JP4843929B2 - Heat treatment method of GaAs crystal and GaAs crystal substrate - Google Patents

Heat treatment method of GaAs crystal and GaAs crystal substrate Download PDF

Info

Publication number
JP4843929B2
JP4843929B2 JP2004306718A JP2004306718A JP4843929B2 JP 4843929 B2 JP4843929 B2 JP 4843929B2 JP 2004306718 A JP2004306718 A JP 2004306718A JP 2004306718 A JP2004306718 A JP 2004306718A JP 4843929 B2 JP4843929 B2 JP 4843929B2
Authority
JP
Japan
Prior art keywords
gaas crystal
heat treatment
gaas
crystal
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004306718A
Other languages
Japanese (ja)
Other versions
JP2006117464A (en
Inventor
大介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004306718A priority Critical patent/JP4843929B2/en
Publication of JP2006117464A publication Critical patent/JP2006117464A/en
Application granted granted Critical
Publication of JP4843929B2 publication Critical patent/JP4843929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、各種電子素子の基板などに用いられるGaAs結晶の熱処理方法およびその熱処理方法により得られたGaAs結晶基板に関する。   The present invention relates to a heat treatment method for GaAs crystals used for substrates of various electronic devices and the like, and a GaAs crystal substrate obtained by the heat treatment method.

半絶縁性GaAs結晶は、高速動作および低消費電力を必要とする電子デバイス用の基板材料として用いられている。かかるGaAs結晶の結晶面内における結晶特性のばらつきが大きいと、そのGaAs結晶を用いて作製された電子デバイスのデバイス特性のばらつきも大きくなり、電子デバイスの歩留まりが低下する。   Semi-insulating GaAs crystals are used as substrate materials for electronic devices that require high-speed operation and low power consumption. When the variation in the crystal characteristics of the GaAs crystal in the crystal plane is large, the variation in the device characteristics of the electronic device manufactured using the GaAs crystal is also large, and the yield of the electronic device is lowered.

このため、結晶特性のばらつきを低減させるために、結晶成長後のGaAs結晶インゴットまたはGaAs結晶ウエハに熱処理を行なうことが提案されている。現在までに、炭素濃度が0.5×1015cm-3〜2.5×1015cm-3で、1.5×107Ω・cm程度の比抵抗を有するGaAs結晶について、所定の条件の熱処理を行なうことにより、比抵抗の面内分布のばらつきを10%未満とすることが提案されている(たとえば、特許文献1参照)。 For this reason, in order to reduce variation in crystal characteristics, it has been proposed to perform heat treatment on a GaAs crystal ingot or GaAs crystal wafer after crystal growth. To date, a GaAs crystal having a specific resistance of about 1.5 × 10 7 Ω · cm at a carbon concentration of 0.5 × 10 15 cm −3 to 2.5 × 10 15 cm −3 is subjected to predetermined conditions. It has been proposed that the variation in the in-plane distribution of the specific resistance is less than 10% by performing the heat treatment (for example, see Patent Document 1).

しかしながら、電子デバイスにおいてより高速動作化、低消費電力化が求められ、半絶縁性GaAs結晶にもより高い比抵抗が求められている。GaAs結晶の比抵抗を高くするほど、GaAs結晶中のキャリア濃度は低くなるため、GaAs結晶内における比抵抗のばらつき、キャリアの移動度のばらつきなどが大きくなる。   However, higher speed operation and lower power consumption are required for electronic devices, and higher specific resistance is also required for semi-insulating GaAs crystals. The higher the specific resistance of the GaAs crystal, the lower the carrier concentration in the GaAs crystal. Therefore, variations in specific resistance and carrier mobility in the GaAs crystal increase.

特に、比抵抗が従来よりも1桁以上高い1×108Ω・cm〜8×108Ω・cmのような半導体領域から絶縁体領域に位置する半絶縁性GaAs結晶において、比抵抗のばらつきおよびキャリア移動度のばらつきを低減する方法については、今まで知られていなかった。
特開平11−268997号公報
In particular, in the semi-insulating GaAs crystal located in the insulator region from the semiconductor region, such as 1 × 10 8 Ω · cm to 8 × 10 8 Ω · cm, whose specific resistance is higher by one digit or more than before, variation in specific resistance A method for reducing the variation in carrier mobility has not been known so far.
Japanese Patent Laid-Open No. 11-268997

上記状況に鑑みて、本発明は、比抵抗が1×108Ω・cm〜8×108Ω・cmのような高い比抵抗を有するGaAs結晶の結晶主面に平行な面内における比抵抗値および/またはキャリア移動度のばらつきを低減するために、このGaAs結晶を熱処理する方法およびこの熱処理によって得られるGaAs結晶基板を提供することを目的とする。 In view of the above circumstances, the present invention has a specific in resistivity 1 × 10 8 Ω · cm~8 × 10 8 Ω · high specific plane parallel to the principal crystal plane of GaAs crystal having a resistivity such as cm resistor An object of the present invention is to provide a method for heat-treating this GaAs crystal and a GaAs crystal substrate obtained by this heat-treatment in order to reduce variations in value and / or carrier mobility.

上記目的を達成するため、本発明は、縦型ブリッジマン法および縦型温度傾斜法のいずれかにより成長させた、比抵抗が1×108Ω・cm〜8×108Ω・cmかつ炭素濃度が5×1015cm-3〜1×1016cm-3のGaAs結晶を、800℃〜1000℃で10時間〜50時間熱処理することにより、結晶主面に平行な面内における比抵抗のばらつきが10%未満となるGaAs結晶の熱処理方法である。ここで、比抵抗のばらつきとは、比抵抗の平均値に対する標準偏差の百分率(100×標準偏差/平均値)をいう。 To achieve the above object, the present invention is vertical Bridgman method and grown by either of a vertical temperature gradient method, the resistivity is 1 × 10 8 Ω · cm~8 × 10 8 Ω · cm and carbon By subjecting a GaAs crystal having a concentration of 5 × 10 15 cm −3 to 1 × 10 16 cm −3 to heat treatment at 800 ° C. to 1000 ° C. for 10 hours to 50 hours , a specific resistance in a plane parallel to the crystal main surface is obtained. This is a heat treatment method for GaAs crystals in which the variation of the GaAs crystal is less than 10% . Here, the variation in specific resistance means the percentage of standard deviation with respect to the average value of specific resistance (100 × standard deviation / average value).

本GaAs結晶の熱処理方法において、熱処理の時間を20時間〜50時間とすることができる。また、縦型ブリッジマン法および縦型温度傾斜法のいずれかにおけるGaAs結晶の成長条件は、融液側の温度勾配を1〜2℃/cmとし、結晶側の温度勾配を5〜6℃/cmとすることができる。また、熱処理を不活性ガス雰囲気下または減圧雰囲気下で行なうことができる。また、GaAs結晶は、本熱処理を行なうことにより、結晶主面に平行な面内におけるキャリア移動度のばらつきを10%未満とすることができる。ここで、キャリア移動度のばらつきとは、キャリア移動度の平均値に対する標準偏差の百分率(100×標準偏差/平均値)をいう。 In the heat treatment method of the present GaAs crystal, the heat treatment time can be set to 20 hours to 50 hours. The growth conditions of the GaAs crystal in either the vertical Bridgman method or the vertical temperature gradient method are as follows: the temperature gradient on the melt side is 1 to 2 ° C./cm, and the temperature gradient on the crystal side is 5 to 6 ° C./cm. cm. Further, the heat treatment can be performed in an inert gas atmosphere or a reduced pressure atmosphere . Also, GaAs crystal, by performing the heat treatment, the dispersion of carrier mobility in a plane parallel to the principal crystal plane can be less than 10%. Here, the variation in the carrier mobility, refers to the percentage (100 × standard deviation / mean) of the standard deviation to the mean value of the career mobility.

また、本発明は、上記いずれかのGaAs結晶の熱処理方法により熱処理されて得られたGaAs結晶基板である。   The present invention also provides a GaAs crystal substrate obtained by heat treatment by any one of the above GaAs crystal heat treatment methods.

上記のように、本発明によれば、比抵抗が1×108Ω・cm〜8×108Ω・cmのような高い比抵抗を有するGaAs結晶であっても、結晶主面に平行な面内における比抵抗値および/またはキャリア移動度のばらつきを低減することができる。 As described above, according to the present invention, even GaAs crystal resistivity has a high resistivity, such as 1 × 10 8 Ω · cm~8 × 10 8 Ω · cm, parallel to the principal crystal plane Variations in the in-plane specific resistance value and / or carrier mobility can be reduced.

本発明にかかるGaAs結晶の熱処理方法は、比抵抗が1×108Ω・cm〜8×108Ω・cmのGaAs結晶を800℃〜1000℃で、10時間〜50時間熱処理する方法である。かかる条件の熱処理を施すことにより、比抵抗の高いGaAs結晶の結晶主面に平行な面内における比抵抗および/またはキャリア移動度のばらつきを低減することができる。 Heat treatment method of the GaAs crystal of the present invention has a specific resistance at 800 ° C. to 1000 ° C. The GaAs crystal of 1 × 10 8 Ω · cm~8 × 10 8 Ω · cm, is a method of heat treatment 10 to 50 hours . By performing the heat treatment under such conditions, it is possible to reduce variations in specific resistance and / or carrier mobility in a plane parallel to the crystal main surface of the GaAs crystal having high specific resistance.

ここで、比抵抗が1×108Ω・cm〜8×108Ω・cmのGaAs結晶は、その製造方法には特に制限はないが、以下の方法により得ることができる。たとえば、特開平10−36197号公報にも開示されているように、縦型ブリッジマン法(Vertical Bridgman method;以下、VB法という)、縦型温度傾斜法(Vertical Gradient Freeze method;以下、VGF法という)などの結晶成長方法において、結晶成長容器内に種結晶、GaAs原料および封止剤としての酸化ホウ素とともにドーパント原料として所定量のカーボンを収納し、炭素原子を含むGaAs融液を種結晶に接触させて形成し、このGaAs融液から種結晶上に炭素原子をドーパントとして含むGaAs結晶を成長させる。 Here, a GaAs crystal having a specific resistance of 1 × 10 8 Ω · cm to 8 × 10 8 Ω · cm is not particularly limited, but can be obtained by the following method. For example, as disclosed in Japanese Patent Laid-Open No. 10-36197, vertical Bridgman method (hereinafter referred to as VB method), vertical temperature gradient method (vertical gradient freeze method; hereinafter referred to as VGF method). In a crystal growth method, a crystal growth vessel contains a seed crystal, a GaAs raw material, and boron oxide as a sealant together with a predetermined amount of carbon as a dopant raw material, and a GaAs melt containing carbon atoms is used as a seed crystal. A GaAs crystal containing carbon atoms as a dopant is grown on the seed crystal from the GaAs melt.

ここで、炭素原子はアクセプターキャリアとして働き、GaAs結晶内のドナーキャリア濃度(たとえば、EL2濃度)を低減するため、炭素原子をドーピングすることによりGaAs結晶の比抵抗を高めることができる。上記方法においては、ドーパント原料としてカーボンをGaAs原料に添加することによって、多量の炭素原子をGaAs結晶にドーピングすることができ、1×108Ω・cm〜8×108Ω・cmの高い比抵抗を有するGaAs結晶の製造が可能となる。 Here, the carbon atoms act as acceptor carriers, and the donor carrier concentration (for example, EL2 concentration) in the GaAs crystal is reduced, so that the specific resistance of the GaAs crystal can be increased by doping carbon atoms. In the above method, high by the addition of carbon to the GaAs material as the dopant material, the it can be doped with a large amount of carbon atoms in the GaAs crystal, 1 × 10 8 Ω · cm~8 × 10 8 Ω · cm ratio A GaAs crystal having resistance can be manufactured.

上記のようにして得られた比抵抗が1×108Ω・cm〜8×108Ω・cmのGaAs結晶を、800℃〜1000℃で、10時間〜50時間熱処理する。熱処理温度が800℃未満であると比抵抗のばらつきの低減は小さく、処理温度が1000℃を超えるとEL2濃度などのドナーキャリア濃度が変動する。また、処理時間が10時間未満であると比抵抗のばらつきの低減は小さく、処理時間が50時間を超えても比抵抗のばらつきの低減は進まない。 The GaAs crystal of the above manner resistivity obtained is 1 × 10 8 Ω · cm~8 × 10 8 Ω · cm, at 800 ° C. to 1000 ° C., a heat treatment for 10 hours to 50 hours. When the heat treatment temperature is less than 800 ° C., the reduction in specific resistance variation is small, and when the treatment temperature exceeds 1000 ° C., the donor carrier concentration such as EL2 concentration varies. Further, when the processing time is less than 10 hours, the reduction in specific resistance variation is small, and even when the processing time exceeds 50 hours, the reduction in specific resistance variation does not proceed.

本発明にかかるGaAs結晶の熱処理方法において、熱処理を行なう雰囲気には特に制限はないが、不活性ガス雰囲気下または減圧雰囲気下で行なうことが好ましい。不活性ガス雰囲気下または減圧雰囲気下で行なうことにより、GaAs結晶の酸化劣化を低減することができる。ここで、不活性ガス雰囲気下における不活性ガスは、GaAs結晶と反応しないガスであれば特に制限はないが、N2ガス、Arガスなどが好ましく用いられる。また、減圧雰囲気下における減圧度は、特に制限はないが、102Pa〜104Paが好ましく用いられる。 In the GaAs crystal heat treatment method according to the present invention, the atmosphere in which the heat treatment is performed is not particularly limited, but is preferably performed in an inert gas atmosphere or a reduced pressure atmosphere. Oxidation degradation of the GaAs crystal can be reduced by carrying out in an inert gas atmosphere or a reduced pressure atmosphere. Here, the inert gas in the inert gas atmosphere is not particularly limited as long as it does not react with the GaAs crystal, but N 2 gas, Ar gas, or the like is preferably used. Further, the degree of pressure reduction in a reduced pressure atmosphere is not particularly limited, but 10 2 Pa to 10 4 Pa is preferably used.

本発明にかかるGaAs結晶の熱処理の用いられるGaAs結晶は、その炭素濃度が5×1015cm-3〜1×1016cm-3であることが好ましい。GaAs結晶に炭素原子をドーピングして、GaAs結晶の炭素濃度を5×1015cm-3〜1×1016cm-3とすることにより、容易にGaAs結晶の比抵抗を1×108Ω・cm〜8×108Ω・cmとすることができる。また、このときGaAs結晶のEL2濃度は、1.0×1016cm-3〜1.5×1016cm-3となる。 The GaAs crystal used for the heat treatment of the GaAs crystal according to the present invention preferably has a carbon concentration of 5 × 10 15 cm −3 to 1 × 10 16 cm −3 . By doping the GaAs crystal with carbon atoms and setting the carbon concentration of the GaAs crystal to 5 × 10 15 cm −3 to 1 × 10 16 cm −3 , the specific resistance of the GaAs crystal can be easily set to 1 × 10 8 Ω · cm to 8 × 10 8 Ω · cm. At this time, the EL2 concentration of the GaAs crystal is 1.0 × 10 16 cm −3 to 1.5 × 10 16 cm −3 .

本発明にかかる熱処理を行なうことにより、熱処理後のGaAs結晶の結晶主面に平行な面内における比抵抗のばらつきは10%未満となる。ここで、GaAs結晶の結晶主面とは、結晶における最大面をいい、基板または電子デバイスに用いられる際の基板の主面または電子デバイスの主面となる。   By performing the heat treatment according to the present invention, the variation in specific resistance in the plane parallel to the crystal main surface of the GaAs crystal after the heat treatment is less than 10%. Here, the crystal main surface of the GaAs crystal refers to the maximum surface of the crystal, which is the main surface of the substrate or the main surface of the electronic device when used in a substrate or an electronic device.

また、本発明にかかる熱処理を行なうことにより、熱処理後のGaAs結晶の結晶主面に平行な面内におけるキャリア移動度のばらつきは10%未満となる。ここで、キャリア移動度μは、GaAs結晶の主面に垂直の方向に電界Eをかけたときのキャリア速度Vとすると、μ=V/E(単位:cm2・V-1・sec-1)で与えられる。ここで、キャリアとは電気伝導に関わる電子および正孔をいう。 Further, by performing the heat treatment according to the present invention, the carrier mobility variation in the plane parallel to the crystal main surface of the GaAs crystal after the heat treatment becomes less than 10%. Here, the carrier mobility μ is μ = V / E (unit: cm 2 · V −1 · sec −1) , assuming that the carrier velocity V is when the electric field E is applied in a direction perpendicular to the main surface of the GaAs crystal. ). Here, carriers refer to electrons and holes involved in electrical conduction.

本発明に用いられるGaAs結晶においては、比抵抗とキャリア移動度とには大きな相関関係があって、比抵抗が1×108Ω・cm〜8×108Ω・cmのとき、キャリア移動度は1×103cm2・V-1・sec-1〜7×103cm2・V-1・sec-1となる。また、本発明にかかる熱処理によって、比抵抗のばらつきが低減するとともに、キャリア移動度のばらつきも低減する。 In the GaAs crystal used in the present invention, the the resistivity and carrier mobility when there is a large correlation, when specific resistance of 1 × 10 8 Ω · cm~8 × 10 8 Ω · cm, the carrier mobility 1 × 10 3 cm 2 · V −1 · sec −1 to 7 × 10 3 cm 2 · V −1 · sec −1 . Further, the heat treatment according to the present invention reduces variations in specific resistance and also reduces variations in carrier mobility.

上記のように、本発明にかかるGaAs結晶の熱処理により、比抵抗のばらつきおよびキャリア移動度のばらつきが低減したGaAs結晶基板が得られる。さらに、このGaAs結晶基板を用いた電子デバイスのデバイス特性のばらつきが低減し、電子デバイスの歩留まりが向上する。   As described above, the heat treatment of the GaAs crystal according to the present invention provides a GaAs crystal substrate with reduced specific resistance variation and carrier mobility variation. Furthermore, variations in device characteristics of electronic devices using this GaAs crystal substrate are reduced, and the yield of electronic devices is improved.

また、上記GaAs結晶基板を電子デバイスの基板などの用いる場合には、結晶のひずみの除去などのためにRTA(Rapid Thermal Annealing)などの熱処理を行なう場合があり、GaAs結晶基板上に半導体層を形成させるためにMBE(Molecular Beam Epitaxy)法、MOCVD(Metal Organic Chemical Vapor Deposition)法、VPE(Vapor Phase Epitaxy)法などを適用する場合がある。このような場合には、熱処理されたGaAs結晶が、その後のRTA、MBEなどにおいて、さらに熱処理されることになるが、本発明者は、RTA、MBEなどにおける熱処理温度および熱処理時間が、本発明にかかる熱処理の熱処理温度および熱処理時間に比べて低温度および短時間である限り、GaAs結晶の比抵抗およびキャリア移動度のばらつきは低く維持されることも確認した。   When the GaAs crystal substrate is used as an electronic device substrate or the like, heat treatment such as RTA (Rapid Thermal Annealing) may be performed to remove crystal distortion, and a semiconductor layer is formed on the GaAs crystal substrate. In some cases, MBE (Molecular Beam Epitaxy) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, VPE (Vapor Phase Epitaxy) method and the like are applied to form the film. In such a case, the heat-treated GaAs crystal is further heat-treated in subsequent RTA, MBE, etc., but the present inventor believes that the heat treatment temperature and heat treatment time in RTA, MBE, etc. It was also confirmed that variations in the specific resistance and carrier mobility of the GaAs crystal were kept low as long as the heat treatment temperature and heat treatment time were low and short in time.

したがって、本発明にかかる熱処理を行なったGaAs結晶に対して、RTAを行なう場合は窒素雰囲気下で700℃〜900℃程度で1分間〜5分間程度の条件とすることが好ましく、MBEを行なう場合は減圧雰囲気下で500℃〜700℃程度で0.5時間〜2時間程度の条件とすることが好ましい。   Therefore, when RTA is performed on the GaAs crystal subjected to the heat treatment according to the present invention, it is preferable that the conditions are about 700 ° C. to 900 ° C. for about 1 minute to 5 minutes in a nitrogen atmosphere, and MBE is performed. Is preferably about 500 to 700 ° C. and about 0.5 to 2 hours under a reduced pressure atmosphere.

以下の実施例および比較例に基づいて、本発明をさらに具体的に説明する。   The present invention will be described more specifically based on the following examples and comparative examples.

(比較例1)
VB法により、以下のようにして比抵抗の高いGaAs結晶を作製した。すなわち、結晶成長容器として内径10.16cm(4インチ)×高さ20cmのpBN(pyrolytic boron nitride)製の坩堝を用いて、この坩堝に、GaAs種結晶と、GaAs多結晶体(GaAs結晶原料)と、カーボン(ドーパント原料)とを収納した。次に、1240℃以上に加熱して、GaAs、C(炭素原子)およびAsを含む融液を、GaAs種結晶に接触するように形成した。次に、この融液と結晶(GaAs種結晶または成長させるGaAs結晶)との界面における結晶成長温度を1238℃、融液側の温度勾配を1〜2℃/cm、結晶側の温度勾配を5〜6℃/cmとして、GaAs単結晶を成長させた。結晶成長時間100時間で、直径10.16cm(4インチ)×高さ20cmのGaAs結晶が得られた。
(Comparative Example 1)
A GaAs crystal having a high specific resistance was produced by the VB method as follows. That is, using a crucible made of pBN (pyrolytic boron nitride) having an inner diameter of 10.16 cm (4 inches) × height of 20 cm as a crystal growth vessel, a GaAs seed crystal and a GaAs polycrystal (GaAs crystal raw material) And carbon (dopant raw material). Next, it heated to 1240 degreeC or more, and the melt containing GaAs, C (carbon atom), and As was formed so that a GaAs seed crystal might be contacted. Next, the crystal growth temperature at the interface between the melt and the crystal (GaAs seed crystal or GaAs crystal to be grown) is 1238 ° C., the temperature gradient on the melt side is 1 to 2 ° C./cm, and the temperature gradient on the crystal side is 5 A GaAs single crystal was grown at ˜6 ° C./cm. With a crystal growth time of 100 hours, a GaAs crystal having a diameter of 10.16 cm (4 inches) × height of 20 cm was obtained.

得られたGaAs結晶を厚さ600μmのGaAs結晶基板にスライスして、GaAs結晶の中央部のGaAs結晶基板の炭素原子濃度を荷電粒子放射化分析法により測定したところ8.0×1015cm-3であり、EL2濃度を赤外光吸収法により測定したところ8.9×1015cm-3であった。 The obtained GaAs crystal was sliced into a GaAs crystal substrate having a thickness of 600 μm, and the carbon atom concentration of the GaAs crystal substrate at the center of the GaAs crystal was measured by charged particle activation analysis. 8.0 × 10 15 cm − 3 and EL2 concentration measured by an infrared absorption method was 8.9 × 10 15 cm −3 .

また、得られたGaAs結晶基板の面内において10mmピッチでそれぞれの位置における比抵抗をホール測定法により測定することにより、結晶主面に平行な面内における比抵抗のばらつきを算出した。上記比抵抗は平均値が5.5×108Ω・cm、標準偏差が1.2×108Ω・cmであり、比抵抗のばらつきは22%であった。 In addition, by measuring the specific resistance at each position at a pitch of 10 mm in the plane of the obtained GaAs crystal substrate by the Hall measurement method, the variation in specific resistance in the plane parallel to the crystal main surface was calculated. The specific resistance had an average value of 5.5 × 10 8 Ω · cm, a standard deviation of 1.2 × 10 8 Ω · cm, and variation in specific resistance was 22%.

また、得られたGaAs結晶基板の面内において10mmピッチでそれぞれの位置におけるキャリア移動度をホール測定法により測定することにより、結晶主面に平行な面内におけるキャリア移動度のばらつきを算出した。上記キャリア移動度は平均値が3.4×103cm2・V-1・sec-1、標準偏差が7.6×102cm2・V-1・sec-1であり、キャリア移動度のばらつきは23%であった。結果を表1にまとめた。 Further, the carrier mobility at each position was measured by the Hall measurement method at a pitch of 10 mm within the surface of the obtained GaAs crystal substrate, thereby calculating the carrier mobility variation in the plane parallel to the crystal main surface. The carrier mobility has an average value of 3.4 × 10 3 cm 2 · V −1 · sec −1 and a standard deviation of 7.6 × 10 2 cm 2 · V −1 · sec −1. The variation was 23%. The results are summarized in Table 1.

(実施例1)
比較例1で得られたGaAs結晶を、950℃で20時間の熱処理(本発明にかかる熱処理)を行なった。熱処理後のGaAs結晶を厚さ600μmのGaAs結晶基板にスライスして、GaAs結晶の中央部のGaAs結晶基板を取り出した。
Example 1
The GaAs crystal obtained in Comparative Example 1 was heat-treated at 950 ° C. for 20 hours (heat treatment according to the present invention). The heat-treated GaAs crystal was sliced into a GaAs crystal substrate having a thickness of 600 μm, and the GaAs crystal substrate at the center of the GaAs crystal was taken out.

得られたGaAs結晶基板の炭素原子濃度は8.0×1015cm-3であり、EL2濃度は1.2×1016cm-3であった。また、このGaAs結晶基板の面内において10mmピッチ毎の位置における比抵抗は、平均値が3.9×108Ω・cm、標準偏差が2.9×107Ω・cmであり、結晶基板主面内における比抵抗のばらつきは7%であった。また、このGaAs結晶基板の面内において10mmピッチ毎の位置におけるキャリア移動度は、平均値が4.6×103cm2・V-1・sec-1、標準偏差が1.7×102cm2・V-1・sec-1であり、結晶基板主面内におけるキャリア移動度のばらつきは4%であった。結果を表1にまとめた。 The obtained GaAs crystal substrate had a carbon atom concentration of 8.0 × 10 15 cm −3 and an EL 2 concentration of 1.2 × 10 16 cm −3 . Further, the specific resistance at the position of every 10 mm pitch in the plane of the GaAs crystal substrate has an average value of 3.9 × 10 8 Ω · cm and a standard deviation of 2.9 × 10 7 Ω · cm. The variation in specific resistance in the main surface was 7%. The carrier mobility at the position of every 10 mm pitch in the plane of the GaAs crystal substrate has an average value of 4.6 × 10 3 cm 2 · V −1 · sec −1 and a standard deviation of 1.7 × 10 2. cm 2 · V −1 · sec −1 , and the carrier mobility variation within the crystal substrate main surface was 4%. The results are summarized in Table 1.

(比較例2)
比較例1で得られたGaAs結晶基板に、さらに、窒素雰囲気下、800℃、2分間の条件で、RTAを行なった。RTA後のGaAs結晶基板の炭素原子濃度は8.0×1015cm-3であり、EL2濃度は1.2×1016cm-3であった。また、このGaAs結晶基板の面内において10mmピッチ毎の位置における比抵抗は、平均値が4.4×108Ω・cm、標準偏差が7.1×107Ω・cmであり、結晶基板主面内における比抵抗のばらつきは16%であった。また、このGaAs結晶基板の面内において10mmピッチ毎の位置におけるキャリア移動度は、平均値が2.2×103cm2・V-1・sec-1、標準偏差が9.4×102cm2・V-1・sec-1であり、結晶基板主面内におけるキャリア移動度のばらつきは43%であった。結果を表1にまとめた。
(Comparative Example 2)
The GaAs crystal substrate obtained in Comparative Example 1 was further subjected to RTA under a nitrogen atmosphere at 800 ° C. for 2 minutes. The carbon atom concentration of the GaAs crystal substrate after RTA was 8.0 × 10 15 cm −3 and the EL 2 concentration was 1.2 × 10 16 cm −3 . Further, the specific resistance at a position of every 10 mm pitch in the plane of the GaAs crystal substrate has an average value of 4.4 × 10 8 Ω · cm and a standard deviation of 7.1 × 10 7 Ω · cm. The variation in specific resistance in the main surface was 16%. Further, the carrier mobility at a position of every 10 mm pitch in the plane of the GaAs crystal substrate has an average value of 2.2 × 10 3 cm 2 · V −1 · sec −1 and a standard deviation of 9.4 × 10 2. cm 2 · V −1 · sec −1 , and the carrier mobility variation in the main surface of the crystal substrate was 43%. The results are summarized in Table 1.

(実施例2)
実施例1で得られたGaAs結晶基板に、さらに、窒素雰囲気下、800℃、2分間の条件で、RTAを行なった。RTA後のGaAs結晶基板の炭素原子濃度は8.0×1015cm-3であり、EL2濃度は1.2×1016cm-3であった。また、このGaAs結晶基板の面内において10mmピッチ毎の位置における比抵抗は、平均値が3.5×108Ω・cm、標準偏差が3.0×107Ω・cmであり、結晶基板主面内における比抵抗のばらつきは9%であった。また、このGaAs結晶基板の面内において10mmピッチ毎の位置におけるキャリア移動度は、平均値が3.6×103cm2・V-1・sec-1、標準偏差が1.7×102cm2・V-1・sec-1であり、結晶基板主面内におけるキャリア移動度のばらつきは5%であった。結果を表1にまとめた。
(Example 2)
The GaAs crystal substrate obtained in Example 1 was further subjected to RTA under a nitrogen atmosphere at 800 ° C. for 2 minutes. The carbon atom concentration of the GaAs crystal substrate after RTA was 8.0 × 10 15 cm −3 and the EL 2 concentration was 1.2 × 10 16 cm −3 . Further, the specific resistance at the position of every 10 mm pitch in the plane of the GaAs crystal substrate has an average value of 3.5 × 10 8 Ω · cm and a standard deviation of 3.0 × 10 7 Ω · cm. The variation in specific resistance in the main surface was 9%. The carrier mobility at the position of every 10 mm pitch in the plane of the GaAs crystal substrate has an average value of 3.6 × 10 3 cm 2 · V −1 · sec −1 and a standard deviation of 1.7 × 10 2. cm 2 · V −1 · sec −1 , and the carrier mobility variation in the crystal substrate main surface was 5%. The results are summarized in Table 1.

Figure 0004843929
Figure 0004843929

表1において比較例1と実施例1とを対比すると、比抵抗の平均値が5.5×108Ω・cmのGaAs結晶に本発明にかかる熱処理を行なうことにより、GaAs結晶の結晶主面に平行な面内における比抵抗のばらつきは22%から7%に低減し、キャリア移動度のばらつきは23%から4%に低減した。このような比抵抗およびキャリア移動度のばらつき低減により、かかるGaAs結晶を基板として用いた電子デバイスのデバイス特性が著しく安定する。 In Table 1, when Comparative Example 1 and Example 1 are compared, the main surface of the GaAs crystal is obtained by performing the heat treatment according to the present invention on a GaAs crystal having an average specific resistance of 5.5 × 10 8 Ω · cm. The variation in specific resistance in the plane parallel to the thickness was reduced from 22% to 7%, and the variation in carrier mobility was reduced from 23% to 4%. By reducing the variation in specific resistance and carrier mobility, device characteristics of an electronic device using such a GaAs crystal as a substrate are remarkably stabilized.

また、比較例2と実施例2とを対比すると、本発明にかかる熱処理を行なわずにRTAを行なったGaAs結晶基板においては、比抵抗のばらつきが16%、キャリア移動度のばらつきが43%であったのに対し、本発明にかかる熱処理を行なった後にRTAを行なったGaAs結晶基板においては、比抵抗のばらつきが9%、キャリア移動度のばらつきが5%と、いずれもばらつきが低減した。   Further, comparing Comparative Example 2 with Example 2, the GaAs crystal substrate subjected to RTA without performing the heat treatment according to the present invention had a specific resistance variation of 16% and a carrier mobility variation of 43%. On the other hand, in the GaAs crystal substrate subjected to RTA after the heat treatment according to the present invention, the variation in specific resistance was 9% and the variation in carrier mobility was 5%, both of which were reduced.

すなわち、実施例2に示すように、本発明をかかる熱処理を行なったGaAs結晶基板に、その熱処理温度よりも低い温度およびその熱処理時間よりも短い時間でRTAを行なっても、GaAs結晶基板の比抵抗およびキャリア移動度のばらつきは、本発明にかかる熱処理を行なわなかったGaAs結晶基板に比べて、低く維持された。同様に、本発明にかかる熱処理を行なったGaAs結晶基板に、その熱処理温度よりも低い温度およびその熱処理時間よりも短い時間でMBE成長と同一の熱履歴の熱処理を行なっても、GaAs結晶基板の比抵抗およびキャリア移動度のばらつきは、本発明にかかる熱処理を行なわなかったGaAs結晶基板に比べて、低く維持された。   That is, as shown in Example 2, even when RTA is performed on a GaAs crystal substrate subjected to the heat treatment according to the present invention at a temperature lower than the heat treatment temperature and shorter than the heat treatment time, the ratio of the GaAs crystal substrate Variations in resistance and carrier mobility were kept low compared to GaAs crystal substrates that were not heat-treated according to the present invention. Similarly, even if the heat treatment with the same thermal history as MBE growth is performed on the GaAs crystal substrate subjected to the heat treatment according to the present invention at a temperature lower than the heat treatment temperature and shorter than the heat treatment time, Variations in specific resistance and carrier mobility were kept low compared to a GaAs crystal substrate not subjected to the heat treatment according to the present invention.

なお、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed this time are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (6)

縦型ブリッジマン法および縦型温度傾斜法のいずれかにより成長させた、比抵抗が1×108Ω・cm〜8×108Ω・cmかつ炭素濃度が5×1015cm-3〜1×1016cm-3のGaAs結晶を、800℃〜1000℃で10時間〜50時間熱処理することにより、
結晶主面に平行な面内における比抵抗のばらつきが10%未満となるGaAs結晶の熱処理方法。
Vertical Bridgman method and grown by either of a vertical temperature gradient method, the resistivity is 1 × 10 8 Ω · cm~8 × 10 8 Ω · cm and a carbon concentration of 5 × 10 15 cm -3 ~1 By heat treating a GaAs crystal of × 10 16 cm −3 at 800 ° C. to 1000 ° C. for 10 hours to 50 hours ,
A heat treatment method for a GaAs crystal in which variation in specific resistance in a plane parallel to the crystal main surface is less than 10% .
前記熱処理の時間が20時間〜50時間である請求項1に記載のGaAs結晶の熱処理方法。   The method for heat treatment of GaAs crystal according to claim 1, wherein the heat treatment time is 20 hours to 50 hours. 前記縦型ブリッジマン法および前記縦型温度傾斜法のいずれかにおける前記GaAs結晶の成長条件は、融液側の温度勾配が1〜2℃/cmであり、結晶側の温度勾配が5〜6℃/cmである請求項1または請求項2に記載のGaAs結晶の熱処理方法。   The growth conditions of the GaAs crystal in either the vertical Bridgman method or the vertical temperature gradient method are as follows: the temperature gradient on the melt side is 1 to 2 ° C./cm, and the temperature gradient on the crystal side is 5 to 6 The heat treatment method for a GaAs crystal according to claim 1 or 2, wherein the heat treatment method is ℃ / cm. 前記熱処理は、不活性ガス雰囲気下または減圧雰囲気下で行なう請求項1から請求項3のいずれかに記載のGaAs結晶の熱処理方法。   The heat treatment method for a GaAs crystal according to any one of claims 1 to 3, wherein the heat treatment is performed in an inert gas atmosphere or a reduced pressure atmosphere. 前記熱処理後において、前記GaAs結晶の結晶主面に平行な面内におけるキャリア移動度のばらつきが、10%未満となる請求項1から請求項のいずれかに記載のGaAs結晶の熱処理方法。 The method for heat treatment of a GaAs crystal according to any one of claims 1 to 4 , wherein after the heat treatment, variation in carrier mobility in a plane parallel to the crystal main surface of the GaAs crystal is less than 10%. 請求項1から請求項のいずれかに記載のGaAs結晶の熱処理方法により熱処理されて得られたGaAs結晶基板。 A GaAs crystal substrate obtained by a heat treatment by the heat treatment method for a GaAs crystal according to any one of claims 1 to 5 .
JP2004306718A 2004-10-21 2004-10-21 Heat treatment method of GaAs crystal and GaAs crystal substrate Expired - Fee Related JP4843929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306718A JP4843929B2 (en) 2004-10-21 2004-10-21 Heat treatment method of GaAs crystal and GaAs crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306718A JP4843929B2 (en) 2004-10-21 2004-10-21 Heat treatment method of GaAs crystal and GaAs crystal substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011161765A Division JP2011219362A (en) 2011-07-25 2011-07-25 GaAs CRYSTAL SUBSTRATE

Publications (2)

Publication Number Publication Date
JP2006117464A JP2006117464A (en) 2006-05-11
JP4843929B2 true JP4843929B2 (en) 2011-12-21

Family

ID=36535716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306718A Expired - Fee Related JP4843929B2 (en) 2004-10-21 2004-10-21 Heat treatment method of GaAs crystal and GaAs crystal substrate

Country Status (1)

Country Link
JP (1) JP4843929B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777479B2 (en) * 2011-10-14 2015-09-09 株式会社タムラ製作所 Method for manufacturing β-Ga2O3-based substrate and method for manufacturing crystal laminated structure
CN111032930B (en) * 2017-09-21 2024-01-02 住友电气工业株式会社 Semi-insulating gallium arsenide crystal substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472999A (en) * 1987-09-14 1989-03-17 Nippon Mining Co Heat treatment of compound semiconductor single crystal
JPH02239181A (en) * 1989-03-10 1990-09-21 Sumitomo Metal Mining Co Ltd Device and method for crystal growth
JPH0784360B2 (en) * 1990-02-28 1995-09-13 住友金属鉱山株式会社 Method for manufacturing semi-insulating GaAs substrate
JPH0597596A (en) * 1991-10-08 1993-04-20 Hitachi Cable Ltd Gaas crystal and gaas device using the same
JP2967780B1 (en) * 1998-09-28 1999-10-25 住友電気工業株式会社 GaAs single crystal substrate and epitaxial wafer using the same
JP2004026584A (en) * 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd METHOD OF MANUFACTURING GaAs SINGLE CRYSTAL AND GaAs SINGLE CRYSTAL

Also Published As

Publication number Publication date
JP2006117464A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
KR101341471B1 (en) One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer
JP6508050B2 (en) Method of manufacturing silicon carbide ingot, method of manufacturing silicon carbide substrate, and method of manufacturing semiconductor device
EP2659030B1 (en) Method of manufacturing silicon single crystal and silicon single crystal
CN101351580A (en) Arsenic and phosphorus doped silicon wafer substrates having intrinsic gettering
US10892334B2 (en) n-Type SiC single crystal substrate, method for producing same and SiC epitaxial wafer
JP2010532584A5 (en)
KR20100039291A (en) Suppression of oxygen precipitation in heavily doped single crystal silicon substrates
JP5103745B2 (en) High frequency diode and manufacturing method thereof
JP2967780B1 (en) GaAs single crystal substrate and epitaxial wafer using the same
JP2742247B2 (en) Manufacturing method and quality control method for silicon single crystal substrate
JP4843929B2 (en) Heat treatment method of GaAs crystal and GaAs crystal substrate
JP2011219362A (en) GaAs CRYSTAL SUBSTRATE
JP2017512911A (en) Boron doped n-type silicon target
US7157354B2 (en) Method for gettering transition metal impurities in silicon crystal
Teramoto et al. Behavior of gold in cadmium telluride crystals
JP2017197413A (en) Compound semiconductor substrate and manufacturing method thereof
CN114174569A (en) Carbon-doped monocrystalline silicon wafer and method for producing same
Lin et al. Effects of heat treatment and plastic deformation on the photoelectronic properties of high‐resistivity GaAs: Cr
JP6333182B2 (en) Silicon wafer and manufacturing method thereof
WO2021060369A1 (en) Sic substrate, sic substrate production method, sic semiconductor device, and sic semiconductor device production method
Ayedh et al. Controlling the carbon vacancy concentration in 4H-SiC subjected to high temperature treatment
JP7264100B2 (en) Method for controlling donor concentration in silicon single crystal substrate
JP2002289820A (en) Method for manufacturing simox substrate, and simox substrate
JP6988737B2 (en) Manufacturing method of silicon wafer and silicon wafer
JP2024004663A (en) Determination method of upper limit of oxygen concentration in silicon single crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4843929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees