JPH04367597A - Production of cdte single crystal - Google Patents

Production of cdte single crystal

Info

Publication number
JPH04367597A
JPH04367597A JP16748491A JP16748491A JPH04367597A JP H04367597 A JPH04367597 A JP H04367597A JP 16748491 A JP16748491 A JP 16748491A JP 16748491 A JP16748491 A JP 16748491A JP H04367597 A JPH04367597 A JP H04367597A
Authority
JP
Japan
Prior art keywords
single crystal
cdte
resistivity
ppm
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16748491A
Other languages
Japanese (ja)
Other versions
JP2858598B2 (en
Inventor
Minoru Funaki
船木 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP16748491A priority Critical patent/JP2858598B2/en
Publication of JPH04367597A publication Critical patent/JPH04367597A/en
Application granted granted Critical
Publication of JP2858598B2 publication Critical patent/JP2858598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce the objective single crystal of CdTe having a high resistivity in good reproducibility by adding a prescribed amount of In to a single crystal of CdTe and subsequently thermally treating the crystal under vacuum, etc. CONSTITUTION:A CdTe crystal is mixed with 0.001-1.5wt. ppm of In and placed in an oven under vacuum or in an atmosphere of inert gas such as Ar or N2. The single crystal is heated at 150-250 deg.C for approximately 15hrs and subsequently cooled to room temperature at a cooling rate of 10-50 deg.C/hr to produce the CdTe single crystal having a resistivity of approximately (1-2)X10<9>OMEGAcm.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【発明の技術分野】本発明は、放射線検出素子用等とし
て有用な高抵抗CdTe単結晶の製造方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a high resistance CdTe single crystal useful for use in radiation detection elements and the like.

【0002】0002

【従来技術】CdTe単結晶は室温動作が可能な放射線
検出素子に有用であり、素子のエネルギ−分解能の改善
を目的に、従来からその製造方法が検討されている。
2. Description of the Related Art CdTe single crystals are useful for radiation detection elements that can operate at room temperature, and methods of manufacturing them have been studied for the purpose of improving the energy resolution of the elements.

【0003】高エネルギ−分解能を達成するためには、
抵抗率が高いことが重要である。抵抗率が低いと放射線
検出器の信号ノイズが増大し好ましくなく、1×108
Ωcm以上が必要である。
[0003] In order to achieve high energy resolution,
It is important that the resistivity is high. If the resistivity is low, the signal noise of the radiation detector will increase, which is undesirable.
Ωcm or more is required.

【0004】しかし、不純物無添加のCdTe単結晶で
は、Cdの空孔がアクセプタとなって、p型で100Ω
cm程度の抵抗率のものしか得られない。
However, in a CdTe single crystal with no impurities added, the Cd vacancies act as acceptors, and the p-type resistance is 100Ω.
Only resistivity of about cm can be obtained.

【0005】また、ドナ−不純物であるClやInを添
加することによって、Cdの空孔によるアクセプタを補
償して、抵抗率を向上する方法が知られているが、Cl
を添加した場合、作製した放射線検出素子の計数率がバ
イアス電圧の印加後の時間に伴って、大きく変化すると
いう問題がある。In添加の場合には、このような問題
はないが、高い抵抗率のCdTe単結晶を再現性良く製
造できないという問題があった。
[0005] Furthermore, a method is known in which the resistivity is improved by adding donor impurities such as Cl or In to compensate for acceptors caused by Cd vacancies.
When adding , there is a problem that the counting rate of the fabricated radiation detection element changes greatly with time after the bias voltage is applied. In the case of adding In, there is no such problem, but there is a problem that a CdTe single crystal with high resistivity cannot be manufactured with good reproducibility.

【0006】[0006]

【発明が解決しようとする問題点】本発明は、上記の問
題点を解決したものであって、In添加した高抵抗率の
CdTe単結晶を再現性良く製造できる方法を提供する
ものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a method for manufacturing CdTe single crystals doped with In and having high resistivity with good reproducibility.

【0007】[0007]

【問題点を解決するための手段および作用】本発明は、
Inを0.001重量ppm以上、1.5重量ppm以
下の濃度となるように添加したCdTe単結晶を、真空
中、あるいは不活性ガス中で150℃以上、250℃以
下の温度で熱処理することを特徴とするCdTe単結晶
の製造方法であり、本発明により、放射線検出素子に適
した高抵抗率のIn添加CdTe単結晶を再現性良く得
ることができる。
[Means and effects for solving the problems] The present invention has the following features:
Heat-treating a CdTe single crystal to which In has been added at a concentration of 0.001 ppm or more and 1.5 ppm or less in a vacuum or in an inert gas at a temperature of 150°C or more and 250°C or less. According to the present invention, an In-doped CdTe single crystal with high resistivity suitable for radiation detection elements can be obtained with good reproducibility.

【0008】本発明者は、結晶の熱履歴が抵抗率に大き
く影響すると考え、In濃度レベルの異なるCdTe単
結晶を熱処理温度を変化させて熱処理し、その抵抗率を
測定する実験を行った。その実験結果を図1に示す。
The inventor of the present invention believed that the thermal history of the crystal greatly affects the resistivity, and conducted an experiment in which CdTe single crystals having different In concentration levels were heat treated by varying the heat treatment temperature, and the resistivity was measured. The experimental results are shown in Figure 1.

【0009】実験は、CdTe単結晶中のIn濃度が0
.05重量ppm,0.5重量ppm,1.9重量pp
mのもの及びIn無添加のものの4種類のCdTe単結
晶をウエハ−に切断し、真空中で110℃から375℃
の温度範囲で15時間熱処理した後、抵抗率を測定した
In the experiment, the In concentration in the CdTe single crystal was 0.
.. 05 weight ppm, 0.5 weight ppm, 1.9 weight ppm
Four types of CdTe single crystals, one with no addition of In and one with no addition of In, were cut into wafers and heated at 110°C to 375°C in vacuum.
After heat treatment at a temperature range of 15 hours, the resistivity was measured.

【0010】図1より、In無添加のものは熱処理温度
に無関係に抵抗率はほぼ1×102Ωcmで変化がない
。また、In濃度が1.9重量ppmのものでは、熱処
理温度が高くなるに従って抵抗率が低下している。これ
らに対し、In濃度が0.05重量ppm及び0.5重
量ppmのものでは、熱処理温度200℃付近で抵抗率
が最高値を示し、1×109Ωcmに達している。
As shown in FIG. 1, the resistivity of the material without In added is approximately 1.times.10.sup.2 .OMEGA.cm and does not change regardless of the heat treatment temperature. Further, in the case where the In concentration is 1.9 ppm by weight, the resistivity decreases as the heat treatment temperature increases. On the other hand, in the cases where the In concentration is 0.05 ppm by weight and 0.5 ppm by weight, the resistivity reaches its maximum value at around the heat treatment temperature of 200° C., reaching 1×10 9 Ωcm.

【0011】本発明における熱処理温度は、放射線検出
素子用として必要な抵抗率1×108Ωcm以上とする
ために、150℃以上、250℃以下とされる。
The heat treatment temperature in the present invention is set at 150° C. or higher and 250° C. or lower in order to obtain a resistivity of 1×10 8 Ωcm or higher, which is necessary for a radiation detection element.

【0012】本発明におけるCdTe単結晶へのInの
添加濃度は0.001重量ppm以上、1.5重量pp
m以下とされる。0.001重量ppm未満では、無添
加と同程度の結果しか得られず、1.5重量ppmを超
えると、熱処理温度200℃付近で抵抗率が最高値を示
さなくなる。
In the present invention, the concentration of In added to the CdTe single crystal is 0.001 ppm by weight or more and 1.5 ppm by weight.
m or less. If it is less than 0.001 ppm by weight, results comparable to those obtained without the addition will be obtained, and if it exceeds 1.5 ppm by weight, the resistivity will not reach its maximum value at around the heat treatment temperature of 200°C.

【0013】本発明における熱処理雰囲気は、結晶の酸
化防止のため真空中あるいはAr、窒素などの不活性ガ
ス雰囲気とされる。
The heat treatment atmosphere in the present invention is a vacuum or an inert gas atmosphere such as Ar or nitrogen to prevent oxidation of the crystal.

【0014】本発明の熱処理時間は、1時間以上とし、
好ましくは15時間以上とされる。なお、CdTe単結
晶の熱処理時の形状はウエハ−でも、インゴットで行な
っても同様の効果を得ることができる。
[0014] The heat treatment time of the present invention is 1 hour or more,
Preferably it is 15 hours or more. Note that the same effect can be obtained whether the CdTe single crystal is heat-treated in a wafer shape or an ingot shape.

【0015】[0015]

【実施例】結晶中のIn濃度が0.5重量ppmとなる
ようにInを添加して、THM法でCdTe単結晶を育
成した。
EXAMPLE A CdTe single crystal was grown by the THM method by adding In so that the In concentration in the crystal was 0.5 ppm by weight.

【0016】このCdTe単結晶をウエハ−に切断し、
真空中で220℃で15時間熱処理した後、熱処理炉内
で冷却速度10〜50℃/Hrの範囲で室温まで冷却後
、抵抗率を測定した。抵抗率はすべて(1〜2)×10
9Ωcmと一様であり、放射線検出素子に十分な抵抗率
であった。
[0016] This CdTe single crystal was cut into wafers,
After heat treatment at 220°C in vacuum for 15 hours, the resistivity was measured after cooling to room temperature in a heat treatment furnace at a cooling rate of 10 to 50°C/Hr. All resistivities are (1-2) x 10
The resistivity was uniform at 9 Ωcm, which was sufficient for a radiation detection element.

【0017】[0017]

【比較例1】実施例1で成長した単結晶を熱処理を行な
わないで抵抗率の測定を行なったところ、1×105〜
3×107Ωcmと大きなバラツキを示し、放射線検出
素子用には抵抗率が不足であった。
[Comparative Example 1] When the resistivity of the single crystal grown in Example 1 was measured without heat treatment, it was found that the resistivity was 1×105~
It showed a large variation of 3×10 7 Ωcm, and the resistivity was insufficient for use as a radiation detection element.

【0018】[0018]

【発明の効果】Inを0.001重量ppm以上、1.
5重量ppm以下の濃度となるように添加したCdTe
単結晶を、真空中、あるいは不活性ガス中で150℃以
上、250℃以下の温度で熱処理することにより、放射
線検出素子用に適した高抵抗率のIn添加CdTe単結
晶を再現性良く得ることができる。
Effect of the invention: In is 0.001 ppm or more by weight, 1.
CdTe added to a concentration of 5 ppm by weight or less
To obtain an In-doped CdTe single crystal with high resistivity suitable for radiation detection elements with good reproducibility by heat-treating the single crystal at a temperature of 150°C or higher and 250°C or lower in vacuum or in an inert gas. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】In濃度レベルの異なるCdTe単結晶を熱処
理温度を変化させて熱処理し、その抵抗率を測定した結
果を示す図である。
FIG. 1 is a diagram showing the results of heat treating CdTe single crystals with different In concentration levels at varying heat treatment temperatures and measuring their resistivities.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Inを0.001重量ppm以上、1
.5重量ppm以下の濃度となるように添加したCdT
e単結晶を、真空中、あるいは不活性ガス中で150℃
以上、250℃以下の温度で熱処理することを特徴とす
るCdTe単結晶の製造方法。
Claim 1: 0.001 ppm or more by weight of In, 1
.. CdT added to a concentration of 5 ppm by weight or less
eSingle crystal at 150℃ in vacuum or inert gas.
As described above, a method for producing a CdTe single crystal is characterized in that heat treatment is performed at a temperature of 250° C. or lower.
JP16748491A 1991-06-13 1991-06-13 Method for producing CdTe single crystal Expired - Lifetime JP2858598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16748491A JP2858598B2 (en) 1991-06-13 1991-06-13 Method for producing CdTe single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16748491A JP2858598B2 (en) 1991-06-13 1991-06-13 Method for producing CdTe single crystal

Publications (2)

Publication Number Publication Date
JPH04367597A true JPH04367597A (en) 1992-12-18
JP2858598B2 JP2858598B2 (en) 1999-02-17

Family

ID=15850541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16748491A Expired - Lifetime JP2858598B2 (en) 1991-06-13 1991-06-13 Method for producing CdTe single crystal

Country Status (1)

Country Link
JP (1) JP2858598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196213A (en) * 2013-03-29 2014-10-16 Jx日鉱日石金属株式会社 Semiconductor wafer, radiation detection element, radiation detector and method of producing compound semiconductor single crystal
JP2017197413A (en) * 2016-04-28 2017-11-02 Jx金属株式会社 Compound semiconductor substrate and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196213A (en) * 2013-03-29 2014-10-16 Jx日鉱日石金属株式会社 Semiconductor wafer, radiation detection element, radiation detector and method of producing compound semiconductor single crystal
JP2017197413A (en) * 2016-04-28 2017-11-02 Jx金属株式会社 Compound semiconductor substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2858598B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
JP4971994B2 (en) Process for producing silicon carbide crystals with increased minority carrier lifetime
Dumin et al. Autodoping of silicon films grown epitaxially on sapphire
WO2020235123A1 (en) Semiconductor wafer, radiation detection element, radiation detector, and production method for compound semiconductor monocrystalline substrate
JPH10229093A (en) Production of silicon epitaxial wafer
JPH04367597A (en) Production of cdte single crystal
US2808315A (en) Processing of silicon
US10651818B2 (en) Method of producing lithium niobate single crystal substrate
JPH0796478B2 (en) Method for producing CdTe single crystal
JPH06345598A (en) Cdte crystal for radiation detecting element and its production
JPH09124310A (en) Production of cadmium telluride crystal
JPH07108839B2 (en) Method for producing CdTe single crystal
KR100774070B1 (en) Method of producing silicon epitaxial wafers
JP2017197413A (en) Compound semiconductor substrate and manufacturing method thereof
JPH0513119B2 (en)
US10715101B2 (en) Lithium niobate single crystal substrate and method of producing the same
US10711371B2 (en) Lithium niobate single crystal substrate and method of producing the same
JPH0791155B2 (en) Method for producing CdTe single crystal
JPH09199380A (en) Si substrate for epitaxial wafer and its manufacturing method
EP3312312A1 (en) Lithium niobate single crystal substrate and method for producing same
JPH0497991A (en) Production of cdte single crystal
JPH0269307A (en) Compound semiconductor and its production
He et al. Carrier transport and structural properties of polysilicon films prepared by layer-by-layer technique
US10301742B2 (en) Lithium niobate single crystal substrate and method of producing the same
US4264914A (en) Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same
JPH09199381A (en) Si substrate for epitaxial wafer and its manufacturing method