4, and by changing the apparent radiance, a so-called fusion ring 9 appears. .
This fuselage ring 9 can be seen to have a semi-elliptical shape when observed from diagonally above, so by photographing it in the long axis direction XX with a one-dimensional line sensor 10 such as a CCD camera, it can be seen as shown in Fig. 5A. Intersection with fusion ring 9 x, x
An analog signal waveform having two peaks Pa and Pb is obtained corresponding to (FIG. 4). In conventional diameter measurement, this analog signal waveform is binarized as shown in Fig. 5 A and B, and furthermore, as shown in Fig. 5 B and C, the binarized signal first becomes 0 at the peak Pa.
The actual length between Na and Nb is calculated based on the number of pixels (Na - Nb) from pixel Na, which switches from 1 to 1, to pixel Nb, where the binarized signal finally switches from 1 to 0 at peak Pb. This was done by calculation. However, such a diameter measuring method causes a large measurement error for the following reasons.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

単結晶8の引上げ中にフユージヨンリング9の
光量は大きく変化するのが通例である。フユージ
ヨンリング9の光量が変化した場合、第6図に示
すように、ピークPa,Pbの最大値が変化するの
みならず、裾の広がり具合が変化し、これにとも
なつて直径測定値も変わつてくる。具体的に言え
ば、単結晶8の直径が同一でも、フユージヨンリ
ング9の光量が増大すれば、Pa,Pbについての
2値化出力は幅が広がり、Na,Nb間の間隔が増
して測定値を増大させ、逆にフユージヨンリング
9の光量が減少すればNa,Nb間の間隔が狭まつ
て測定値が小さくなるのである。
Usually, the amount of light from the fusion ring 9 changes greatly during the pulling of the single crystal 8. When the light intensity of the fusion ring 9 changes, as shown in Fig. 6, not only the maximum values of peaks Pa and Pb change, but also the width of the tail changes, and the measured diameter value changes accordingly. It will also change. Specifically, even if the diameter of the single crystal 8 is the same, if the light intensity of the fusion ring 9 increases, the binarized output for Pa and Pb will widen, and the spacing between Na and Nb will increase. If the measured value is increased and the amount of light from the fusion ring 9 is decreased, the distance between Na and Nb becomes narrower and the measured value becomes smaller.

また、このような測定誤差は、一次元ラインセ
ンサ10の受光感度の差によつても生じる。
Further, such a measurement error also occurs due to a difference in light receiving sensitivity of the one-dimensional line sensor 10.

本発明は、これらの測定誤差を完全に排除し得
る高精度な直径測定方法を提供することを目的と
する。
An object of the present invention is to provide a highly accurate diameter measurement method that can completely eliminate these measurement errors.

〔問題点を解決するための手段〕[Means for solving problems]

ところで、フユージヨンリング9をCCDカメ
ラ等の一次元ラインセンサ10で撮影した場合、
その出力波形のピークPa,Pbは、厳密には第1
図イ,ロに示されるように。それぞれ2つのピー
クPa′,Pa″およびPb″,Pb′からなる。すなわち、
フユージヨンリング9はPa′,Pb′で表される外
側の光輝環と、ピークPa″,Pb″で表される内側
の光輝環の2つからなるのである。本発明者ら
は、フユージヨンリング9が内外2本の光輝環か
らなることに着目し、これら光輝環と単結晶8成
長部との位置関係とについて種々調査・考察を行
つた結果、内側の光輝環が結晶融液4と単結晶8
凝固部との境界、すなわち単結晶8成長部の外周
に相当し、外側の光輝環はルツボ2の縁等が結晶
融液4の表面に反射した反射像であることを見出
した。
By the way, when the fusion ring 9 is photographed with a one-dimensional line sensor 10 such as a CCD camera,
Strictly speaking, the peaks Pa and Pb of the output waveform are the first
As shown in Figures A and B. Each consists of two peaks Pa', Pa'' and Pb'', Pb'. That is,
The fusion ring 9 consists of two parts: an outer bright ring represented by Pa' and Pb', and an inner bright ring represented by peaks Pa'' and Pb''. The present inventors focused on the fact that the fusion ring 9 consists of two inner and outer luminous rings, and as a result of various investigations and considerations regarding the positional relationship between these luminous rings and the growth part of the single crystal 8, the inner The bright rings of crystal melt 4 and single crystal 8
It was found that the outer luminous ring corresponds to the boundary with the solidification part, that is, the outer periphery of the single crystal 8 growth part, and is a reflection image of the edge of the crucible 2 and the like reflected on the surface of the crystal melt 4.

本発明はこの知見に基づきなされたものであつ
て、CZ法により単結晶を引き上げ製造する際に、
引き上げ中の単結晶の成長部周囲にフユーシヨン
リングとして発現する2本の光輝環のうち、内側
の光輝環の直径を前記単結晶成長部の直径として
光学測定することを特徴とする単結晶の直径測定
方法を要旨とする。
The present invention was made based on this knowledge, and when producing a single crystal by pulling it by the CZ method,
A single crystal characterized by optically measuring the diameter of the inner bright ring among two bright rings appearing as a fusion ring around the growth part of the single crystal being pulled as the diameter of the single crystal growth part. The gist is how to measure the diameter of.

ここで、光学測定とはピークPa″,Pb″間の実
長を検出することを言う。
Here, optical measurement refers to detecting the actual length between peaks Pa'' and Pb''.

〔作用〕[Effect]

内側の光輝環が単結晶8成長部の外周に相当す
ることから、内側の光輝環について得られるピー
クPa″,Pb″間の実長を検出することにより、単
結晶8成長部の直径が高精度に求まる。
Since the inner bright ring corresponds to the outer circumference of the single crystal 8 growth area, by detecting the actual length between the peaks Pa'' and Pb'' obtained for the inner bright ring, the diameter of the single crystal 8 growth area can be determined. It depends on precision.

また、ピークPa″,Pb″は、フユージヨンリン
グの光量やセンサの感度が変化した場合、その高
さは変化するものの、Pa″,Pb″間の実長は変化
しないので、測定される直径は、フユージヨンリ
ングの光量変化やセンサの感度差による影響を受
けないものとなる。
In addition, although the heights of peaks Pa″ and Pb″ will change when the light intensity of the fusion ring or the sensitivity of the sensor changes, the actual length between Pa″ and Pb″ will not change, so they can be measured. The diameter is not affected by changes in the light amount of the fusion ring or differences in sensor sensitivity.

〔実施例〕〔Example〕

第3図は、直径制御を導入した実際の単結晶製
造装置を例示したものである。
FIG. 3 illustrates an actual single-crystal manufacturing apparatus incorporating diameter control.

図中、1は透明の窓を持つたチヤンバーで、そ
の内部においてルツボ2が回転支持台3上に載置
されている。ルツボ2の周囲には、ルツボ2内の
結晶融液4を適正温度に保持するためのヒータ5
が設けられている。チヤンバー1の上部からチヤ
ンバー1内へ垂直に挿入されたワイヤ6は先端に
シード7を有し、これを結晶融液4に浸漬した状
態から回転させながら徐々に引き上げることによ
り単結晶8を成長させる。
In the figure, 1 is a chamber having a transparent window, and a crucible 2 is placed on a rotating support 3 inside the chamber. A heater 5 is installed around the crucible 2 to maintain the crystal melt 4 in the crucible 2 at an appropriate temperature.
is provided. A wire 6 inserted perpendicularly into the chamber 1 from the top of the chamber 1 has a seed 7 at its tip, and a single crystal 8 is grown by gradually pulling up the wire 6 from a state of being immersed in the crystal melt 4 while rotating it. .

単結晶8の直径を測定するための光学的手段
は、CCDカメラ等の一次元ラインセンサ10が
チヤンバー1の斜め上方からチヤンバー1の窓を
通して、単結晶8の成長部に発現するフユージヨ
ンリング(半楕円形状に見える)を長径方向X−
X(第4図参照)に撮影するものとなつている。
11はこの撮影データより単結晶8成長部の直径
を計算する計算器、12は計算された直径が目標
値に一致するよう、単結晶8の引き上げ速度を制
御する制御器である。
The optical means for measuring the diameter of the single crystal 8 is such that a one-dimensional line sensor 10 such as a CCD camera passes through the window of the chamber 1 from diagonally above the chamber 1 and detects a fusion ring appearing in the growth area of the single crystal 8. (looks like a semi-ellipse) in the major axis direction
X (see Figure 4).
11 is a calculator that calculates the diameter of the growing portion of the single crystal 8 from this photographic data, and 12 is a controller that controls the pulling speed of the single crystal 8 so that the calculated diameter matches the target value.

このような単結晶製造装置において、本発明の
直径測定方法を実施するには、第2図のフロシー
トに示すように、先ず一次元ラインセンサ10で
撮影して得たアナログ波形信号をデジタル信号に
変換し、メモリ空間に展開する。アナログ信号を
デジタル信号に変換するアナグロ/デジタル変換
器としては7ビツト以上のものが望ましい。次
に、展開されたデジタル信号波形の特徴を抽出
し、ピークPa″,Pb″の位置を検出する。これに
は通常のパターン認識手法が用いられる。ピーク
Pa″,Pb″の位置が検出されると、最後にPa″,
Pb″間の長さが単結晶8成長部の直径として測定
される。この長さ測定は、第1図ロ,ハに示され
るように、Pa″,Pb″間の素子数(Nb″−Na″)
に1素子の長さを乗じることにより可能である。
以上の計算は計算器11により行われる。
In order to carry out the diameter measuring method of the present invention in such a single crystal manufacturing apparatus, first, as shown in the flow sheet of FIG. Convert and expand into memory space. An analog/digital converter for converting an analog signal into a digital signal is preferably 7 bits or more. Next, the features of the expanded digital signal waveform are extracted and the positions of peaks Pa'' and Pb'' are detected. Standard pattern recognition techniques are used for this. peak
When the positions of Pa″, Pb″ are detected, finally Pa″,
The length between Pa″ and Pb″ is measured as the diameter of the single crystal 8 growth part. This length measurement is performed by measuring the number of elements between Pa″ and Pb″ (Nb″- Na″)
This is possible by multiplying by the length of one element.
The above calculations are performed by the calculator 11.

一次元ラインセンサ10で撮影して得たヒユー
ジヨンリング9の信号波形を2値化して直径を算
出する従来方法の場合(第5図)、実際の結晶径
に変化がなくてもヒユージヨンリングの光量変化
やセンサの受光感度の変化によつて測定径に変化
を生じるが、上述のようにピークPa″,Pb″間の
長さをパターン認識により直接測定した場合、ヒ
ユージヨンリングの光量変化やセンサの感度変化
による影響がなく、またピークPa″,Pb″で表さ
れる内側の光輝環は本来的に単結晶8成長部の外
周とよく一致するので、これらがあいまつて正確
な直径測定を可能ならしめる。
In the case of the conventional method of calculating the diameter by binarizing the signal waveform of the fuselage ring 9 obtained by photographing with the one-dimensional line sensor 10 (Fig. 5), even if there is no change in the actual crystal diameter, the fuselage ring Changes in the measurement diameter occur due to changes in the light intensity of the fuselage ring and changes in the light receiving sensitivity of the sensor, but when the length between the peaks Pa'' and Pb'' is directly measured by pattern recognition as described above, the diameter of the fuselage ring changes. There is no effect from changes in light intensity or changes in sensor sensitivity, and the inner luminous ring represented by peaks Pa″ and Pb″ inherently coincides well with the outer circumference of the single crystal 8 growth area, so these together provide accurate results. This makes accurate diameter measurement possible.

単結晶8成長部の直径が求まると、制御部12
においてこの直径を目標値と比較し、両者の差が
0となるように単結晶8の引き上げ速度を制御す
る。
When the diameter of the single crystal 8 growing portion is determined, the controller 12
This diameter is compared with a target value, and the pulling speed of the single crystal 8 is controlled so that the difference between the two becomes zero.

このとき、測定径が正確であると、それに応じ
て実績径精度が高まり、その分、目標径を小さく
でき製品歩留りを向上させ得ることは言うまでも
ない。
At this time, it goes without saying that if the measured diameter is accurate, the accuracy of the actual diameter will increase accordingly, and the target diameter can be made correspondingly smaller and the product yield can be improved.

本発明者らの経験によると、6インチ級のシリ
コン単結晶の製造において、従来の2値化波形処
理による直径測定を採用した場合、測定誤差に起
因する仕上がり誤差は±2mmを見込まなければな
らず、それにともなつて目標径を(最終製品径+
5mm)に設定しなければならなかつたのに対し、
上述のピークPa″,Pb″間直接測長の場合には、
測定誤差に起因する仕上がり誤差は±0.5mm程度
を見込めばよく、これにより目標径を(最終製品
径+3mm)まで小さくでき、製品歩留りを4%向
上させることができた。
According to the experience of the present inventors, when diameter measurement using conventional binarized waveform processing is adopted in the production of 6-inch class silicon single crystals, the finishing error due to measurement error must be expected to be ±2 mm. Accordingly, the target diameter (final product diameter +
5mm),
In the case of direct length measurement between peaks Pa″ and Pb″ mentioned above,
Finishing errors caused by measurement errors can be expected to be around ±0.5 mm, which makes it possible to reduce the target diameter to (final product diameter + 3 mm) and improve product yield by 4%.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の直径
測定方法によれば、直径の測定精度が向上し、そ
の分、厳密な直径制御が可能になるので、制御目
標径を最終製品径に近づけることができ、これに
より切削ロスが減少して製品歩留りの向上、製品
コストの引き下げに大きな効果が発揮される。
As is clear from the above explanation, according to the diameter measurement method of the present invention, the diameter measurement accuracy is improved, which makes it possible to perform strict diameter control, so that the control target diameter can be brought closer to the final product diameter. This reduces cutting loss, which has a significant effect on improving product yield and lowering product costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ〜ハは本発明の測定方法の処理手順を
図化により模式的に示したグラフ、第2図は同処
理手順を段階的に示したフローシート、第3図は
本発明の測定方法を用いた単結晶製造装置の一例
を示した模式図、第4図はCZ法の原理図、第5
図イ〜ハは従来の測定方法の処理手順を示したグ
ラフ、第6図は従来法における測定誤差要因を示
すグラフである。 図中、2:ルツボ、4:結晶融液、8:単結
晶、9:フユージヨンリング、10:一次元ライ
ンセンサ。
Figure 1 A to C are graphs schematically showing the processing procedure of the measurement method of the present invention, Figure 2 is a flow sheet showing the same processing procedure step by step, and Figure 3 is the measurement method of the present invention. A schematic diagram showing an example of a single crystal manufacturing apparatus using the CZ method. Figure 4 is a diagram of the principle of the CZ method. Figure 5
Figures A to C are graphs showing the processing procedure of the conventional measuring method, and Fig. 6 is a graph showing measurement error factors in the conventional method. In the figure, 2: crucible, 4: crystal melt, 8: single crystal, 9: fusion ring, 10: one-dimensional line sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 CZ法により単結晶を引き上げ製造する際に、
引き上げ中の単結晶の成長部周囲にフユージヨン
リングとして発現する2本の光輝環のうち、内側
の光輝環の直径を前記単結晶成長部の直径として
光学測定することを特徴とする単結晶の直径測定
方法。
1 When producing a single crystal by pulling it using the CZ method,
A single crystal characterized by optically measuring the diameter of the inner bright ring among two bright rings appearing as a fusion ring around the growing part of the single crystal being pulled as the diameter of the single crystal growing part. Diameter measurement method.
JP24389086A 1986-10-14 1986-10-14 Method for measuring diameter of single crystal Granted JPS63100097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24389086A JPS63100097A (en) 1986-10-14 1986-10-14 Method for measuring diameter of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24389086A JPS63100097A (en) 1986-10-14 1986-10-14 Method for measuring diameter of single crystal

Publications (2)

Publication Number Publication Date
JPS63100097A JPS63100097A (en) 1988-05-02
JPH0437038B2 true JPH0437038B2 (en) 1992-06-18

Family

ID=17110513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24389086A Granted JPS63100097A (en) 1986-10-14 1986-10-14 Method for measuring diameter of single crystal

Country Status (1)

Country Link
JP (1) JPS63100097A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601930B2 (en) * 1990-03-29 1997-04-23 信越半導体株式会社 Method and apparatus for controlling diameter of single crystal neck
JP4089500B2 (en) * 2003-05-06 2008-05-28 株式会社Sumco Method for measuring the position of the melt in the single crystal pulling device
JP5924090B2 (en) * 2012-04-12 2016-05-25 株式会社Sumco Single crystal pulling method
DE102013210687B4 (en) 2013-06-07 2018-12-06 Siltronic Ag Method for controlling the diameter of a single crystal to a nominal diameter

Also Published As

Publication number Publication date
JPS63100097A (en) 1988-05-02

Similar Documents

Publication Publication Date Title
KR100426419B1 (en) Method for controlling growth of a silicon crystal
KR101028684B1 (en) Silicon single crystal pulling method
CN1202290C (en) Method and system for controlling growth of a silicon crystal
JP4253123B2 (en) Method and system for controlling the growth of silicon crystals
US9708731B2 (en) Method of producing silicon single crystal
EP0450502B1 (en) Method of diameter measurement used in automatically controlled crystal growth
JPH09175896A (en) Strainless video camera used together with apparatus for continuous growth of silicon crystal
JP4089500B2 (en) Method for measuring the position of the melt in the single crystal pulling device
JPH0437038B2 (en)
JP5924090B2 (en) Single crystal pulling method
US6030451A (en) Two camera diameter control system with diameter tracking for silicon ingot growth
US5176787A (en) Method and apparatus for measuring the diameter of a silicon single crystal
JP3611364B2 (en) Single crystal diameter control method
US6111262A (en) Method for measuring a diameter of a crystal
JPH03112885A (en) Method for sensing crystal dying in pulling up single crystal
JP2876050B2 (en) Crystal diameter measurement method
US5853479A (en) Apparatus for drawing single crystals by the czochralski method
CN114252018B (en) Crystal diameter detection method, system and computer program product
JPH0565478B1 (en)
JP6090501B2 (en) Single crystal pulling method
JP3473313B2 (en) Crystal diameter measurement method
RU2227819C1 (en) Method of control of level of melt in crucible in the course of crystal growth
KR100977619B1 (en) Measuring Apparatus and Method of Single Crystal Ingot Diameter
JPS6027686A (en) Apparatus for manufacturing single crystal
JP2000143390A (en) Measuring of crystalline cross section shape

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees