JP2865850B2 - Thermal flow meter - Google Patents

Thermal flow meter

Info

Publication number
JP2865850B2
JP2865850B2 JP2292039A JP29203990A JP2865850B2 JP 2865850 B2 JP2865850 B2 JP 2865850B2 JP 2292039 A JP2292039 A JP 2292039A JP 29203990 A JP29203990 A JP 29203990A JP 2865850 B2 JP2865850 B2 JP 2865850B2
Authority
JP
Japan
Prior art keywords
region
transistor
resistor
temperature
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2292039A
Other languages
Japanese (ja)
Other versions
JPH04168322A (en
Inventor
政善 鈴木
恵二 半沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP2292039A priority Critical patent/JP2865850B2/en
Publication of JPH04168322A publication Critical patent/JPH04168322A/en
Application granted granted Critical
Publication of JP2865850B2 publication Critical patent/JP2865850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は定温度形熱線式空気流量計の制御及び回路方
式に関し、特に、逆電圧(電源電圧を逆に接続したとき
の電圧)状態に耐え得る制御及び回路方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a control and circuit system of a constant-temperature hot-wire air flow meter, and in particular, to a reverse voltage state (a voltage when a power supply voltage is reversely connected). It relates to a durable control and circuit system.

〔従来の技術〕[Conventional technology]

従来の定温度形熱線式空気流量計の電子回路は第2図
のように構成されることが多かつた。熱線(ホツトワイ
ヤと呼ばれ白金等で作られる)2はオペアンプ6,9、ト
ランジスタ10、抵抗3,4,5,7,8等によつて構成される回
路によつて常に一定の温度に制御される。風が熱線にあ
たるとこの抵抗値が変化し、回路全体はこの値を一定値
になるよう(抵抗値一定は温度一定を意味する)制御す
る。
The electronic circuit of a conventional constant-temperature hot-wire air flow meter is often configured as shown in FIG. A hot wire (called a hot wire and made of platinum or the like) 2 is always controlled at a constant temperature by a circuit composed of operational amplifiers 6, 9, a transistor 10, resistors 3, 4, 5, 7, 8, and the like. You. When the wind hits the hot wire, this resistance value changes, and the whole circuit controls this value to be a constant value (constant resistance value means constant temperature).

このとき、抵抗3の両端に発生する電圧V0はホツトワ
イヤ14に当る風の流量の関数となり、この電圧によつて
流量を知ることができる。抵抗CWは温度等の補償を行な
う冷線(コールドワイヤ)であり、抵抗8はその補助用
抵抗である。
At this time, the voltage V 0 generated across the resistor 3 is a function of the flow rate of the wind hitting the hot wire 14, and the flow rate can be known from this voltage. The resistance CW is a cold wire (cold wire) for compensating for temperature and the like, and the resistance 8 is an auxiliary resistance.

ダイオード13及び抵抗14は電圧源(自動車のバツテリ
等に相当)1が逆に接続された場合の保護回路であり、
これがないとホツトワイヤ2が焼損することが多い。第
3図は第2図の回路において電圧源1が逆接続された場
合のトランジスタ10を中心とするその周辺の等価回路で
あり、電圧源1の逆電圧は抵抗3,2,14、ダイオード13を
介してトランジスタ10に印加される。
The diode 13 and the resistor 14 are protection circuits when the voltage source (corresponding to a battery of an automobile, etc.) 1 is connected in reverse.
Without this, the hot wire 2 often burns out. FIG. 3 is an equivalent circuit around the transistor 10 when the voltage source 1 is reversely connected in the circuit of FIG. 2. The reverse voltage of the voltage source 1 is represented by resistors 3, 2, 14 and a diode 13. Is applied to the transistor 10.

トランジスタ10は電流増幅率を大きくとるため図のト
ランジスタ15,16に示すようなダーリントン(複合)接
続とすることが多く、又、温度等の影響を少なくするた
め抵抗18,19を付加する。このときデバイス製作上の製
約からダイオード17,20が寄生する。それ故、トランジ
スタ10に印加された電圧はほとんどダイオード17に加わ
る。このとき、ダイオード13,抵抗14による保護回路が
ないと逆電圧の大部分は抵抗2に加わりホツトワイヤは
加熱され、焼損することがある。ダイオード13,抵抗14
の回路は抵抗2に並列に接続されており、抵抗2の加熱
を低減するように働らくので焼損を防ぐことができる。
Transistor 10 is often connected in Darlington (composite) as shown in transistors 15 and 16 in order to increase the current amplification factor, and resistors 18 and 19 are added to reduce the influence of temperature and the like. At this time, the diodes 17 and 20 are parasitic due to manufacturing restrictions on the device. Therefore, most of the voltage applied to the transistor 10 is applied to the diode 17. At this time, if there is no protection circuit by the diode 13 and the resistor 14, most of the reverse voltage is applied to the resistor 2 and the hot wire is heated and may be burned out. Diode 13, resistor 14
Is connected in parallel with the resistor 2 and acts to reduce the heating of the resistor 2, so that burnout can be prevented.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は逆接保護のための回路素子が光要であ
り、回路を複雑にする欠点があつた。
The above-mentioned prior art has a drawback that the circuit element for reverse connection protection is optically necessary, and the circuit is complicated.

本発明の目的は逆接保護回路が不要な回路方式を提案
することを目的とする。
An object of the present invention is to propose a circuit system that does not require a reverse connection protection circuit.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、流体中におかれた発熱抵抗体の温度を一
定に制御する電子回路及び流体の温度を検出する温度補
償抵抗体を有し、該発熱抵抗体に流体があたることによ
って前記発熱抵抗体の温度を変化させ、この変化分を流
体の流量として電子回路の出力として捕え、前記電子回
路を少なくとも、抵抗群,オペアンプ,トランジスタで
構成せしめ、該トランジスタに逆電圧阻止機能をもた
せ、前記逆電圧阻止機能は前記トランジスタをダーリン
トン(複合)構成とし該トランジスタの第2段のベース
・エミッタ間抵抗及びコレクタ・エミッタ間ダイオード
をなくせしめた回路とすることにより実現する熱式流量
計において前記ダーリントントランジスタ面に2つのp
領域を拡散し、第1のp領域よりベース端子を取り出
し、該2つのp領域にそれぞれn+領域を拡散せしめ、第
1のn+領域と第2のp領域とを導体で接続し、第2のn+
領域をエミッタ端子を取り出し、該2つのp領域間にp+
領域を拡散せしめ、前記単結晶n領域の他の面にn+領域
を拡散させ、該領域よりコレクタ端子を取り出したこと
によって達成される。
An object of the present invention is to provide an electronic circuit for controlling the temperature of a heating resistor placed in a fluid to be constant and a temperature compensation resistor for detecting the temperature of the fluid. The temperature of the body is changed, and this change is captured as an output of an electronic circuit as a flow rate of a fluid, and the electronic circuit is constituted by at least a resistor group, an operational amplifier, and a transistor, and the transistor is provided with a reverse voltage blocking function. The voltage blocking function is realized by using a Darlington (composite) transistor as the transistor and eliminating the second-stage base-emitter resistance and collector-emitter diode of the transistor in the thermal flowmeter. Two p's on the surface
The region is diffused, a base terminal is taken out from the first p region, the n + region is diffused into each of the two p regions, and the first n + region and the second p region are connected by a conductor. 2 n +
The region is taken out of the emitter terminal, and p +
This is achieved by diffusing the region, diffusing the n + region on the other surface of the single crystal n region, and taking out the collector terminal from the region.

〔作用〕[Action]

この回路構成ではトランジスタ10の逆電圧特性は極め
て良好となり、逆電圧印加時の電流は第2図の方式に比
較し相当小さくできる。
In this circuit configuration, the reverse voltage characteristic of the transistor 10 becomes extremely good, and the current when the reverse voltage is applied can be considerably reduced as compared with the method shown in FIG.

これにより、逆接続時の電圧が抵抗2,3、等を介して
加わっても回路に電流がほとんど流れず、抵抗2の両端
の電圧も小さくなるので加熱が防止できる。
As a result, even if the voltage at the time of reverse connection is applied via the resistors 2, 3, etc., almost no current flows in the circuit, and the voltage at both ends of the resistor 2 becomes small, so that heating can be prevented.

〔実施例〕〔Example〕

以下本発明の実施例を、第1図において説明する。第
1図において従来例(第2図)と同じ構成要素に関して
は同一の番号,記号を付してある。図においてトランジ
スタ101の第2段のトランジスタ15はベース・エミツタ
間抵抗がなく、又、コレクタ・エミツタ間ダイオードも
付いていない。第1段目の抵抗19は付加されており、こ
れはトランジスタの発振防止等に効果があるためであ
る。トランジスタ素子101の如くの回路機能をもつトラ
ンジスタデバイスは第4図に示す構造によつて具現化で
きる。図はトランジスタのデバイス断面を示したもの
で、コレクタC(23),ベースB(21),エミツタE
(22)が外側に引出されている。シングルシリコン(単
結晶)24はnタイプ抵散の半導体領域で、コレクタCは
nにさらに高濃度のn+領域25を付して取り出される。一
方、nの上面には2つのp拡散領域26,2が成形され、ベ
ースBの端21はこの26より引出される。この2つのp領
域26,2の間には抵抗19を形成するp+領域30がある。領域
26,2中にはそれぞれ高濃度のn+領域28,29があり、29よ
りはエミツタE端子22が引出されている。領域28は一旦
外部に導体(アルミ)によつて取り出され然る後、p領
域27に接続されている。このようなデバイスは第1図の
トランジスタ101の機能を有しており、本デバイスの等
価回路は第5図の如く考え得る。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. In FIG. 1, the same components as those in the conventional example (FIG. 2) are denoted by the same reference numerals and symbols. In the figure, the transistor 15 in the second stage of the transistor 101 has no base-emitter resistance and has no collector-emitter diode. The first stage resistor 19 is added because it is effective in preventing oscillation of the transistor. A transistor device having a circuit function such as the transistor element 101 can be realized by the structure shown in FIG. The figure shows a device cross section of a transistor, and includes a collector C (23), a base B (21), and an emitter E.
(22) is drawn out. The single silicon (single crystal) 24 is an n-type diffused semiconductor region, and the collector C is taken out by attaching an n + region 25 with a higher concentration to n. On the other hand, two p diffusion regions 26 and 2 are formed on the upper surface of n, and the end 21 of the base B is drawn out from this 26. Between these two p regions 26 and 2, there is ap + region 30 forming a resistor 19. region
26 and 2 have high-concentration n + regions 28 and 29, respectively, and the emitter E terminal 22 is drawn out from 29. The region 28 is connected to the p region 27 once it has been taken out to the outside by a conductor (aluminum). Such a device has the function of the transistor 101 in FIG. 1, and an equivalent circuit of this device can be considered as shown in FIG.

第5図では第2段トランジスタ15は領域24,27,29で、
第1段トランジスタ16は領域24,26,28で、抵抗19は領域
30で、ダイオード20は領域24,25,30で、それぞれ成形さ
れ得る。
In FIG. 5, the second stage transistor 15 is in the regions 24, 27 and 29,
The first-stage transistor 16 has regions 24, 26, and 28, and the resistor 19 has regions
At 30, the diode 20 can be shaped in regions 24, 25, 30 respectively.

そして本デバイスにはこれまで示してきた抵抗18,ダ
イオード17はないので、トランジスタ101の逆電圧時の
電流は激減する(ダイオード17がなくても抵抗18があれ
ば、18,19を介してトランジスタ16が逆動作を行ない、
逆電流が流れてしまう)。つまり、本デバイスは逆電圧
時の逆電流を小さくでき、逆電圧阻止の機能を持たせ得
る。本実施例では、トランジスタ素子を比較的容易に作
り得る効果をもつ。
Since the device does not have the resistor 18 and the diode 17 described above, the current at the time of reverse voltage of the transistor 101 is drastically reduced (if the resistor 18 is provided without the diode 17, the transistor 18 is connected through the transistors 18 and 19). 16 performs the reverse operation,
Reverse current flows). That is, the device can reduce the reverse current at the time of the reverse voltage, and can have a function of blocking the reverse voltage. This embodiment has an effect that a transistor element can be relatively easily formed.

第6図は本発明の別の実施例であり、定温度制御回路
として抵抗2,3,CW,8,7より成るブリツジ回路とオペアン
プ40を用いている。トランジスタ101はオペアンプ40の
出力とブリツジの一端及び電源の一端1Aとの間に加えら
れる。本実施例では、抵抗2,CWを除く回路構成が極めて
簡単になるのでこの部分をIC(集積回路)化する効果を
有す。
FIG. 6 shows another embodiment of the present invention, in which a bridge circuit comprising resistors 2, 3, CW , 8, 7 and an operational amplifier 40 are used as a constant temperature control circuit. Transistor 101 is applied between the output of operational amplifier 40 and one end of the bridge and one end 1A of the power supply. In this embodiment, since the circuit configuration except for the resistor 2 and CW becomes extremely simple, there is an effect that this portion is formed into an IC (integrated circuit).

〔発明の効果〕〔The invention's effect〕

本発明によればバツテリ等の電源電圧逆接続時にトラ
ンジスタそのものによつて逆接保護ができるので、保護
回路を付加する必要がなくなり、回路規模の縮小化,信
頼度向上が期待できる。
According to the present invention, when a power supply voltage such as a battery is reversely connected, reverse connection protection can be performed by the transistor itself, so that there is no need to add a protection circuit, and a reduction in circuit scale and improvement in reliability can be expected.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の具体的実施例を示す図、第2図は従来
例を示す図、第3図は第2図における逆接時の回路動作
を示す図、第4図は第1図中トランジスタのデバイス構
造を示す図、第5図は第4図の等価回路を示す図、第6
図は本発明の別の実施例を示す図である。 1……電源、2……ホツトワイヤ、3,4,5,7……抵抗、
6,9……オペアンプ、10,101……トランジスタ。
1 is a diagram showing a specific embodiment of the present invention, FIG. 2 is a diagram showing a conventional example, FIG. 3 is a diagram showing a circuit operation at the time of reverse connection in FIG. 2, and FIG. 4 is a diagram in FIG. FIG. 5 is a diagram showing a device structure of a transistor, FIG. 5 is a diagram showing an equivalent circuit of FIG. 4, and FIG.
The figure shows another embodiment of the present invention. 1 ... Power supply, 2 ... Hot wire, 3,4,5,7 ... Resistance,
6,9 …… Op amp, 10,101 …… Transistor.

フロントページの続き (56)参考文献 特開 昭60−86420(JP,A) 特開 昭54−76182(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01F 1/68 H01L 29/72Continuation of front page (56) References JP-A-60-86420 (JP, A) JP-A-54-76182 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01F 1 / 68 H01L 29/72

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】流体中におかれた発熱抵抗体の温度を一定
に制御する電子回路及び流体の温度を検出する温度補償
抵抗体を有し、該発熱抵抗体に流体があたることによっ
て前記発熱抵抗体の温度を変化させ、この変化分を流体
の流量として電子回路の出力として捕え、前記電子回路
を少なくとも、抵抗群,オペアンプ,トランジスタで構
成せしめ、該トランジスタに逆電圧阻止機能をもたせ、 前記逆電圧阻止機能は前記トランジスタをダーリントン
(複合)構成とし該トランジスタの第2段のベース・エ
ミッタ間抵抗及びコレクタ・エミッタ間ダイオードをな
くせしめた回路とすることにより実現する熱式流量計に
おいて、 前記ダーリントントランジスタ面に2つのp領域を拡散
し、第1のp領域よりベース端子を取り出し、該2つの
p領域にそれぞれn+領域を拡散せしめ、第1のn+領域と
第2のp領域とを導体で接続し、第2のn+領域をエミッ
タ端子を取り出し、該2つのp領域間にp+領域を拡散せ
しめ、前記単結晶n領域の他の面にn+領域を拡散させ、
該領域よりコレクタ端子を取り出したことを特徴とする
熱式流量計。
An electronic circuit for controlling the temperature of a heating resistor placed in a fluid to be constant and a temperature compensating resistor for detecting the temperature of the fluid. The temperature of the resistor is changed, and the change is captured as an output of an electronic circuit as a flow rate of a fluid, and the electronic circuit is constituted by at least a resistor group, an operational amplifier, and a transistor, and the transistor has a reverse voltage blocking function. The reverse voltage blocking function is realized by a thermal flow meter which is realized by using a Darlington (composite) transistor as the transistor and eliminating the second-stage base-emitter resistance and collector-emitter diode of the transistor. The two p regions are diffused into the Darlington transistor surface, and the base terminal is taken out from the first p region. Each allowed diffused n + region, and a first n + region and the second p-region are connected by conductors, the second n + region removed emitter terminal, a p + region between the two p regions Diffusion, diffuse the n + region on the other surface of the single crystal n region,
A thermal flow meter, wherein a collector terminal is taken out of the region.
JP2292039A 1990-10-31 1990-10-31 Thermal flow meter Expired - Lifetime JP2865850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2292039A JP2865850B2 (en) 1990-10-31 1990-10-31 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2292039A JP2865850B2 (en) 1990-10-31 1990-10-31 Thermal flow meter

Publications (2)

Publication Number Publication Date
JPH04168322A JPH04168322A (en) 1992-06-16
JP2865850B2 true JP2865850B2 (en) 1999-03-08

Family

ID=17776743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292039A Expired - Lifetime JP2865850B2 (en) 1990-10-31 1990-10-31 Thermal flow meter

Country Status (1)

Country Link
JP (1) JP2865850B2 (en)

Also Published As

Publication number Publication date
JPH04168322A (en) 1992-06-16

Similar Documents

Publication Publication Date Title
EP0106050B1 (en) Pressure transducer with temperature compensation circuit
US5827960A (en) Bi-directional mass air flow sensor having mutually-heated sensor elements
US3992622A (en) Logarithmic amplifier with temperature compensation means
JPH075225A (en) Circuit structure for monitoring of drain current of metal-oxide semiconductor field-effect transistor
JPH0227806A (en) Mutual conductance circuit
JPH09229778A (en) Integrated-circuited temperature sensor
JPS6211529B2 (en)
JP2865850B2 (en) Thermal flow meter
JPS62156850A (en) Semiconductor device
US6507233B1 (en) Method and circuit for compensating VT induced drift in monolithic logarithmic amplifier
JPS62191907A (en) Semiconductor circuit
GB2105109A (en) Thermosensitive semiconductor devices
JP2696808B2 (en) Overheat detection circuit
US4975632A (en) Stable bias current source
JP3042256B2 (en) Power transistor temperature protection circuit device
JP2507081B2 (en) Optical integrated circuit
JP3042134B2 (en) Power transistor temperature protection circuit device
JPS5977707A (en) Bias circuit device
US5721512A (en) Current mirror with input voltage set by saturated collector-emitter voltage
JPH05281254A (en) Semiconductor acceleration sensor
KR970004329A (en) Start-up Circuit Using Active Device
JPH11118562A (en) Thermal flowmeter
JPH0518288B2 (en)
JPH0461416A (en) High temperature leakage compensation circuit for transistor circuit
SU662028A3 (en) Amplifier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12

EXPY Cancellation because of completion of term