JP2864927B2 - Joining method of silicon carbide member - Google Patents

Joining method of silicon carbide member

Info

Publication number
JP2864927B2
JP2864927B2 JP5012721A JP1272193A JP2864927B2 JP 2864927 B2 JP2864927 B2 JP 2864927B2 JP 5012721 A JP5012721 A JP 5012721A JP 1272193 A JP1272193 A JP 1272193A JP 2864927 B2 JP2864927 B2 JP 2864927B2
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
joining
joint
molten silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5012721A
Other languages
Japanese (ja)
Other versions
JPH06219858A (en
Inventor
和弘 皆川
忠久 荒堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5012721A priority Critical patent/JP2864927B2/en
Publication of JPH06219858A publication Critical patent/JPH06219858A/en
Application granted granted Critical
Publication of JP2864927B2 publication Critical patent/JP2864927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5096Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00672Pointing or jointing materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は炭化珪素質部材の接合方
法に関し、特に炭化珪素粉末から成形した複数個の多孔
性炭化珪素質部材を、ホゾとホゾ穴とで組合わせた後、
溶融シリコンの含浸により接合する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining silicon carbide members, and more particularly, to a method for joining a plurality of porous silicon carbide members formed from silicon carbide powder with a mortise and a mortise.
The present invention relates to a method for joining by impregnation of molten silicon.

【0002】[0002]

【従来の技術】炭化珪素は高温強度に優れたエンジニア
リングセラミックスとして、エンジン部品、プラント部
品などの各種機械部品への利用が拡大している。しか
し、炭化珪素粉末の成形と焼結により得られる炭化珪素
成形体は、セラミックス一般の例に漏れず難加工性であ
り、複雑な形状を有する部品を製造する場合には、複数
個の炭化珪素部材を接合する必要がある。
2. Description of the Related Art Silicon carbide has been increasingly used as various types of mechanical parts such as engine parts and plant parts as engineering ceramics having excellent high-temperature strength. However, silicon carbide compacts obtained by molding and sintering silicon carbide powder are difficult to process, as is common in ceramics in general, and when manufacturing parts having complicated shapes, a plurality of silicon carbide The members need to be joined.

【0003】この接合については、複数個の炭化珪素質
成形体 (未焼結体または仮焼体) を重ね合わせて非酸化
雰囲気下で溶融シリコンを含浸させて接合する方法が、
特開昭63−17268 号公報に提案されている。しかし、成
形体および接合部の性状、溶融シリコンの含浸方法によ
っては、溶融シリコンが接合部に十分浸透しないため、
安定した強度が得られないという問題があった。
[0003] With regard to this joining, a method of superposing a plurality of silicon carbide-based molded bodies (unsintered or calcined bodies) and impregnating with molten silicon in a non-oxidizing atmosphere to join them together,
This is proposed in Japanese Patent Application Laid-Open No. Sho 63-17268. However, depending on the properties of the molded body and the joint, the method of impregnation of the molten silicon, the molten silicon does not sufficiently penetrate the joint,
There was a problem that stable strength could not be obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、複数個の多
孔性炭化珪素質部材の接合を、均一かつ十分な接合強度
で、不純物の混入がない簡便な方法で安定して達成する
ことができる、炭化珪素質部材の接合方法を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to stably achieve the joining of a plurality of porous silicon carbide members by a simple method with uniform and sufficient joining strength and no contamination of impurities. It is an object of the present invention to provide a bonding method for a silicon carbide-based member.

【0005】[0005]

【課題を解決するための手段】本発明の炭化珪素質部材
の接合方法によれば、複数個の多孔性炭化珪素質部材
を、その接合部に設けたホゾとホゾ穴により組立て、溶
融シリコンを下部より含浸させることにより接合する方
法であって、各多孔質炭化珪素部材が、気孔率20〜60 v
ol%、平均細孔径10μm以下であり、接合部のクリアラ
ンスk(mm)と接合部の溶融シリコン液面からの高さh(m
m)との関係が次式を満たすことを特徴とする。
According to the method for joining silicon carbide-based members of the present invention, a plurality of porous silicon carbide-based members are assembled by a mortise and a mortise provided at the joint, thereby forming molten silicon. A method of joining by impregnating from below, wherein each porous silicon carbide member has a porosity of 20 to 60 v.
ol%, the average pore diameter is 10 μm or less, the clearance k (mm) of the joint and the height h (m
m) satisfies the following equation.

【0006】[0006]

【数1】 (Equation 1)

【0007】[0007]

【作用】本発明の方法に用いる炭化珪素質部材は、気孔
率20〜60 vol%、平均細孔径10μm以下の多孔性材料で
ある。この多孔性炭化珪素質部材は、α型またはβ型炭
化珪素粉末を、必要に応じて焼結助剤 (例、炭素) や結
合剤、溶剤などの添加剤を配合した後、鋳込み成形、加
圧成形などの適当な方法で成形し、必要であれば乾燥す
ることにより得た、未焼結の成形体でも、これをさらに
アルゴン、ヘリウムなどの不活性雰囲気中で予備焼成
(仮焼) して、成形体中の揮散成分を除去した仮焼体の
いずれでもよい。
The silicon carbide member used in the method of the present invention is a porous material having a porosity of 20 to 60 vol% and an average pore diameter of 10 μm or less. This porous silicon carbide-based member is obtained by mixing α-type or β-type silicon carbide powder with additives such as a sintering aid (eg, carbon), a binder, and a solvent, if necessary, and then casting and molding. Unsintered compacts obtained by forming by an appropriate method such as pressing and drying if necessary are further pre-fired in an inert atmosphere such as argon or helium.
Any of the calcined bodies (calcined) from which volatile components in the molded body are removed may be used.

【0008】予備焼成条件は、前記の気孔率と平均細孔
径を有する仮焼体が生成する限り、特に制限されない
が、通常は、温度 500〜1500℃で約1〜20時間である。
仮焼体は成形体より高強度であるので、ホゾやホゾ穴を
形成するための切削加工が容易となる。また、予備成形
中に成形体に含まれる酸素分が除去されるため、溶融3
リコンの含浸時に溶融シリコンによる濡れ性がよく、接
合がより容易となるという利点もある。ただし、未焼結
の成形体に本発明の方法を適用することも、工業的に十
分可能であり、仮焼体を使用した場合と遜色のない接合
強度を得ることができる。
The conditions of the pre-firing are not particularly limited as long as the calcined body having the above-mentioned porosity and average pore diameter is produced, but is usually at a temperature of 500 to 1500 ° C. for about 1 to 20 hours.
Since the calcined body has higher strength than the molded body, cutting for forming a tenon and a tenon hole becomes easy. In addition, since the oxygen content contained in the molded body is removed during the preforming, melting 3
There is also an advantage that the wettability by the molten silicon during the impregnation of the recon is good, and the joining becomes easier. However, the method of the present invention can be applied industrially to an unsintered molded body, and a bonding strength comparable to that of a calcined body can be obtained.

【0009】この炭化珪素質部材は、炭化珪素のほかに
少量 (一般に全体の10重量%以下)の遊離炭素を含有し
ていてもよい。遊離炭素は、後で焼結時に含浸させる溶
融シリコンと反応して炭化珪素を形成し、得られた焼結
体の強度を改善する。
The silicon carbide-based member may contain a small amount (generally, 10% by weight or less) of free carbon in addition to silicon carbide. The free carbon reacts with the molten silicon to be impregnated later during sintering to form silicon carbide, and improves the strength of the obtained sintered body.

【0010】本発明の接合方法によれば、接合する複数
個の炭化珪素質部材のそれぞれの接合部に、対応するホ
ゾとホゾ穴とを形成し、ホゾ穴にホゾを嵌入させること
によってこれらの部材を組み立てる。図1には、2個の
炭化珪素質部材のうち、部材Aにホゾを、部材Bにはホ
ゾ穴を形成した例を示す。これらのホゾとホゾ穴は、切
削加工により形成できる。ホゾとホゾ穴を利用して組み
立てることで、例えばウェハーボート等の複雑形状のも
のが容易に形成可能である。
[0010] According to the joining method of the present invention, a mortise and a mortise are formed at the respective joints of the plurality of silicon carbide members to be joined, and the mortise is inserted into the mortise. Assemble the components. FIG. 1 shows an example in which, among the two silicon carbide members, a mortise is formed in member A and a mortise is formed in member B. These tenons and tenon holes can be formed by cutting. By assembling using a mortise and a mortise, a complicated shape such as a wafer boat can be easily formed.

【0011】組み立てた炭化珪素質部材は、次いで、14
00℃以上の高温 (通常は1450〜1600℃) に加熱しなが
ら、その下部を溶融シリコン液に浸し、溶融シリコンを
下部より全体に含浸させることにより焼結する、いわゆ
る反応焼結法により、炭化珪素質部材の全体を焼結させ
る。溶融シリコンの含浸によって、多孔性の炭化珪素質
部材の末端まで溶融シリコンが浸透し、その焼結が進行
すると同時に、接合部にも溶融シリコンが均一に浸透し
て接合が行われる。これにより、ホットプレス等の複雑
な装置や高荷重を必要とせずに高強度の接合体を得るこ
とができる。また、接合ろう材等を使用しないため、炭
化珪素と少量のシリコンのみからなる高純度の接合体が
得られる。
The assembled silicon carbide-based member is then
While heating to a high temperature of 00 ° C or higher (usually 1450 to 1600 ° C), the lower part is immersed in a molten silicon liquid, and sintering is performed by impregnating the molten silicon entirely from the lower part. The whole silicon member is sintered. Due to the impregnation of the molten silicon, the molten silicon penetrates to the end of the porous silicon carbide member, and the sintering proceeds, and at the same time, the molten silicon uniformly penetrates to the joining portion to perform joining. Thereby, a high-strength bonded body can be obtained without requiring a complicated device such as a hot press or a high load. Further, since no brazing filler metal or the like is used, a high-purity bonded body composed of only silicon carbide and a small amount of silicon can be obtained.

【0012】接合処理の雰囲気としては、アルゴン等の
不活性ガス雰囲気中で行なってもよいが、溶融シリコン
の含浸性が向上することから減圧下での接合処理が好ま
しい。含浸処理時間は、成形体の寸法、組成、細孔の寸
法および密度、仮焼温度などの条件によっても異なる
が、30分間〜20時間程度が適当である。昇温速度は、部
材の寸法、肉厚などにより適宜調整すればよい。
The bonding may be performed in an atmosphere of an inert gas such as argon, but the bonding is preferably performed under reduced pressure since the impregnation of the molten silicon is improved. The impregnation time varies depending on conditions such as the size, composition, pore size and density, and calcining temperature of the molded body, but is suitably about 30 minutes to 20 hours. The rate of temperature rise may be appropriately adjusted according to the dimensions and thickness of the member.

【0013】本発明においては、接合する炭化珪素質部
材の気孔率と平均細孔径を適正化することにより、毛細
管現象によって溶融シリコンを炭化珪素質部材の全体に
確実かつ均一に浸透させ、焼結を行う。また、炭化珪素
質部材を組み立てた後の接合部のクリアランスと含浸高
さ (接合部の溶融シリコン液面からの高さ) とを適正化
することにより、接合部に溶融シリコンが隙間なく充填
され、十分な接合強度を安定して得ることができる。
In the present invention, the porosity and the average pore diameter of the silicon carbide-based member to be joined are optimized so that the molten silicon is surely and uniformly penetrated into the entire silicon carbide-based member by a capillary phenomenon, and the sintered body is sintered. I do. In addition, by optimizing the clearance and the impregnation height (the height of the joint from the liquid surface of the molten silicon) of the joint after assembling the silicon carbide-based member, the joint is filled with molten silicon without gaps. And sufficient bonding strength can be stably obtained.

【0014】接合する各炭化珪素質部材の気孔率は20〜
60 vol%の範囲内とする。気孔率が20 vol%未満では、
十分な連続開気孔が存在しないため、溶融シリコンの部
材全体への均一な含浸が困難となる。一方、気孔率が60
vol%を越える炭化珪素質部材は、それ自体の強度が十
分でない上、細孔径が大きくなることから毛細管現象に
より溶融シリコンを浸透させることが困難となる。
The porosity of each silicon carbide member to be joined is 20 to
It should be within the range of 60 vol%. If the porosity is less than 20 vol%,
Since there are not enough continuous open pores, it is difficult to uniformly impregnate the entire member with molten silicon. On the other hand, the porosity is 60
Since the silicon carbide-based member exceeding vol% has insufficient strength itself and a large pore diameter, it becomes difficult to infiltrate the molten silicon by capillary action.

【0015】各炭化珪素質部材の平均細孔径は10μm以
下とする。平均細孔径が10μmを越えると、細孔径のバ
ラツキが拡大し、シリコンの含浸が不均一になる上、毛
細管現象による浸透の駆動力が低下するため、大型品・
長尺品の接合が不可能となる。
The average pore diameter of each silicon carbide-based member is 10 μm or less. If the average pore diameter exceeds 10 μm, the dispersion of the pore diameter increases, the impregnation of silicon becomes non-uniform, and the driving force for permeation due to the capillary phenomenon decreases.
Long products cannot be joined.

【0016】炭化珪素質部材の気孔率と平均細孔径が適
正でないと、上に述べたように部材全体への溶融シリコ
ンの浸透と焼結が十分に行われない。その結果、接合部
における溶融シリコンの充填も不十分または不均一とな
って、接合が行われないか、或いは接合可能であっても
欠陥が存在し、接合強度は大きく低下する。
If the porosity and the average pore diameter of the silicon carbide-based member are not appropriate, the penetration and sintering of the molten silicon into the entire member cannot be performed sufficiently as described above. As a result, the filling of the molten silicon in the joint is insufficient or uneven, and the joining is not performed. However, even if the joining is possible, there is a defect, and the joining strength is greatly reduced.

【0017】炭化珪素質部材の気孔率および平均細孔径
は、成形に使用する炭化珪素粉末の平均粒径、成形方
法、成形条件 (例、加圧成形の場合の成形圧力) 、仮焼
条件 (温度、雰囲気、時間) などの条件の変動により調
整することができる。
The porosity and average pore diameter of the silicon carbide-based member are determined by the average particle diameter of the silicon carbide powder used for molding, the molding method, molding conditions (eg, molding pressure in the case of pressure molding), and calcination conditions ( It can be adjusted by changing conditions such as temperature, atmosphere, and time.

【0018】溶融シリコンが多孔体に含浸されるときの
駆動力は、毛細管現象によって説明される。毛細管現象
による液体の最大上昇高さhmax は次式で表される。
The driving force when the porous silicon is impregnated with the molten silicon is explained by the capillary phenomenon. The maximum rising height hmax of the liquid due to the capillary action is expressed by the following equation.

【0019】[0019]

【数2】 (Equation 2)

【0020】ρ:液体比重、 α:接触角 σ:表面張力、 r:毛管半径 含浸時の温度が一定であるとすると、液体の表面張力お
よび比重は一定であるから、最大上昇高さhmax は毛管
半径および接触角に依存する。
[0020] [rho: Liquid density, alpha: contact angle sigma: surface tension, r: the temperature at the capillary radius impregnation is constant, because the surface tension and specific gravity of the liquid is constant, the maximum rise height h max Depends on the capillary radius and the contact angle.

【0021】気孔率20〜60 vol%、平均細孔径10μm以
下の2個の多孔性炭化珪素質部材を組合わせてから、溶
融シリコンで含浸する場合には、溶融シリコンの最大含
浸高さh'max は、2部材間の接合部のクリアランスの大
きさに反比例し、この両者の関係は次式で表されること
が、多くの実験の結果から明らかとなった。
When two porous silicon carbide members having a porosity of 20 to 60 vol% and an average pore diameter of 10 μm or less are combined and then impregnated with molten silicon, the maximum impregnation height h ′ of the molten silicon is h ′. It has become clear from the results of many experiments that max is inversely proportional to the size of the clearance at the joint between the two members, and the relationship between the two is expressed by the following equation.

【0022】[0022]

【数3】 (Equation 3)

【0023】h'max :溶融シリコンの最大含浸高さ(mm) k :接合部の2部材間のクリアランス (mm) 従って、前述した(1) 式H ' max : Maximum impregnation height of molten silicon (mm) k: Clearance between two members at the joint (mm) Therefore, the above-mentioned equation (1)

【0024】[0024]

【数1】 (Equation 1)

【0025】(h:接合部の溶融シリコン液面からの高
さ)で示される条件を満たせば、接合部に溶融シリコン
が隙間なく満たされることになる。換言すると、接合部
のシリコン液面からの高さ (含浸高さ) hと接合部のク
リアランスkとの積が100 mm2 以下であれば、このクリ
アランスに溶融シリコンが完全に充填される。逆に、こ
の積が100 mm2 を超えると、溶融シリコンがクリアラン
スを完全には充填せず、空隙が残るために接合部の強度
が低下し、甚だしい場合には接合が行われない。
If the condition indicated by (h: height from the liquid level of the molten silicon at the junction) is satisfied, the junction is filled with the molten silicon without any gap. In other words, if the product of the height h (impregnation height) of the joint from the silicon liquid surface and the clearance k of the joint is 100 mm 2 or less, the clearance is completely filled with the molten silicon. Conversely, if this product exceeds 100 mm 2 , the molten silicon will not completely fill the clearance, leaving voids and reducing the strength of the joint, and in extreme cases, no joining will be performed.

【0026】例えば、含浸高さが100 mmの場合には1mm
までのクリアランスが、また含浸高さが500 mmの場合に
は0.2 mmまでのクリアランスが許容される。多孔性炭化
珪素質部材が、加工がより困難な未焼結成形体であって
も、この程度のクリアランスでホゾとホゾ穴を切削加工
することは容易である。本発明の方法は、含浸高さが約
1000 mm 程度までの部材に適用することが好ましい。
For example, when the impregnation height is 100 mm, 1 mm
Clearances up to 0.2 mm for impregnation heights up to 500 mm. Even if the porous silicon carbide-based member is an unsintered molded body that is more difficult to process, it is easy to cut the mortise and mortise with this level of clearance. The method of the present invention has an impregnation height of about
It is preferably applied to members up to about 1000 mm.

【0027】接合する複数個の炭化珪素質部材のうち、
溶融シリコンに浸されない方の部材(図1に示した例で
は部材B)は、接合部を介してシリコンの浸透が行われ
ることになる。この部材について、接合部を介してのシ
リコンの含浸に時間がかかる場合には、接合部に溶融シ
リコンが完全に充填された後、シリコンに浸す部材を変
更して反応焼結を続けてもよい。
[0027] Among the plurality of silicon carbide members to be joined,
The member that is not immersed in the molten silicon (the member B in the example shown in FIG. 1) is infiltrated with silicon through the joint. If it takes a long time to impregnate the silicon through the bonding portion with respect to this member, after the bonding portion is completely filled with the molten silicon, the member immersed in silicon may be changed and the reaction sintering may be continued. .

【0028】[0028]

【実施例】【Example】

(実施例1)平均粒径30μmのα型炭化珪素粉末80重量%
に、結合剤のフェノール樹脂10重量%と溶剤のメタノー
ルとを10重量%を加えて混練し、乾燥、造粒したのち、
CIPで1.5 TON/cm2 の条件で加圧成形し、得られた成
形体をアルゴン雰囲気下で1500℃×2時間の予備焼成を
行って、それぞれ直径15mm×長さ200mm の円柱状と50×
50×10mmの板状の2個の仮焼体を得た。
(Example 1) 80% by weight of α-type silicon carbide powder having an average particle size of 30 μm
Then, 10% by weight of a phenolic resin as a binder and 10% by weight of methanol as a solvent are added, kneaded, dried, and granulated.
CIP was applied under pressure of 1.5 TON / cm 2 , and the obtained compact was pre-baked at 1500 ° C for 2 hours in an argon atmosphere to obtain a cylindrical shape of 15 mm diameter x 200 mm length and 50 x
Two calcined bodies having a plate shape of 50 × 10 mm were obtained.

【0029】図1に示すように、円柱状の仮焼体の端面
に直径10mmのホゾを、板状の仮焼体の主平面中央部には
上記ホゾが嵌入する大きさのホゾ穴を、切削加工により
形成した。ホゾをホゾ穴に嵌入させて2個の仮焼体を組
み立て、減圧下において1500℃にて溶融シリコンを1時
間含浸させたところ、クリアランス部までシリコンの充
填した接合体が得られた。接合部材 (仮焼体) の気孔率
と平均細孔径、接合条件 (接合部のシリコン液面からの
高さ=含浸高さ、接合部のクリアランス) 、および接合
部の性状と曲げ強度を表1に示す。
As shown in FIG. 1, a ten mm diameter mortise is provided on the end face of the columnar calcined body, and a mortise hole having a size into which the mortise fits is provided at the center of the main plane of the plate-like calcined body. It was formed by cutting. A tenon was inserted into the tenon hole to assemble two calcined bodies, and impregnated with molten silicon at 1500 ° C. for 1 hour under reduced pressure. As a result, a bonded body in which the clearance was filled with silicon was obtained. Table 1 shows the porosity and average pore diameter of the joining member (calcined body), joining conditions (height of the joint from the silicon liquid level = impregnation height, joint clearance), and properties and bending strength of the joint. Shown in

【0030】(比較例1)加圧成形をCIP圧300 kg/cm2
で行なった以外は実施例1と同様の方法で成形、予備焼
成、および接合を行なったが、接合部に溶融シリコンが
充填せず、接合ができなかった。
(Comparative Example 1) The pressure molding was performed at a CIP pressure of 300 kg / cm 2.
The molding, pre-firing, and joining were performed in the same manner as in Example 1 except that the joining was performed in Example 1. However, the joining portion was not filled with molten silicon, and the joining was not possible.

【0031】(比較例 2)接合条件をクリアランス0.8 mm
とした以外は、実施例1と同様の方法で成形、予備焼
成、および接合を行なったが、接合部のシリコン充填が
不均一で欠陥が認められた。
(Comparative Example 2) The joining condition was set to a clearance of 0.8 mm.
The molding, pre-firing, and joining were performed in the same manner as in Example 1 except that the silicon filling at the joint was uneven and defects were recognized.

【0032】(実施例2)平均粒径2μmのα型炭化珪素
粉末を使用して、実施例1と同様の方法で成形、予備焼
成、および接合を行なった。
Example 2 Using an α-type silicon carbide powder having an average particle size of 2 μm, molding, preliminary firing, and joining were performed in the same manner as in Example 1.

【0033】(比較例3)円柱状仮焼体の長さを変えて含
浸高さを1000mmとした以外は、実施例2と同様の方法で
成形、予備焼成、および接合を行なったが、接合部にシ
リコンが充填せず、接合ができなかった。
(Comparative Example 3) Molding, pre-baking and joining were performed in the same manner as in Example 2 except that the impregnation height was changed to 1000 mm by changing the length of the columnar calcined body. The portion was not filled with silicon, and joining was not possible.

【0034】(実施例3)実施例1において、1500℃での
予備焼成を行わずに、成形体をそのまま接合した点を除
いて、実施例1と同様に成形および接合を行って接合体
を得た。
(Example 3) In Example 1, molding and joining were performed in the same manner as in Example 1 except that the molded body was directly joined without performing pre-baking at 1500 ° C, and a joined body was obtained. Obtained.

【0035】以上の実施例2〜3および比較例1〜3に
おける接合部材 (実施例3は成形体、それ以外は仮焼
体) の気孔率と平均細孔径、接合条件および接合結果
を、表1に併せて示す。
The porosity and average pore diameter, bonding conditions, and bonding results of the bonding members (Example 3 is a molded body, and the other is a calcined body) in the above Examples 2-3 and Comparative Examples 1-3 are shown in Tables. 1 is also shown.

【0036】[0036]

【表1】 [Table 1]

【0037】表1の結果からわかるように、接合する炭
化珪素質部材の気孔率や平均細孔径が適正でないと、接
合部クリアランスの溶融シリコンによる充填が不完全か
不均一になる (比較例1) 。一方、気孔率や平均細孔径
が適正であっても、クリアランス×含浸高さの積が1000
mm を超えて、上記(1) 式を満たさなくなると、接合部
クリアランスのシリコン充填が不均一となって接合強度
が低下するか (比較例2) 、甚だしき場合には充填が行
われず、接合不可となる (比較例3) 。
As can be seen from the results in Table 1, when the porosity and the average pore diameter of the silicon carbide-based member to be joined are not appropriate, the filling of the joint clearance with molten silicon becomes incomplete or uneven (Comparative Example 1). ). On the other hand, even if the porosity and the average pore diameter are appropriate, the product of clearance × impregnation height is 1000
If the formula (1) is no longer satisfied when the distance exceeds mm, the silicon filling of the joint clearance becomes uneven and the bonding strength decreases (Comparative Example 2). (Comparative Example 3).

【0038】[0038]

【発明の効果】以上に説明したように、本発明の方法に
よれば、多孔性炭化珪素質部材どうしの接合を、接合部
に不純物を混入させずに、十分な接合強度で安定して行
うことが可能となる。
As described above, according to the method of the present invention, the porous silicon carbide members can be stably bonded with sufficient bonding strength without mixing impurities into the bonded portions. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の接合方法の模式図である。FIG. 1 is a schematic view of a bonding method according to the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数個の多孔性炭化珪素質部材を、その
接合部に設けたホゾとホゾ穴により組立て、溶融シリコ
ンを下部より含浸させることにより接合する方法であっ
て、各多孔性炭化珪素質部材が、気孔率20〜60 vol%、
平均細孔径10μm以下であり、接合部のクリアランスk
(mm) と接合部の溶融シリコン液面からの高さh (mm)
との関係が、 【数1】 であることを特徴とする、炭化珪素質部材の接合方法。
1. A method of assembling a plurality of porous silicon carbide members with a mortise and a mortise provided at a joint thereof and joining the members by impregnating molten silicon from below. The porosity is 20-60 vol%,
The average pore diameter is 10 μm or less, and the clearance k at the joint is k
(mm) and height h (mm) of the joint from the molten silicon liquid level
Is related to A method for joining silicon carbide-based members, characterized in that:
JP5012721A 1993-01-28 1993-01-28 Joining method of silicon carbide member Expired - Fee Related JP2864927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5012721A JP2864927B2 (en) 1993-01-28 1993-01-28 Joining method of silicon carbide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5012721A JP2864927B2 (en) 1993-01-28 1993-01-28 Joining method of silicon carbide member

Publications (2)

Publication Number Publication Date
JPH06219858A JPH06219858A (en) 1994-08-09
JP2864927B2 true JP2864927B2 (en) 1999-03-08

Family

ID=11813298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5012721A Expired - Fee Related JP2864927B2 (en) 1993-01-28 1993-01-28 Joining method of silicon carbide member

Country Status (1)

Country Link
JP (1) JP2864927B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0407953D0 (en) * 2004-04-08 2004-05-12 Univ The Glasgow Silicon carbride bonding
JP6555876B2 (en) * 2014-11-26 2019-08-07 イビデン株式会社 Composite parts

Also Published As

Publication number Publication date
JPH06219858A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
US5275987A (en) Inverse shape replication method of making ceramic composite articles and articles obtained thereby
US9994487B2 (en) Process for producing reaction bonded silicon carbide member
EP1940532B1 (en) Filter device for molten metal filtration and method for producing such filters
CN100393668C (en) Oxide-bonded silicon carbide material
US4019913A (en) Process for fabricating silicon carbide articles
JP2864927B2 (en) Joining method of silicon carbide member
JPH06144948A (en) Production of ceramic porous body
US6107225A (en) High-temperature ceramics-based composite material and its manufacturing process
JP6837685B2 (en) Manufacturing method of aluminum alloy-based composite material
JPH0513116B2 (en)
JP2006282419A (en) Ceramic joined body
JP5071837B2 (en) Method for producing graphite porous body
JPH048398B2 (en)
JPH0157075B2 (en)
JP2004131318A (en) Joined body of silicon carbide-based member and method of manufacturing the same
JP2508157B2 (en) Method for joining silicon carbide ceramics
JP4318814B2 (en) Method for producing metal-ceramic composite material
JP3942288B2 (en) Method for producing setter material for firing ceramics
CN116715526B (en) C/C- (Ti, zr, hf, nb, ta) C-SiC composite material and preparation method thereof
JP5166223B2 (en) Method for joining members to be joined of silicon nitride ceramics
US5168081A (en) Ceramic composite articles obtained by inverse shape replication
JP2566886B2 (en) Method for producing porous sintered body having continuous pores
JP2520548Y2 (en) Reinforcement molding for metal-based composite material manufacturing
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JPH01115888A (en) Production of jig for producing semiconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981117

LAPS Cancellation because of no payment of annual fees