JP2862942B2 - Heat treatment method of Corson alloy - Google Patents

Heat treatment method of Corson alloy

Info

Publication number
JP2862942B2
JP2862942B2 JP7124990A JP7124990A JP2862942B2 JP 2862942 B2 JP2862942 B2 JP 2862942B2 JP 7124990 A JP7124990 A JP 7124990A JP 7124990 A JP7124990 A JP 7124990A JP 2862942 B2 JP2862942 B2 JP 2862942B2
Authority
JP
Japan
Prior art keywords
corson alloy
heat treatment
alloy
ingot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7124990A
Other languages
Japanese (ja)
Other versions
JPH03271351A (en
Inventor
宏一 加藤
好正 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7124990A priority Critical patent/JP2862942B2/en
Publication of JPH03271351A publication Critical patent/JPH03271351A/en
Application granted granted Critical
Publication of JP2862942B2 publication Critical patent/JP2862942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はコルソン合金の熱処理方法に関し、更に詳し
くは、コルソン合金の熱処理時における材料割れを防止
するに有効なコルソン合金の熱処理方法に関する。
Description: TECHNICAL FIELD The present invention relates to a heat treatment method for a Corson alloy, and more particularly, to a heat treatment method for a Corson alloy that is effective for preventing material cracking during heat treatment of a Corson alloy.

(従来の技術) 米国ではテンバロイとも呼ばれているコルソン合金
は、その標準的組成がNi4重量%,Si1重量%,残部がCu
から成り、靱性に富み、導電率が純銅の約40%の値を有
する合金であって、架空送電線,耐摩耗性が要求される
トロリー線,リン青銅に代わるバネ材などの用途に使用
されている。
(Prior art) Corson alloy, also known as Tenvaloy in the United States, has a standard composition of 4% by weight of Ni, 1% by weight of Si, and
An alloy with high toughness and an electrical conductivity of about 40% of pure copper, used for applications such as overhead power transmission lines, trolley wires requiring wear resistance, and spring materials in place of phosphor bronze. ing.

この合金から上記した各種部材を製造する際には、所
定組成のコルソン合金の鋳塊を所定温度に保持されてい
る加熱炉内に導入して、前記鋳塊が炉温度で均熱した時
点で炉から取り出して加工するか、または前記均熱温度
に保持しながら加工する。ついで、加工後にあっては、
炉冷,空冷,水冷などの方法でその加工品を冷却する。
When manufacturing the various members described above from this alloy, an ingot of a Corson alloy having a predetermined composition is introduced into a heating furnace maintained at a predetermined temperature, and when the ingot is soaked at the furnace temperature, It is processed by taking it out of the furnace or while maintaining the soaking temperature. Then, after processing,
The processed product is cooled by furnace cooling, air cooling, water cooling, etc.

ところで、上記したような方法で、コルソン合金の鋳
塊を加熱または冷却した場合、合金塊への熱伝導状態は
非定常熱伝導となる。その結果、合金塊の表面部分と中
心部分との間では温度差が発生し、そのときの熱膨張量
の差異に基づいて、表面部分と中心部分の間に熱応力、
熱歪みが発生する。そして、この熱応力量,熱歪み量が
合金塊それ自体の強度よりも大きくなると、合金塊に割
れが発生する。
By the way, when the ingot of the Corson alloy is heated or cooled by the above-described method, the state of heat conduction to the alloy ingot becomes transient heat conduction. As a result, a temperature difference occurs between the surface portion and the center portion of the alloy ingot, and based on the difference in the amount of thermal expansion at that time, thermal stress between the surface portion and the center portion,
Thermal distortion occurs. When the amount of thermal stress and the amount of thermal strain are larger than the strength of the alloy ingot itself, cracks occur in the alloy ingot.

このような割れの発生が起こると、得られた製品は不
良品となり、製品歩留りの低下、したがってコストアッ
プを招く。
When such cracks occur, the obtained product becomes defective, resulting in a decrease in product yield and therefore an increase in cost.

本発明は、上記したような問題を解決して、加熱また
は冷却時におけるコルソン合金の割れを防止する熱処理
方法の提供を目的とする。
An object of the present invention is to solve the above-described problems and to provide a heat treatment method for preventing a Corson alloy from cracking during heating or cooling.

(課題を解決するための手段・作用) 前記したように、加熱または冷却時におけるコルソン
合金の割れは、このときに発生する熱応力や熱歪みの値
がコルソン合金の強度を超えたときに発生する。
(Means / Actions for Solving the Problems) As described above, cracking of the Corson alloy during heating or cooling occurs when the value of the thermal stress or thermal strain generated at this time exceeds the strength of the Corson alloy. I do.

コルソン合金の強度は加熱または冷却時の温度によっ
て変化するが、その状態は第5図で示したような曲線を
描く。すなわち、第5図から明らかなように、コルソン
合金は400〜800℃の温度域で脆性となり、破断しやすい
状態にある。
The strength of the Corson alloy changes depending on the temperature at the time of heating or cooling, and the state draws a curve as shown in FIG. That is, as is clear from FIG. 5, the Corson alloy becomes brittle in a temperature range of 400 to 800 ° C. and is in a state of being easily broken.

したがって、コルソン合金の割れを防ぐためには、40
0〜800℃の温度域における熱応力,熱歪みが破断強度を
超えないように熱処理することが必要になる。
Therefore, in order to prevent the Corson alloy from cracking,
It is necessary to perform heat treatment so that thermal stress and thermal strain in the temperature range of 0 to 800 ° C. do not exceed the breaking strength.

また一般に、金属においては、圧縮よりも引張りに対
してその強度が小さい。
Also, in general, metal has less strength against tension than compression.

このようなことから、本発明者らは、コルソン合金の
加熱または冷却時の温度と、その温度における引張り熱
歪みとの関係を調べた。その結果、400〜800℃の温度域
において、コルソン合金の引張り熱歪みが1×10-4以下
となるようにコルソン合金を熱処理すると、割れの発生
が著減するとの事実を見出し、本発明方法を開発するに
到った。
From the above, the present inventors investigated the relationship between the heating or cooling temperature of the Corson alloy and the tensile thermal strain at that temperature. As a result, it has been found that when the Corson alloy is heat-treated so that the tensile thermal strain of the Corson alloy is 1 × 10 −4 or less in the temperature range of 400 to 800 ° C., the occurrence of cracks is significantly reduced. Came to develop.

すなわち、本発明のコルソン合金の熱処理方法は、N
i:1.5〜4.0重量%、Si:0.35〜1.0重量%、残部がCuおよ
び不可避的不純物から成るコルソン合金を加熱する際
に、400〜800℃の温度域では、前記コルソン合金の引張
り熱歪みが1×10-4以下となるように前記コルソン合金
を加熱することを特徴とし、また、Ni:1.5〜4.0重量%,
Si:0.35〜1.0重量%,残部がCuおよび不可避的不純物か
ら成るコルソン合金を冷却する際に、400〜800℃の温度
域では、前記コルソン合金の引張り熱歪みが1×10-4
下となるように前記コルソン合金を冷却することを特徴
とする。
That is, the method for heat treatment of the Corson alloy according to the present invention comprises:
i: 1.5 to 4.0% by weight, Si: 0.35 to 1.0% by weight, the balance being Cu and the inevitable impurities, when heating the Corson alloy consisting of 400 to 800 ° C, the tensile heat strain of the Corson alloy is 400 to 800 ° C. Heating the Corson alloy so as to be 1 × 10 −4 or less; and Ni: 1.5 to 4.0% by weight,
Si: When cooling a Corson alloy composed of 0.35 to 1.0% by weight, the balance being Cu and unavoidable impurities, the tensile thermal strain of the Corson alloy becomes 1 × 10 −4 or less in a temperature range of 400 to 800 ° C. Thus, the Corson alloy is cooled.

本発明方法を適用するコルソン合金の組成は格別限定
されるものではなく、上記した組成の外にZr,Cr,Snの1
種または2種以上が0.05〜1.0重量%配合されているも
のであってもよい。
The composition of the Corson alloy to which the method of the present invention is applied is not particularly limited, and in addition to the above-mentioned composition, one of Zr, Cr, and Sn may be used.
It may be one containing 0.05 to 1.0% by weight of a kind or two or more kinds.

本発明においては、加熱または冷却時の400〜800℃の
温度域において、加熱または冷却されているコルソン合
金の引張り熱歪みが1×10-4以下となるように熱処理が
施される。
In the present invention, the heat treatment is performed so that the tensile heat strain of the heated or cooled Corson alloy is 1 × 10 −4 or less in the temperature range of 400 to 800 ° C. during heating or cooling.

400〜800℃の温度域における引張り熱歪みが1×10-4
より大きくなるような熱処理の場合には、発生する熱応
力はコルソン合金の破断強度より大きくなってしまって
割れの発生が起こってしまう。
Tensile thermal strain in the temperature range of 400 to 800 ° C is 1 × 10 -4
In the case of a heat treatment in which the heat stress becomes larger, the generated thermal stress becomes larger than the breaking strength of the Corson alloy, and a crack occurs.

このような熱処理方法としては、コルソン合金の表面
部分と中央部分との温度差が35℃以下となるように管理
することが好ましい。
As such a heat treatment method, it is preferable to manage the temperature difference between the surface portion and the central portion of the Corson alloy so as to be 35 ° C. or less.

例えば、加熱の場合、コルソン合金の組成や鋳塊の大
きさによっても異なってくるが、400℃の均熱状態にあ
る加熱炉にコルソン合金を導入し、コルソン合金が400
℃で均熱したのちは、所定の昇温速度で徐々に炉内温度
を上昇せしめ、コルソン合金への定常熱伝導を図りなが
ら表面部分と中央部分の温度差を小さくするように熱処
理すればよい。
For example, in the case of heating, depending on the composition of the Corson alloy and the size of the ingot, the Corson alloy is introduced into a heating furnace in a soaking state of 400 ° C.
After soaking at ℃, the furnace temperature is gradually increased at a predetermined heating rate, and heat treatment may be performed so as to reduce the temperature difference between the surface portion and the central portion while achieving steady heat conduction to the Corson alloy. .

また、加工後の冷却時においても、加熱時の場合と同
様に表面部分と中央部分の温度差が小さくなるように炉
内で徐冷すればよい。
Also, at the time of cooling after processing, as in the case of heating, it is only necessary to gradually cool in the furnace so that the temperature difference between the surface portion and the central portion becomes small.

(発明の実施例) 長さ1000mm,幅500mm,厚み100mmのコルソン合金の鋳塊
を用意した。
(Example of the invention) An ingot of Corson alloy having a length of 1000 mm, a width of 500 mm, and a thickness of 100 mm was prepared.

この鋳塊を400℃の加熱炉内に導入した。鋳塊が400℃
で均熱化したのちは、50℃/hrの昇温速度で800℃まで加
熱した。このときの鋳塊の表面部分の温度変化を−△−
として、また中心部分の温度変化を…△…として第1図
に示した。
This ingot was introduced into a heating furnace at 400 ° C. 400 ° C ingot
After that, the mixture was heated to 800 ° C. at a heating rate of 50 ° C./hr. The temperature change at the surface of the ingot at this time is-△-
FIG. 1 shows the temperature change in the central portion as...

比較のため、800℃の加熱炉内に前記鋳塊を直接導入
し、そのときの鋳塊の表面部分の温度変化を−○−とし
て、また中心部分の温度変化を…○…として第1図に併
記した。
For comparison, the ingot was directly introduced into a heating furnace at 800 ° C., and the temperature change of the surface portion of the ingot at that time was set to − ○ −, and the temperature change of the center portion was set to. It was also described in.

また、鋳塊の昇温過程における表面部分の温度と中心
部分の温度との差を測定し、その経時的変化を第2図に
示した。更に、鋳塊の中心部分の温度と上記温度差との
関係を第3図に示した、第2図および第3図において、
−△−印は実施例の場合を、−○−印は比較例の場合を
それぞれ示す。
Further, the difference between the temperature of the surface portion and the temperature of the central portion in the process of raising the temperature of the ingot was measured, and the change with time is shown in FIG. Further, the relationship between the temperature of the central portion of the ingot and the temperature difference is shown in FIG. 3, and in FIG. 2 and FIG.
-△ -marks indicate the case of the example, and-○ -marks indicate the case of the comparative example.

また、鋳塊の中心部分の各温度において鋳塊に発生し
た引張り熱歪み(ε)を測定し、その結果を第4図に示
した。図中、−△−印は実施例の場合、−○−印は比較
例の場合を示す。
Further, the tensile thermal strain (ε) generated in the ingot at each temperature at the center of the ingot was measured, and the results are shown in FIG. In the figure,-△-mark shows the case of the example, and-○-mark shows the case of the comparative example.

以上のような態様でコルソン合金の鋳塊を800℃まで
加熱したのち、つぎに、表面部分と中心部分の温度差が
30℃以内となるように鋳塊を炉冷した。
After heating the Corson alloy ingot to 800 ° C. in the manner described above, then, the temperature difference between the surface portion and the central portion is
The ingot was furnace-cooled to 30 ° C. or less.

このような熱処理が施された鋳塊につき、その表面と
内部における割れ発生の状態を目視観察した。
With respect to the ingot subjected to such heat treatment, the state of occurrence of cracks on the surface and inside was visually observed.

その結果、実施例条件によるものには表面,内部のい
ずれにも材料割れは認められなかったが、しかし比較例
条件によるものには表面、内部のいずれにも材料割れが
認められ、不良品になってしまった。
As a result, no material crack was found on either the surface or inside under the condition of the example, but material crack was found on both the surface and inside under the condition of the comparative example. It is had.

(発明の効果) 以上の説明で明らかなように、本発明方法は、コルソ
ン合金が最も強度低下する400〜800℃の温度域におい
て、その引張り熱歪みを1×10-4以下となるように熱処
理を行うので、コルソン合金の割れを防止することがで
き、製品歩留りの向上、更にはコストダウンに資するこ
と大である。
(Effects of the Invention) As is clear from the above description, the method of the present invention is designed so that the tensile thermal strain of the Corson alloy is 1 × 10 −4 or less in the temperature range of 400 to 800 ° C. where the strength is most reduced. Since the heat treatment is performed, cracking of the Corson alloy can be prevented, which greatly contributes to improvement in product yield and further cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

第1図はコルソン合金の鋳塊を加熱炉内に導入したとき
の経時的な温度変化を示すグラフ、第2図は鋳塊の表面
部分と中心部分の温度差の経時変化を示すグラフ、第3
図は中心部分の温度に対する表面と中心の温度差の関係
を示すグラフ、第4図は中心部分の温度と鋳塊に発生す
る引張り熱歪みとの関係を示すグラフ、第5図はコルソ
ン合金の処理温度と単軸破断歪みとの関係を示すグラフ
である。
FIG. 1 is a graph showing a time-dependent temperature change when a Corson alloy ingot is introduced into a heating furnace. FIG. 2 is a graph showing a time-dependent change in a temperature difference between a surface portion and a center portion of the ingot. 3
FIG. 4 is a graph showing the relationship between the temperature of the central portion and the temperature difference between the surface and the center, FIG. 4 is a graph showing the relationship between the temperature of the central portion and the tensile heat strain generated in the ingot, and FIG. 5 is a graph showing a relationship between a processing temperature and a uniaxial breaking strain.

フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 661 C22F 1/00 661A 682 682 691 691A 692 692A H01B 1/02 H01B 1/02 A H01L 23/48 H01L 23/48 V (58)調査した分野(Int.Cl.6,DB名) C22F 1/08 C22C 9/06 H01B 1/02 H01L 23/48Continuation of the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 661 C22F 1/00 661A 682 682 691 691A 692 692A H01B 1/02 H01B 1/02 A H01L 23/48 H01L 23/48 V ( 58) Field surveyed (Int.Cl. 6 , DB name) C22F 1/08 C22C 9/06 H01B 1/02 H01L 23/48

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ni:1.5〜4.0重量%,Si:0.35〜1.0重量%,
残部がCuおよび不可避的不純物から成るコルソン合金を
加熱する際に、400〜800℃の温度域では、前記コルソン
合金の引張り熱歪みが1×10-4以下となるように前記コ
ルソン合金を加熱することを特徴とするコルソン合金の
熱処理方法。
(1) Ni: 1.5 to 4.0% by weight, Si: 0.35 to 1.0% by weight,
When heating the Corson alloy consisting of Cu and unavoidable impurities, the Corson alloy is heated so that the tensile thermal strain of the Corson alloy is 1 × 10 −4 or less in a temperature range of 400 to 800 ° C. A heat treatment method for a Corson alloy, comprising:
【請求項2】Ni:1.5〜4.0重量%,Si:0.35〜1.0重量%,
残部がCuおよび不可避的不純物から成るコルソン合金を
冷却する際に、400〜800℃の温度域では、前記コルソン
合金の引張り熱歪みが1×10-4以下となるように前記コ
ルソン合金を冷却することを特徴とするコルソン合金の
熱処理方法。
2. Ni: 1.5 to 4.0% by weight, Si: 0.35 to 1.0% by weight,
At the time of cooling the Corson alloy consisting of Cu and unavoidable impurities, the Corson alloy is cooled in a temperature range of 400 to 800 ° C. so that the tensile heat strain of the Corson alloy is 1 × 10 −4 or less. A heat treatment method for a Corson alloy, comprising:
【請求項3】前記コルソン合金が、Ni:1.5〜4.0重量%,
Si:0.35〜1.0重量%,Zr,Cr,Snの群から選ばれる少なく
とも1種の金属0.05〜1.0重量%,残部がCuおよび不可
避的不純物から成る請求項1または2に記載のコルソン
合金の熱処理方法。
3. The method according to claim 1, wherein the Corson alloy comprises 1.5 to 4.0% by weight of Ni.
3. The heat treatment of a Corson alloy according to claim 1, wherein Si: 0.35 to 1.0% by weight, at least one kind of metal selected from the group consisting of Zr, Cr, Sn, 0.05 to 1.0% by weight, and the balance consisting of Cu and unavoidable impurities. Method.
JP7124990A 1990-03-20 1990-03-20 Heat treatment method of Corson alloy Expired - Fee Related JP2862942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7124990A JP2862942B2 (en) 1990-03-20 1990-03-20 Heat treatment method of Corson alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7124990A JP2862942B2 (en) 1990-03-20 1990-03-20 Heat treatment method of Corson alloy

Publications (2)

Publication Number Publication Date
JPH03271351A JPH03271351A (en) 1991-12-03
JP2862942B2 true JP2862942B2 (en) 1999-03-03

Family

ID=13455240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7124990A Expired - Fee Related JP2862942B2 (en) 1990-03-20 1990-03-20 Heat treatment method of Corson alloy

Country Status (1)

Country Link
JP (1) JP2862942B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123433A1 (en) 2007-03-30 2008-10-16 Nippon Mining & Metals Co., Ltd. Cu-ni-si-based alloy for electronic material
CN101270423B (en) * 2007-03-19 2010-10-06 日矿金属加工株式会社 Cu-Ni-Si based copper alloy for electronic material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5475230B2 (en) 2005-03-24 2014-04-16 Jx日鉱日石金属株式会社 Copper alloy for electronic materials
JP4068626B2 (en) 2005-03-31 2008-03-26 日鉱金属株式会社 Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270423B (en) * 2007-03-19 2010-10-06 日矿金属加工株式会社 Cu-Ni-Si based copper alloy for electronic material
WO2008123433A1 (en) 2007-03-30 2008-10-16 Nippon Mining & Metals Co., Ltd. Cu-ni-si-based alloy for electronic material

Also Published As

Publication number Publication date
JPH03271351A (en) 1991-12-03

Similar Documents

Publication Publication Date Title
US5486244A (en) Process for improving the bend formability of copper alloys
US5370840A (en) Copper alloy having high strength and high electrical conductivity
US2842438A (en) Copper-zirconium alloys
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP3510469B2 (en) Copper alloy for conductive spring and method for producing the same
JPS633936B2 (en)
US5306465A (en) Copper alloy having high strength and high electrical conductivity
US4692192A (en) Electroconductive spring material
JP2862942B2 (en) Heat treatment method of Corson alloy
US3019102A (en) Copper-zirconium-hafnium alloys
JPS6328971B2 (en)
JPS58210140A (en) Heat resistant conductive copper alloy
JP2582073B2 (en) Method for producing high-strength heat-resistant aluminum alloy for electric conduction
US20030029532A1 (en) Nickel containing high copper alloy
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
JP2002302727A (en) Electroconductive, heat-resistant aluminum alloy wire and production method therefor
JPH06279894A (en) Copper alloy excellent in strength and electrical conductivity
JPH0314896B2 (en)
KR102617693B1 (en) High thermal resistant aluminum alloy
JPH05287417A (en) High strength and high electric conductivity copper alloy
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JPS5952943B2 (en) Cu alloy with high heat resistance and high conductivity
JP4057162B2 (en) High strength, high conductivity, high Cr content copper alloy
JPS6043905B2 (en) Manufacturing method of highly conductive heat-resistant copper alloy material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees