JP2869241B2 - Particle detector - Google Patents

Particle detector

Info

Publication number
JP2869241B2
JP2869241B2 JP4036360A JP3636092A JP2869241B2 JP 2869241 B2 JP2869241 B2 JP 2869241B2 JP 4036360 A JP4036360 A JP 4036360A JP 3636092 A JP3636092 A JP 3636092A JP 2869241 B2 JP2869241 B2 JP 2869241B2
Authority
JP
Japan
Prior art keywords
mirror surface
light beam
light
light source
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4036360A
Other languages
Japanese (ja)
Other versions
JPH05232019A (en
Inventor
利光 麦林
則明 石尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4036360A priority Critical patent/JP2869241B2/en
Publication of JPH05232019A publication Critical patent/JPH05232019A/en
Application granted granted Critical
Publication of JP2869241B2 publication Critical patent/JP2869241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微粒子による光散乱を
利用した微粒子検出装置に関し、更に詳しくは、微粒子
の検出感度を向上させた微粒子検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine particle detecting apparatus utilizing light scattering by fine particles, and more particularly, to a fine particle detecting apparatus having improved fine particle detecting sensitivity.

【0002】[0002]

【従来の技術】従来のこの種の装置としては、例えば図
7に示すものが知られている。図7に示す微粒子検出装
置は、同図に示すように、互いに平行に配設された一対
の平面鏡1、1と、一方の平面鏡1の斜め上方に配設さ
れ、他方の平面鏡1に向けて光線を照射する光源2と、
光源2から照射された光線3が各平面鏡1、1で反射を
繰り返す間に、両平面鏡1、1間を流れる微粒子で散乱
される光を検出する光センサ(図示せず)とを備えてい
る。そして、光線が両平面鏡1、1間を多数回反射して
微粒子の散在する両平面鏡1、1間の空間に光線網を形
成するようにしてある。
2. Description of the Related Art As a conventional device of this type, for example, a device shown in FIG. 7 is known. As shown in FIG. 7, the fine particle detection device shown in FIG. 7 is disposed diagonally above a pair of plane mirrors 1 and 1 arranged in parallel with each other and one plane mirror 1 and directed toward the other plane mirror 1. A light source 2 for irradiating light rays,
An optical sensor (not shown) is provided for detecting light scattered by fine particles flowing between the plane mirrors 1 and 1 while the light beam 3 emitted from the light source 2 is repeatedly reflected by the plane mirrors 1 and 1. . The light rays are reflected between the two plane mirrors 1 and 1 many times to form a ray network in the space between the two plane mirrors 1 and 1 where fine particles are scattered.

【0003】次に、動作について説明すると、光源2か
ら光線3が照射されると、この光線3は各平面鏡1、1
間で反射を繰り返すと共に、両平面鏡1、1間を流れる
微粒子による光の散乱を発生し、この散乱光を光センサ
よって検出することにより微粒子検出する。そして、反
射を繰り返した光線は他方の平面鏡1の下端から外部へ
出る。
Next, the operation will be described. When a light beam 3 is emitted from the light source 2, the light beam 3 is applied to each of the plane mirrors 1, 1
While the reflection is repeated between the two plane mirrors, light scattering is generated by the fine particles flowing between the two plane mirrors 1 and 1, and the scattered light is detected by an optical sensor to detect the fine particles. Then, the light beam that has been repeatedly reflected goes out from the lower end of the other plane mirror 1 to the outside.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
微粒子検出装置は、光線を反射させる反射面が平行する
二枚の平面鏡1、1によって構成さているため、光線が
各平面鏡1、1内に光線網を作るように、各平面鏡1、
1の平行度を厳格に設定する必要があった。また、この
検出装置の使用中に、いずれかのあるいは双方の平面鏡
1に位置ズレを生じ、稼動中に平行度を調整し直す必要
があり、稼動率を著しく低下させるという課題があっ
た。
However, since the conventional particle detecting device is composed of two plane mirrors 1 and 1 whose reflecting surfaces for reflecting light rays are parallel to each other, the light rays are contained in each of the plane mirrors 1 and 1. As if making a net, each plane mirror 1,
It was necessary to set the parallelism of 1 strictly. In addition, during use of this detection device, one or both of the plane mirrors 1 are misaligned, and it is necessary to readjust the parallelism during operation, thereby causing a problem of significantly lowering the operation rate.

【0005】また、上記微粒子検出装置を設置する場合
には、その光線網が微粒子の流れに対して垂直になるよ
うに設置して光線を最大限に有効に利用することが好ま
しいが、このよう設置すると散乱光を検出する光センサ
の位置が微粒子の流れを阻害して好ましくないため、微
粒子検出装置を微粒子の流れに垂直に設置できないとい
う課題があった。更に、反応析出性のガス雰囲気では平
面鏡1にこれらが析出するため、このような雰囲気には
上記微粒子検出装置を設置することができないという課
題があった。
[0005] When the above-mentioned particle detecting device is installed, it is preferable that the light beam network is installed so as to be perpendicular to the flow of the particles so as to make the most effective use of the light beams. If installed, the position of the optical sensor that detects scattered light hinders the flow of fine particles, which is not preferable. Therefore, there is a problem that the fine particle detection device cannot be installed perpendicularly to the flow of fine particles. Furthermore, since these precipitate out on the plane mirror 1 in a gas atmosphere having a reactive deposition property, there is a problem that the above-described particle detection device cannot be installed in such an atmosphere.

【0006】本発明は、上記課題を解決するためになさ
れたもので、例えば稼動中に鏡面を調整し直す必要がな
く、光線を最大限に活用して微粒子の検出感度を高める
ことができると共に誤計数がなく、反応析出性ガス雰囲
気でも使用できる微粒子検出装置を提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. For example , there is no need to adjust the mirror surface during operation, and the detection sensitivity of fine particles can be increased by making full use of light rays. It is an object of the present invention to provide a fine particle detection device that can be used even in a reaction-precipitating gas atmosphere without erroneous counting.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係る
微粒子検出装置は、円周面に形成された鏡面と、鏡面の
外部に配設され且つこの鏡面に斜め方向から光線を照射
する光源と、光源からの光線が上記鏡面の内部で多数回
反射を繰り返して概ね平面と見なせる光線網を形成する
間に、この鏡面内部を通過する微粒子から散乱された散
乱光を検出することにより微粒子を検出する光センサと
を備えたものである。また、本発明の請求項2に係る微
粒子検出装置は、円周内面に形成された鏡面と、鏡面の
側方に配設され且つこの鏡面に向けて光線を照射する光
源と、光源からの光線が上記鏡面の内部で多数回反射を
繰り返して概ね平面と見なせる光線網を形成する間に、
この鏡面内部を通過する微粒子から散乱された散乱光を
検出することにより微粒子を検出する光センサとを備
え、且つ上記鏡面の温度を制御する温度制御手段を備え
たものである。また、本発明の請求項3に係る微粒子検
出装置は、反応析出性ガスが流通する配管に設けられた
支持体と、この支持体の外側に配設され光線を照射する
光源と、この光源からの光線を検知する光センサとを備
え、前記配管を通って前記支持体を流通する前記反応析
出性ガスに、前記光源から光線を照射して、前記光セン
サによって前記反応析出性ガス中の微粒子を検出する微
粒子検出装置において、前記支持体は、光線経路上に前
記反応析出性ガスに直接接触する光学体を有し、この光
学体は温度制御手段により温度制御され、前記反応析出
性ガスが前記光学体の面に析出するのを防止するように
なっているものである。
According to a first aspect of the present invention, there is provided a particle detecting apparatus, comprising: a mirror surface formed on a circumferential surface; and a light beam which is disposed outside the mirror surface and irradiates the mirror surface with an oblique direction. A light source and light rays from the light source are repeatedly reflected many times inside the mirror surface to form a ray network that can be regarded as a substantially flat surface, and by detecting the scattered light scattered from the fine particles passing through the mirror surface, the fine particles are detected. And an optical sensor for detecting Further, the particle detecting device according to claim 2 of the present invention comprises a mirror surface formed on the inner circumferential surface, a light source disposed on a side of the mirror surface and irradiating a light beam toward the mirror surface, and a light beam from the light source. While forming a ray network that can be regarded as a substantially plane by repeating reflection many times inside the mirror surface,
An optical sensor for detecting fine particles by detecting scattered light scattered from fine particles passing through the inside of the mirror surface; and a temperature control means for controlling the temperature of the mirror surface. Further, the fine particle detection device according to claim 3 of the present invention includes a support provided on a pipe through which a reactive deposition gas flows, a light source disposed outside the support and emitting light, and A light sensor for detecting the light beam of the above, the light source irradiates the light from the light source to the reactive deposition gas flowing through the support through the pipe, the fine particles in the reactive deposition gas by the optical sensor In the fine particle detection device, the support has an optical body in direct contact with the reactive deposition gas on the light path, and the optical body is temperature-controlled by temperature control means, and the reactive deposition gas is It is designed to prevent precipitation on the surface of the optical body.

