JP2858598B2 - Method for producing CdTe single crystal - Google Patents

Method for producing CdTe single crystal

Info

Publication number
JP2858598B2
JP2858598B2 JP16748491A JP16748491A JP2858598B2 JP 2858598 B2 JP2858598 B2 JP 2858598B2 JP 16748491 A JP16748491 A JP 16748491A JP 16748491 A JP16748491 A JP 16748491A JP 2858598 B2 JP2858598 B2 JP 2858598B2
Authority
JP
Japan
Prior art keywords
single crystal
resistivity
ppm
cdte single
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16748491A
Other languages
Japanese (ja)
Other versions
JPH04367597A (en
Inventor
稔 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP16748491A priority Critical patent/JP2858598B2/en
Publication of JPH04367597A publication Critical patent/JPH04367597A/en
Application granted granted Critical
Publication of JP2858598B2 publication Critical patent/JP2858598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、放射線検出素子用等とし
て有用な高抵抗CdTe単結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-resistance CdTe single crystal useful for a radiation detecting element or the like.

【0002】[0002]

【従来技術】CdTe単結晶は室温動作が可能な放射線
検出素子に有用であり、素子のエネルギ−分解能の改善
を目的に、従来からその製造方法が検討されている。
2. Description of the Related Art A CdTe single crystal is useful for a radiation detecting element capable of operating at room temperature, and its production method has been studied for the purpose of improving the energy resolution of the element.

【0003】高エネルギ−分解能を達成するためには、
抵抗率が高いことが重要である。抵抗率が低いと放射線
検出器の信号ノイズが増大し好ましくなく、1×108
Ωcm以上が必要である。
In order to achieve high energy resolution,
It is important that the resistivity is high. Signal noise of low resistivity and the radiation detector is increased undesirably, 1 × 10 8
Ωcm or more is required.

【0004】しかし、不純物無添加のCdTe単結晶で
は、Cdの空孔がアクセプタとなって、p型で100Ω
cm程度の抵抗率のものしか得られない。
However, in the case of a CdTe single crystal with no impurity added, vacancies of Cd serve as acceptors, resulting in 100 Ω p-type.
A resistivity of only about cm can be obtained.

【0005】また、ドナ−不純物であるClやInを添
加することによって、Cdの空孔によるアクセプタを補
償して、抵抗率を向上する方法が知られているが、Cl
を添加した場合、作製した放射線検出素子の計数率がバ
イアス電圧の印加後の時間に伴って、大きく変化すると
いう問題がある。In添加の場合には、このような問題
はないが、高い抵抗率のCdTe単結晶を再現性良く製
造できないという問題があった。
There is also known a method of improving the resistivity by adding a donor impurity such as Cl or In to compensate for acceptors due to Cd vacancies.
In the case where is added, there is a problem that the count rate of the manufactured radiation detecting element changes greatly with the time after the application of the bias voltage. In the case of adding In, there is no such a problem, but there is a problem that a CdTe single crystal having a high resistivity cannot be produced with good reproducibility.

【0006】[0006]

【発明が解決しようとする問題点】本発明は、上記の問
題点を解決したものであって、In添加した高抵抗率の
CdTe単結晶を再現性良く製造できる方法を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and provides a method for producing a high resistivity CdTe single crystal doped with In with good reproducibility.

【0007】[0007]

【問題点を解決するための手段および作用】本発明は、
Inを0.001重量ppm以上、0.5重量ppm以
の濃度となるように添加して、THM法で育成した
dTe単結晶を、真空中、あるいは不活性ガス中で17
0℃以上、230℃以下の温度で熱処理することを特徴
とするCdTe単結晶の製造方法であり、本発明によ
り、放射線検出素子に適した高抵抗のIn添加CdTe
単結晶を再現性良く得ることができる。
[Means and Actions for Solving the Problems]
In 0.001 wt ppm or more, 0.5 wt ppm or less
It was added to a concentration below were grown in THM method C
dTe single crystal is placed in a vacuum or in an inert gas for 17 hours.
A method for producing a CdTe single crystal characterized by performing a heat treatment at a temperature of 0 ° C. or more and 230 ° C. or less . According to the present invention, a high-resistance In-doped CdTe suitable for a radiation detecting element is provided.
A single crystal can be obtained with good reproducibility.

【0008】本発明者は、結晶の熱履歴が抵抗率に大き
く影響すると考え、In濃度レベルの異なるCdTe単
結晶を熱処理温度を変化させて熱処理し、その抵抗率を
測定する実験を行った。その実験結果を図1に示す。
The present inventor considered that the thermal history of the crystal greatly affected the resistivity, and conducted an experiment in which CdTe single crystals having different In concentration levels were heat-treated while changing the heat treatment temperature, and the resistivity was measured. FIG. 1 shows the experimental results.

【0009】実験は、CdTe単結晶中のIn濃度が
0.05重量ppm,0.5重量ppm,1.9重量p
pmのもの及びIn無添加のものの4種類のCdTe単
結晶をウエハ−に切断し、真空中で110℃から375
℃の温度範囲で15時間熱処理した後、抵抗率を測定し
た。
[0009] Experiments have shown that the In concentration in the CdTe single crystal is 0.05 wt ppm, 0.5 wt ppm, 1.9 wt p
Four types of CdTe single crystals, one with pm and one without In, were cut into wafers, and were cut from 110 ° C. to 375 in vacuum.
After heat treatment for 15 hours in a temperature range of ° C., the resistivity was measured.

【0010】図1より、In無添加のものは熱処理温度
に無関係に抵抗率はほぼ1×102Ωcmで変化がな
い。また、In濃度が1.9重量ppmのものでは、熱
処理温度が高くなるに従って抵抗率が低下している。こ
れらに対し、In濃度が0.05重量ppm及び0.5
重量ppmのものでは、熱処理温度200℃付近で抵抗
率が最高値を示し、1×109Ωcmに達している。
From FIG. 1, it can be seen that the resistivity without addition of In is almost unchanged at 1 × 10 2 Ωcm regardless of the heat treatment temperature. When the In concentration was 1.9 wt ppm, the resistivity decreased as the heat treatment temperature increased. On the other hand, the In concentration was 0.05 wt ppm and 0.5 wt ppm.
In the case of those with the weight ppm, the resistivity shows the highest value near the heat treatment temperature of 200 ° C. and reaches 1 × 10 9 Ωcm.

【0011】本発明における熱処理温度は、放射線検出
素子用として必要な抵抗率5×10 Ωcm以上とする
ために、170℃以上、230℃以下とされる。
The heat treatment temperature in the present invention is 170 ° C. or more and 230 ° C. or less in order to make the resistivity 5 × 10 8 Ωcm or more necessary for the radiation detecting element.

【0012】本発明におけるCdTe単結晶へのInの
添加濃度は0.001重量ppm以上、0.5重量pp
m以下とされる。0.001重量ppm未満では、無添
加と同程度の結果しか得られず、0.5重量ppmを超
えると、抵抗率が5×10 Ωcm未満となる。
In the present invention, the concentration of In added to the CdTe single crystal is at least 0.001 ppm by weight , and 0.5 ppm by weight.
m or less . When the content is less than 0.001 ppm by weight, only the same result as that when no additive is obtained is obtained, and when the content exceeds 0.5 ppm by weight , the resistivity becomes less than 5 × 10 8 Ωcm.

【0013】本発明における熱処理雰囲気は、結晶の酸
化防止のため真空中あるいはAr、窒素などの不活性ガ
ス雰囲気とされる。
The heat treatment atmosphere in the present invention is a vacuum or an inert gas atmosphere such as Ar or nitrogen for preventing the oxidation of the crystal.

【0014】本発明の熱処理時間は、1時間以上とし、
好ましくは15時間以上とされる。なお、CdTe単結
晶の熱処理時の形状はウエハ−でも、インゴットで行な
っても同様の効果を得ることができる。
[0014] The heat treatment time of the present invention is 1 hour or more,
Preferably, it is 15 hours or more. It should be noted that the same effect can be obtained whether the CdTe single crystal is heat-treated in a wafer or in an ingot.

【0015】[0015]

【実施例】結晶中のIn濃度が0.5重量ppmとなる
ようにInを添加して、THM法でCdTe単結晶を育
成した。
EXAMPLE CdTe single crystals were grown by the THM method by adding In such that the In concentration in the crystals was 0.5 ppm by weight.

【0016】このCdTe単結晶をウエハ−に切断し、
真空中で220℃で15時間熱処理した後、熱処理炉内
で冷却速度10〜50℃/Hrの範囲で室温まで冷却
後、抵抗率を測定した。抵抗率はすべて(1〜2)×1
9Ωcmと一様であり、放射線検出素子に十分な抵抗
率であった。
The CdTe single crystal is cut into wafers,
After heat-treating at 220 ° C. for 15 hours in a vacuum, the resistivity was measured after cooling in a heat-treating furnace to room temperature at a cooling rate of 10 to 50 ° C./Hr. The resistivity is all (1-2) x 1
0 9 [Omega] cm and a uniform, it was of sufficient resistivity to the radiation detecting element.

【0017】[0017]

【比較例1】実施例1で成長した単結晶を熱処理を行な
わないで抵抗率の測定を行なったところ、1×105
3×107Ωcmと大きなバラツキを示し、放射線検出
素子用には抵抗率が不足であった。
[Comparative Example 1] was measured while resistivity without performing a heat treatment of single crystal grown in Example 1, 1 × 10 5 ~
It showed a large variation of 3 × 10 7 Ωcm, and the resistivity was insufficient for a radiation detecting element.

【0018】[0018]

【発明の効果】Inを0.001重量ppm以上、0.
5重量ppm以下の濃度となるように添加して、THM
法で育成したCdTe単結晶を、真空中、あるいは不活
性ガス中で170℃以上、230℃以下の温度で熱処理
することにより、放射線検出素子用に適した高抵抗率の
In添加CdTe単結晶を再現性良く得ることができ
る。
According to the present invention, the content of In is 0.001 wt ppm or more .
THM is added so as to have a concentration of 5 ppm by weight or less.
By heating the CdTe single crystal grown by the method at a temperature of 170 ° C. or higher and 230 ° C. or lower in a vacuum or an inert gas, a high resistivity In-doped CdTe single crystal suitable for a radiation detecting element is obtained. It can be obtained with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】In濃度レベルの異なるCdTe単結晶を熱処
理温度を変化させて熱処理し、その抵抗率を測定した結
果を示す図である。
FIG. 1 is a diagram showing the results of measuring the resistivity of CdTe single crystals having different In concentration levels by performing a heat treatment while changing a heat treatment temperature.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Inを0.001重量ppm以上、0.5
重量ppm以下の濃度となるように添加して、THM法
で育成したCdTe単結晶を、真空中、あるいは不活性
ガス中で170℃以上、230℃以下の温度で熱処理す
ることを特徴とするCdTe単結晶の製造方法。
1. A In the 0.001 ppm or greater, 0.5
THM method by adding so that the concentration becomes less than ppm by weight
A method for producing a CdTe single crystal, characterized by subjecting the CdTe single crystal grown in 1) to a heat treatment at a temperature of 170 ° C. or more and 230 ° C. or less in a vacuum or an inert gas.
JP16748491A 1991-06-13 1991-06-13 Method for producing CdTe single crystal Expired - Lifetime JP2858598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16748491A JP2858598B2 (en) 1991-06-13 1991-06-13 Method for producing CdTe single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16748491A JP2858598B2 (en) 1991-06-13 1991-06-13 Method for producing CdTe single crystal

Publications (2)

Publication Number Publication Date
JPH04367597A JPH04367597A (en) 1992-12-18
JP2858598B2 true JP2858598B2 (en) 1999-02-17

Family

ID=15850541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16748491A Expired - Lifetime JP2858598B2 (en) 1991-06-13 1991-06-13 Method for producing CdTe single crystal

Country Status (1)

Country Link
JP (1) JP2858598B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018532B2 (en) * 2013-03-29 2016-11-02 Jx金属株式会社 Semiconductor wafer, radiation detection element, radiation detector, and method for producing compound semiconductor single crystal
JP6713341B2 (en) * 2016-04-28 2020-06-24 Jx金属株式会社 Compound semiconductor substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04367597A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
US7135351B2 (en) Method for controlling of thermal donor formation in high resistivity CZ silicon
Dumin et al. Autodoping of silicon films grown epitaxially on sapphire
JPH10229093A (en) Production of silicon epitaxial wafer
JP2858598B2 (en) Method for producing CdTe single crystal
JP2742247B2 (en) Manufacturing method and quality control method for silicon single crystal substrate
JPH0796478B2 (en) Method for producing CdTe single crystal
JPH07108839B2 (en) Method for producing CdTe single crystal
JPH09124310A (en) Production of cadmium telluride crystal
JPH06345598A (en) Cdte crystal for radiation detecting element and its production
JPH0341437B2 (en)
JP3022045B2 (en) Method of manufacturing silicon wafer and silicon wafer
JPH0791155B2 (en) Method for producing CdTe single crystal
Itoh et al. Electrical Properties of n‐Type Epitaxial Films of Silicon on Sapphire Formed by Vacuum Evaporation
JPH0513119B2 (en)
Lin et al. Effects of heat treatment and plastic deformation on the photoelectronic properties of high‐resistivity GaAs: Cr
JPH033244A (en) Heat treatment method for semiconductor silicon substrate
JP2819244B2 (en) Method for producing semi-insulating InP single crystal
Paul et al. The effects of annealing and rate of deposition on the electrical, optical and structural properties of amorphous Ge Si alloy films
JPH08115919A (en) Method of processing semiconductor substrate
JPH0269307A (en) Compound semiconductor and its production
JPH0818917B2 (en) Method for producing CdTe single crystal
JPH09199380A (en) Si substrate for epitaxial wafer and its manufacturing method
JP2760932B2 (en) Method for controlling oxygen concentration of Si melt for pulling single crystal
JP4843929B2 (en) Heat treatment method of GaAs crystal and GaAs crystal substrate
Silberg et al. Doping and electrical properties of Cd-doped crystals and LPE layers of Pb1-xSnxTe