【0008】[0008]

【作用】本発明によれば、光源から光線を照射すると、
光線が円周面に形成された鏡面に入射して外部へ光線が
漏れることなく鏡面内で反射を多数回繰り返して概ね平
面と見なせる光線網を形成する。この光線網に微粒子が
唯一度だけ当たり、散乱光を発生し、この散乱光を光セ
ンサで検出する。また、温度制御手段で鏡面の温度を調
整して反応析出性ガスの鏡面への析出を防止して初期の
検出感度を保持することができる。
According to the present invention, when light is emitted from a light source,
Light rays are incident on a mirror surface formed on the circumferential surface and are reflected many times within the mirror surface without leaking to the outside to form a light ray network which can be regarded as a substantially flat surface. The fine particles hit the light beam network only once, generating scattered light, and the scattered light is detected by an optical sensor. Further, the temperature of the mirror surface can be adjusted by the temperature control means to prevent the reactive deposition gas from depositing on the mirror surface, thereby maintaining the initial detection sensitivity.

【0009】[0009]

【実施例】以下、図1〜図6に示す実施例に基づいて本
発明を説明する。尚、各図中、図1は本発明の微粒子検
出装置の一実施例を示す平面図、図2は図1に示す微粒
子検出装置の断面図、図3は図1に示す微粒子検出装置
で微粒子を検出する状態を示す斜視図、図4は本発明の
微粒子検出装置の他の実施例を示す図2相当図、図5は
本発明の微粒子検出装置の更に他の実施例を示す図1相
当図、図6は本発明の微粒子検出装置の更に他の実施例
を示す図1相当図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in FIGS. In each of the drawings, FIG. 1 is a plan view showing one embodiment of the fine particle detecting device of the present invention, FIG. 2 is a cross-sectional view of the fine particle detecting device shown in FIG. 1, and FIG. FIG. 4 is a perspective view showing a state of detecting fine particles, FIG. 4 is a diagram corresponding to FIG. 2 showing another embodiment of the particle detecting device of the present invention, and FIG. 5 is a diagram corresponding to FIG. 1 showing still another embodiment of the particle detecting device of the present invention. FIG. 6 and FIG. 6 are views corresponding to FIG. 1 showing still another embodiment of the particle detecting apparatus of the present invention.

【0010】本実施例の微粒子検出装置Dは、図1、図
2に示すように、支持体10に形成された円周内面に形
成された光学体の一例である鏡面11と、鏡面11の側
方に配設され且つこの鏡面11に向けて光線13を照射
する光源12と、光源12からの光線13が上記鏡面1
1の内部で多数回反射を繰り返す間に、この鏡面11内
部を通過する微粒子から散乱された散乱光を検出するこ
とにより微粒子を検出する光センサ14とを備え、且つ
上記鏡面11の温度を制御する温度制御手段(図示せ
ず)を備えたものである。
As shown in FIGS. 1 and 2, a fine particle detecting device D of this embodiment has a mirror surface 11 which is an example of an optical body formed on a circumferential inner surface formed on a support 10 and a mirror surface 11 of the mirror surface 11. A light source 12 disposed laterally and irradiating a light beam 13 toward the mirror surface 11, and a light beam 13 from the light source 12
An optical sensor for detecting fine particles by detecting scattered light scattered from the fine particles passing through the inside of the mirror surface while the reflection is repeated many times inside the mirror surface; and controlling the temperature of the mirror surface. Temperature control means (not shown).

【0011】上記微粒子検出装置Dを更に具体的に示し
たものが図3である。同図によれば、上記支持体10
は、リング状に形成され、このリング状の支持体10の
内周面に光学体である鏡面11が形成されている。ま
た、リング状の上記支持体10にはその鏡面11内に光
線13を略径方向に照射する光源12が取り付けられ、
この光源12から鏡面11の孔11Aから対向する鏡面
11に向けて光線13を照射するようにしている。そし
て、上記光源12は、その光線13が鏡面11の中心か
ら僅かに逸れた位置で進入するように配置され、その光
線13が図1に示すように多数回反射を繰り返して密度
の高い光線網を形成し、鏡面11内を通過する微粒子の
検出感度を高めるようにしている。
FIG. 3 shows the particle detecting device D more specifically. According to FIG.
Is formed in a ring shape, and a mirror surface 11 which is an optical body is formed on an inner peripheral surface of the ring-shaped support body 10. Further, a light source 12 for irradiating a light beam 13 in a substantially radial direction is attached to a mirror surface 11 of the ring-shaped support 10,
The light source 13 emits a light beam 13 from the hole 11A of the mirror surface 11 to the mirror surface 11 opposite thereto. The light source 12 is arranged such that the light beam 13 enters at a position slightly deviated from the center of the mirror surface 11, and the light beam 13 is repeatedly reflected many times as shown in FIG. Is formed to increase the detection sensitivity of the fine particles passing through the mirror surface 11.

【0012】また、上記支持体10の軸芯方向の外方に
はこの軸線に沿った光センサ14が配設され、この光源
12からの光線13に基づいて上記微粒子から散乱され
た散乱光を検出することにより上記鏡面11を通過する
微粒子を検出するようにしている。更に、上記微粒子検
出装置Dは、上記鏡面11表面を反応析出性ガスの析出
しない温度に制御する温度制御手段(図示せず)を備
え、反応析出性ガス雰囲気で使用した場合にも反応析出
性ガスが鏡面11の表面に析出しないようにしている。
An optical sensor 14 is provided outside the support 10 along the axis thereof in the direction of the axis of the support, and scatters light scattered from the fine particles based on the light 13 from the light source 12. By detecting, the fine particles passing through the mirror surface 11 are detected. Further, the fine particle detecting device D is provided with a temperature control means (not shown) for controlling the surface of the mirror surface 11 to a temperature at which no reactive deposition gas is deposited. Gas is prevented from being deposited on the surface of the mirror surface 11.

【0013】次に、動作について説明すると、微粒子を
含む気体の配管の通路20に上記微粒子検出装置Dを図
3に示すように配置すれば、気体は通路20を流れて支
持体10の鏡面11で囲まれた部分を通過する。このと
き、光源12から鏡面11に向けて照射した光線13は
鏡面11の表面で反射を繰り返す間に、鏡面11の中心
付近で密度の高い概ね平面と見なせる光線網を気流方向
に対して斜行する方向に形成し、特にこの中心部分で微
粒子を高感度に検出することができる。
Next, the operation will be described. If the fine particle detecting device D is arranged in the passage 20 of the gas pipe containing the fine particles as shown in FIG. 3, the gas flows through the passage 20 and passes through the mirror surface 11 of the support 10. Pass through the area enclosed by. At this time, while the light beam 13 emitted from the light source 12 toward the mirror surface 11 is repeatedly reflected on the surface of the mirror surface 11, a light network which can be regarded as a high-density substantially flat surface near the center of the mirror surface 11 is skewed with respect to the airflow direction. The fine particles can be detected with high sensitivity, particularly at this central portion.

【0014】従って、本実施例によれば、気体の速度が
通路20の中心で高速度の場合にその部分に含まれる微
粒子を高感度で検出することができると共に光センサ1
4を気体の流れを阻害しない位置に配置することができ
る。また、本実施例によれば、鏡面11をこれで気流を
囲む円周鏡面としたことにより従来のように鏡面11の
平行度の調整などを行なう必要がなく、また、温度制御
手段によって反応析出性ガス雰囲気下でも鏡面11に反
応析出性ガスを析出させることなく初期の反射性能を維
持し、結果として微粒子検出装置Dをメンテナンスフリ
ーにすることができる。
Therefore, according to this embodiment, when the velocity of the gas is high at the center of the passage 20, the fine particles contained in that part can be detected with high sensitivity, and the optical sensor 1 can be detected.
4 can be arranged at a position that does not hinder the flow of gas. Further, according to the present embodiment, the mirror surface 11 is a circumferential mirror surface surrounding the air flow, so that it is not necessary to adjust the parallelism of the mirror surface 11 as in the prior art. Even in a neutral gas atmosphere, the initial reflection performance is maintained without depositing the reactive deposition gas on the mirror surface 11, and as a result, the fine particle detection device D can be maintenance-free.

【0015】また、図4は本発明の他の実施例を示す図
で、本実施例の微粒子検出装置Dは、光源12が支持体
10の外部に配設され、光線13を鏡面11の外部から
光源12と対向する鏡面11へ斜め方向から光線13を
照射するようにしたものである。この光源12の配置に
伴って、鏡面11は、入射光線13を鏡面11内で有効
に反射させて光線13を鏡面11内で多数回繰り返すよ
うにその断面が外側に湾曲して形成されている。従っ
て、本実施例によれば、光源12が鏡面11の外部に位
置しているため、上記実施例のように光源12が通過す
る孔11Aを鏡面11に設ける必要がなく、延いては光
線13の反射を乱すことがなく、光線13をより有効に
利用することができ、より高感度で気流中の微粒子を検
出することができる。
FIG. 4 is a view showing another embodiment of the present invention. In the particle detecting apparatus D of this embodiment, a light source 12 is provided outside a support 10 and a light beam 13 is emitted outside a mirror surface 11. The light beam 13 is applied to the mirror surface 11 facing the light source 12 from an oblique direction. With the arrangement of the light source 12, the mirror surface 11 is formed so that its cross section is curved outward so that the incident light beam 13 is effectively reflected in the mirror surface 11 and the light beam 13 is repeated many times in the mirror surface 11. . Therefore, according to the present embodiment, since the light source 12 is located outside the mirror surface 11, it is not necessary to provide the hole 11A through which the light source 12 passes as in the above-described embodiment. Without disturbing the reflection of light, the light beam 13 can be used more effectively, and fine particles in the airflow can be detected with higher sensitivity.

【0016】また、図5は本発明の更に他の実施例を示
す図で、本実施例の微粒子検出装置Dは、光源12が図
1に示すものと同様に鏡面11に孔11Aを設け、この
孔11Aから光線13を鏡面11の中心から大きく偏倚
した位置で入射させ、光線13が鏡面11の表面近傍に
図5に示すような光線網を形成するようにしたものであ
る。従って、本実施例によれば、特に、半導体製造装置
に用いる場合において、鏡面11の直径をウエハの直径
に合わせたものにすれば、ウエハの周縁部で微粒子を集
中的に検出することができる。
FIG. 5 is a view showing still another embodiment of the present invention. In a fine particle detecting apparatus D of this embodiment, a light source 12 is provided with a hole 11A in a mirror surface 11 similarly to that shown in FIG. A light beam 13 is made to enter from the hole 11A at a position greatly deviated from the center of the mirror surface 11, so that the light beam 13 forms a light network near the surface of the mirror surface 11 as shown in FIG. Therefore, according to the present embodiment, particularly when used in a semiconductor manufacturing apparatus, if the diameter of the mirror surface 11 is adjusted to the diameter of the wafer, the fine particles can be detected intensively at the peripheral portion of the wafer. .

【0017】また、図6は本発明の更に他の実施例を示
す図で、本実施例の微粒子検出装置Dは、図1に示す光
源12と図5に示す光源12とを組み合わせて構成され
たもので、このような構成により気流中心及び気流の周
縁部において微粒子を検出することができる。
FIG. 6 is a view showing still another embodiment of the present invention. The particle detecting apparatus D of this embodiment is configured by combining the light source 12 shown in FIG. 1 and the light source 12 shown in FIG. With such a configuration, fine particles can be detected at the center of the airflow and at the periphery of the airflow.

【0018】[0018]

【発明の効果】以上説明したように、この発明の請求項
1に係る微粒子検出装置によれば、稼働中に鏡面を調整
し直す必要がなく、1つの微粒子を2度以上計数するこ
となく、光線を最大限に活用して微粒子の検出感度を高
めることができる。また、鏡面には光源からの光を通過
させるための通過孔を形成する必要性がなく、そのため
通過孔の縁部に光線が当たって光線の反射が乱されると
いった不都合が生じるようなことはなく、それだけ光線
の反射回数をより多く設定することができて、密な光線
網を形成でき、より高感度で気流中の微粒子を検出する
ことができる。◎また、この発明の請求項2に係る微粒
子検出装置によれば、稼働中に鏡面を調整し直す必要が
なく、光線を最大限に活用して微粒子の検出感度を高め
ることができると共に、反応析出性ガス雰囲気でも使用
できる。また、この発明の請求項3に係る微粒子検出装
置によれば、反応性析出ガス雰囲気でも光学体の面に反
応析出性ガスを析出することなく、性能が維持された状
態で使用することができる。
As described above, according to the particle detecting device of the first aspect of the present invention, it is not necessary to readjust the mirror surface during operation, without counting one particle more than once. The detection sensitivity of fine particles can be enhanced by making the best use of the light beam. In addition, there is no need to form a through hole for allowing light from the light source to pass through the mirror surface, and therefore, there is no inconvenience that light rays hit the edge of the through hole and the reflection of light rays is disturbed. Instead, the number of reflections of light rays can be set more, a dense light ray network can be formed, and fine particles in the airflow can be detected with higher sensitivity. ◎ Further, according to the fine particle detecting device according to the second aspect of the present invention, it is not necessary to readjust the mirror surface during operation, and it is possible to maximize the detection sensitivity of the fine particles by utilizing the light rays and to increase the reaction. It can be used even in a deposition gas atmosphere. Further, according to the fine particle detecting device according to the third aspect of the present invention, even in a reactive deposition gas atmosphere, it can be used in a state where the performance is maintained without depositing the reactive deposition gas on the surface of the optical body. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の微粒子検出装置の一実施例を示す平
面図である。
FIG. 1 is a plan view showing an embodiment of a particle detection device according to the present invention.

【図2】 図1に示す微粒子検出装置の断面図である。FIG. 2 is a cross-sectional view of the particle detection device shown in FIG.

【図3】 図1に示す微粒子検出装置の微粒子を検出す
る状態を示す一部切欠き斜視図である。
FIG. 3 is a partially cutaway perspective view showing a state of detecting fine particles of the fine particle detection device shown in FIG. 1;

【図4】 本発明の微粒子検出装置の他の実施例を示す
図2相当図である。
FIG. 4 is a diagram corresponding to FIG. 2 showing another embodiment of the fine particle detection device of the present invention.

【図5】 本発明の微粒子検出装置の更に他の実施例を
示す図1相当図である。
FIG. 5 is a view corresponding to FIG. 1 showing still another embodiment of the fine particle detection device of the present invention.

【図6】 本発明の微粒子検出装置の更に他の実施例を
示す図1相当図である。
FIG. 6 is a view corresponding to FIG. 1, showing still another embodiment of the fine particle detection device of the present invention.

【図7】 従来の微粒子検出装置の一例を示す平面図で
ある。
FIG. 7 is a plan view showing an example of a conventional particle detection device.

【符号の説明】[Explanation of symbols]

11 鏡面、12 光源、13 光線、14 光セン
サ。
11 mirror surface, 12 light sources, 13 light beams, 14 optical sensors.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 15/00 - 15/14 G01N 21/00 G01N 21/01 G01N 21/17 - 21/61 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 15/00-15/14 G01N 21/00 G01N 21/01 G01N 21/17-21/61

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 円周面に形成された鏡面と、鏡面の外部
配設され且つこの鏡面に斜め方向から光線を照射する
光源と、光源からの光線が上記鏡面の内部で多数回反射
を繰り返して概ね平面と見なせる光線網を形成する間
に、この鏡面内部を通過する微粒子から散乱された散乱
光を検出することにより微粒子を検出する光センサとを
備えたことを特徴とする微粒子検出装置。
1. A mirror surface formed on a circumferential surface and an outer surface of the mirror surface.
A light source for irradiating a light beam from an oblique direction arranged by and this mirror surface, while the light beam from the light source to form a light beam network which can be regarded as generally plane repeated multiple times reflected within the mirror, the mirror inside A fine particle detection device comprising: an optical sensor that detects fine particles by detecting scattered light scattered from passing fine particles.
【請求項2】 円周面に形成された鏡面と、鏡面の側方
に配設され且つこの鏡面に向けて光線を照射する光源
と、光源からの光線が上記鏡面の内部で多数回反射を繰
り返して概ね平面と見なせる光線網を形成する間に、こ
の鏡面内部を通過する微粒子から散乱された散乱光を検
出することにより微粒子を検出する光センサとを備え、
且つ上記鏡面の温度を制御する温度制御手段を備えたこ
とを特徴とする微粒子検出装置。
2. A mirror surface formed on a circumferential surface, a light source disposed on a side of the mirror surface and irradiating a light beam toward the mirror surface, and a light beam from the light source is reflected many times inside the mirror surface. An optical sensor for detecting fine particles by detecting scattered light scattered from fine particles passing through the mirror surface while forming a ray network that can be regarded as a substantially flat surface repeatedly,
And a temperature control means for controlling the temperature of the mirror surface.
【請求項3】 反応析出性ガスが流通する配管に設けら
れた支持体と、この支持体の外側に配設され光線を照射
する光源と、この光源からの光線を検知する光センサと
を備え、前記配管を通って前記支持体を流通する前記反
応析出性ガスに、前記光源から光線を照射して、前記光
センサによって前記気体中の微粒子を検出する微粒子検
出装置において、前記支持体は、光線経路上に前記反応
析出性ガスに直接接触する光学体を有し、この光学体は
温度制御手段により温度制御され、前記反応析出性ガス
が前記光学体の面に析出するのを防止するようになって
いる微粒子検出装置。
3. A support provided on a pipe through which a reaction-precipitating gas flows, a light source provided outside the support for irradiating a light beam, and an optical sensor for detecting a light beam from the light source. the anti flowing through said support through the pipe
In a fine particle detection device for irradiating a light beam from the light source to the depositable gas and detecting the fine particles in the gas by the optical sensor, the support may include the reaction on a light beam path.
Has an optical member in direct contact with the deposition gas, the optical body is temperature controlled by a temperature control means, said reactive deposition gases
To prevent precipitation on the surface of the optical body
Particle detector device are.
JP4036360A 1992-02-24 1992-02-24 Particle detector Expired - Fee Related JP2869241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4036360A JP2869241B2 (en) 1992-02-24 1992-02-24 Particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4036360A JP2869241B2 (en) 1992-02-24 1992-02-24 Particle detector

Publications (2)

Publication Number Publication Date
JPH05232019A JPH05232019A (en) 1993-09-07
JP2869241B2 true JP2869241B2 (en) 1999-03-10

Family

ID=12467666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4036360A Expired - Fee Related JP2869241B2 (en) 1992-02-24 1992-02-24 Particle detector

Country Status (1)

Country Link
JP (1) JP2869241B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796253B2 (en) * 2007-04-16 2010-09-14 Kabushiki Kaisha Toshiba Image forming apparatus for forming image on record medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287047A (en) * 1990-04-04 1991-12-17 Fujitsu Ltd Suspended particulate counter

Also Published As

Publication number Publication date
JPH05232019A (en) 1993-09-07

Similar Documents

Publication Publication Date Title
EP0848243B1 (en) Method and apparatus for monitoring particulates using beam-steered solid-state light source
US4322621A (en) Folded path absorption cell gas sensor
US5565984A (en) Re-entrant illumination system for particle measuring device
GB2042166A (en) Measuring the distribution of radiant energy from particles
JPH0242742A (en) Calibration target for surface analysing system, supporter of analysed object and light trap and aperture structure
JPH0634540A (en) Fluid-body contamination monitor
KR890010554A (en) Photoelectric particle detector
JP2869241B2 (en) Particle detector
JP4514982B2 (en) Small angle scattering measurement system
JP2004198416A (en) Instrument for measuring thickness of thin layer
JP3183853B2 (en) In-line particle size distribution analyzer
JP3015634B2 (en) Scattered light smoke detector
JPH03296897A (en) Scattered light type smoke sensor
JP3015633B2 (en) Scattered light smoke detector
FR2585478A1 (en) OBJECTIVE ARRANGEMENT
WO2023157759A1 (en) Smoke detection device
JP2524038B2 (en) Particle sensor
JPH10162699A (en) Reflection type photoelectric sensor
JPH04369464A (en) Light scattering type particle detector
JPH04160696A (en) Photoelectric smoke sensor
JPS6295448A (en) Method and device for measuring particle
JPH0676182A (en) Scattered light type smoke sensor
JPH0773385A (en) Scattered beam type smoke sensor
JPH045556A (en) Method and device for flaw inspection of surface of sphere
JPH0114549B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees