JP2854017B2 - Multi-component semiconductor film - Google Patents
Multi-component semiconductor filmInfo
- Publication number
- JP2854017B2 JP2854017B2 JP1110001A JP11000189A JP2854017B2 JP 2854017 B2 JP2854017 B2 JP 2854017B2 JP 1110001 A JP1110001 A JP 1110001A JP 11000189 A JP11000189 A JP 11000189A JP 2854017 B2 JP2854017 B2 JP 2854017B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor film
- elements
- doped
- flow rate
- sccm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、不純物がドーピングされた多元半導体膜に
関する。The present invention relates to a multi-element semiconductor film doped with impurities.
(ロ)従来の技術 IEEE Photovoltaic Specialists Conf.(1982)に見
られる如きSi及びCからなる多元半導体膜において、こ
れの導電型決定不純物としては、一般的にB(p型不純
物)またはP(n型不純物)が用いられる。(B) Prior Art In a multi-element semiconductor film made of Si and C as shown in IEEE Photovoltaic Specialists Conf. (1982), as a conductivity type determining impurity, B (p-type impurity) or P (n-type impurity) is generally used. Type impurity) is used.
(ハ)発明が解決しようとする課題 上述のような場合、不純物を効率よくドーピングする
ことはできなかった。(C) Problems to be Solved by the Invention In the case described above, impurities cannot be efficiently doped.
そこで、本発明は効率よく不純物をドーピングするこ
とにある。Therefore, the present invention is to efficiently dope impurities.
(ニ)課題を解決するための手段 本発明は、2種類以上の母材元素A,B,C…からなり、
且つ各母材元素に対して置換型不純物元素となりやすい
元素X,Y,Z…が導電型決定不純物としてドーピングされ
てなる多元半導体膜であって、前記各母材元素A,B,C…
の配合比を夫々a,b,c…(但し、a+b+c…=1)と
するときに、ドーピングすべき前記元素X,Y,X…が、夫
々、 0.5×x/a≦y/b≦1.5×x/a 0.5×x/a≦z/c≦1.5×x/a、… を満たすx(at.%),y(at.%),z(at.%)…でド
ーピングされていることを特徴としている。(D) Means for Solving the Problems The present invention is composed of two or more kinds of base elements A, B, C ...
And a multi-element semiconductor film doped with elements X, Y, Z, which are likely to become substitutional impurity elements with respect to the respective base elements, as the conductivity type determining impurities, wherein the base elements A, B, C,.
(Where a + b + c... = 1), the elements X, Y, X... To be doped are respectively 0.5 × x / a ≦ y / b ≦ 1.5. × x / a 0.5 × x / a ≦ z / c ≦ 1.5 × x / a, etc. Doping with x (at.%), Y (at.%), Z (at.%)… It is characterized by.
(ホ)作用 本発明によれば、多元半導体膜の各母材元素に対し
て、置換型不純物となりやすい元素を導電型決定不純物
として選択し、これを各母材元素の配合比に応じて所定
の量でドーピングしているので、半導体膜中へのドーピ
ング効率が改善されている。(E) Function According to the present invention, for each base element of the multi-component semiconductor film, an element which is likely to be a substitutional impurity is selected as a conductivity-type determining impurity, and this is selected according to the mixing ratio of each base element. , The doping efficiency in the semiconductor film is improved.
(ヘ)実施例 本発明の一実施例として、Si及びCからなる非晶質Si
Cにつき述べる。まず、ドーピング型決定不純物として
は、B及びAlが選択される。(F) Example As an example of the present invention, amorphous Si composed of Si and C
C is described. First, B and Al are selected as doping type determining impurities.
非晶質SiCは、容量結合型のグロー放電法を用いて、
以下の第1表の条件により形成された。Amorphous SiC is formed using a capacitively coupled glow discharge method.
It was formed under the conditions shown in Table 1 below.
このようにして形成された非晶質SiC中のC及びSiの
配合比は約1:9であった。 The compounding ratio of C and Si in the amorphous SiC thus formed was about 1: 9.
そして、今、Al(CH3)3の流量を0.2SCCMで固定した時
の非晶質SiCの暗導電率のB(CH3)3流量依存性を測定し
た。その結果を第1図に示す。Then, the dependence of the dark conductivity of amorphous SiC on the flow rate of B (CH 3 ) 3 when the flow rate of Al (CH 3 ) 3 was fixed at 0.2 SCCM was measured. The result is shown in FIG.
更に、B(CH3)3の流量を0.02SCCMで固定した場合の非
晶質SiCの暗導電率のAl(CH3)3流量依存性を測定した。
その結果は第2図に示している。Furthermore, the dependence of the dark conductivity of amorphous SiC on the flow rate of Al (CH 3 ) 3 when the flow rate of B (CH 3 ) 3 was fixed at 0.02 SCCM was measured.
The results are shown in FIG.
尚、B(CH3)3のみを用いて非晶質SiCを形成した時の
暗導電率の最大値は1×10-5Ω−1cm-1であり、また同
様にAl(CH3)3のみを用いた場合の暗導電率の最大値は8
×10-6Ω−1cm-1であった。The maximum value of the dark conductivity when forming amorphous SiC using only B (CH 3 ) 3 is 1 × 10 −5 Ω −1 cm −1 , and similarly, Al (CH 3 ) 3 The maximum value of dark conductivity when only 3 is used is 8
× 10 -6 Ω -1 cm -1 .
上記各図から明らかなように、B(CH3)3の流量が0.02
SCCMであり、Al(CH3)3の流量が0.2SCCMである時に、非
晶質SiCの暗導電率は最大の約6×10-5Ω−1cm-1とな
って、B(CH3)3またはAl(CH3)3のみを用いた場合の暗導
電率より大きくなっており、ドーピング効率の改善が図
られている。尚、この時のBとAlとの配合比は、CとSi
との配合比と同じく1:9であった。As is clear from the above figures, the flow rate of B (CH 3 ) 3 was 0.02
When SCCM is used and the flow rate of Al (CH 3 ) 3 is 0.2 SCCM, the dark conductivity of amorphous SiC reaches a maximum of about 6 × 10 −5 Ω −1 cm −1, and B (CH 3) 3 ) or dark conductivity when only Al (CH 3 ) 3 is used, and the doping efficiency is improved. The mixing ratio of B and Al at this time was C and Si.
1: 9 as in the case of
また、第1図から見て、Al(CH3)3の流量0.2SCCMに対
して、B(CH3)3の流量が0.005〜0.06SCCMのとき、更
に、第2図から見ると、B(CH3)3の流量0.02SCCMに対し
て、Al(CH3)3の流量が0.1〜0.6SCCMのとき、非晶質SiC
の暗導電率はB・(CH3)3またはAl(CH3)3のみを用いて非
晶質SiCを形成した場合の暗導電率より大きくなってい
る。Further, when the flow rate of B (CH 3 ) 3 is 0.005 to 0.06 SCCM with respect to the flow rate of Al (CH 3 ) 3 of 0.2 SCCM as seen from FIG. CH 3) relative to the third flow 0.02SCCM, when the flow rate of the Al (CH 3) 3 is 0.1~0.6SCCM, amorphous SiC
Is higher than the dark conductivity when amorphous SiC is formed using only B. (CH 3 ) 3 or Al (CH 3 ) 3 .
このことは、非晶質SiCにおいて、C及びSiの配合比
がa及びb(但し、a+b=1)の時、B及びAlをx
(at.%)及びy(at.%)でドーピングするとして、 を満たすようにドーピングすると、ドーピング効率の
改善が図られることを示すこととなる。This means that in amorphous SiC, when the compounding ratio of C and Si is a and b (where a + b = 1), B and Al are converted to x.
(At.%) And y (at.%) Doping This indicates that doping to satisfy the above condition improves the doping efficiency.
次に、非晶質SiCについて、導電型決定不純物とし
て、N及びPが選択された。Next, for amorphous SiC, N and P were selected as conductivity type determining impurities.
この非晶質SiCも、容量結合型のグロー放電法を用い
て、以下の第2表の条件により形成された。This amorphous SiC was also formed using the capacitively coupled glow discharge method under the conditions shown in Table 2 below.
このようにして形成された非晶質SiC中のC及びSiの
配合比は約1:9であった。 The compounding ratio of C and Si in the amorphous SiC thus formed was about 1: 9.
そして、今、PH3の流量を0.3SCCMで固定した場合の非
晶質SiCの暗導電率のNH3流量依存性を測定した。その結
果を第3図に示す。And now, the NH 3 flow rate dependence of the dark conductivity of amorphous SiC when the PH 3 flow rate is fixed at 0.3 SCCM was measured. FIG. 3 shows the results.
更に、NH3の流量を0.02SCCMで固定した場合の非晶質S
iCの暗導電率のPH3流量依存性を測定した。その結果は
第4図に示している。Furthermore, when the flow rate of NH 3 is fixed at 0.02 SCCM, amorphous S
PH 3 flow rate dependence of dark conductivity of iC was measured. The results are shown in FIG.
尚、NH3のみを用いて非晶質SiCを形成した時の暗導電
率の最大値は2×10-7Ω−1cm-1であり、また同様にPH
3のみを用いた場合の暗導電率の最大値は1×10-4Ω
−1cm-1であった。The maximum value of the dark conductivity when amorphous SiC was formed using only NH 3 was 2 × 10 −7 Ω −1 cm −1.
The maximum value of dark conductivity when only 3 is used is 1 × 10 -4 Ω
-1 cm -1 .
上記各図から明らかなように、NH3の流量が0.02SCCM
であり、PH3の流量が0.2SCCMである時に、非晶質SiCの
暗導電率は最大の4×10-4Ω−1cm-1となって、NH3ま
たはPH3のみを用いた場合の暗導電率より大きくなって
おり、ドーピング効率の改善が図られている。尚、この
時のNとPとの配合比は、CとSiとの配合比と同じく1:
9であった。As is clear from the above figures, the flow rate of NH 3 was 0.02 SCCM
When the flow rate of PH 3 is 0.2 SCCM, the dark conductivity of amorphous SiC becomes the maximum of 4 × 10 −4 Ω −1 cm −1, and only NH 3 or PH 3 is used. , And the doping efficiency is improved. The compounding ratio of N and P at this time is the same as the compounding ratio of C and Si: 1:
It was nine.
また、第3図から見て、PH3の流量0.3SCCMに対して、
NH3の流量が0.01〜0.06SCCMのとき、更に、第4図から
見ると、NH3の流量0.02SCCMに対して、PH3の流量が0.15
〜0.6SCCMのとき、非晶質SiCの暗導電率はPH3またはNH3
のみを用いて非晶質SiCを形成した場合の暗導電率より
大きくなっている。Also, as seen from FIG. 3, for a flow rate of PH 3 of 0.3 SCCM,
When the flow rate of NH 3 is 0.01 to 0.06 SCCM, and further viewed from FIG. 4, the flow rate of PH 3 is 0.15 with respect to the flow rate of NH 3 of 0.02 SCCM.
At ~ 0.6 SCCM, the dark conductivity of amorphous SiC is PH 3 or NH 3
It is larger than the dark conductivity when amorphous SiC is formed using only Si.
このことからすると、非晶質SiCにおいて、C及びSi
の配合比がa及びb(但し、a+b=1)の時、N及び
Pをx(at.%)及びy(at.%)でドーピングする時
に、 を満たすようにドーピングすると、ドーピング効率の
改善が図られることが分かる。From this, it can be seen that in amorphous SiC, C and Si
When the compounding ratio is a and b (where a + b = 1), when doping N and P with x (at.%) And y (at.%), It can be seen that doping so as to satisfy the requirement improves the doping efficiency.
本発明は、上記実施例に限らず、他の非晶質半導体膜
においても適用することができ、例えば、SiとGeからな
る多元半導体膜については、導電型決定不純物としてAl
及びGaまたはP及びAsが選択されることにより、上記実
施例と全く同様の効果が得られる。The present invention is not limited to the above embodiment, and can be applied to other amorphous semiconductor films.For example, for a multi-element semiconductor film made of Si and Ge, Al
By selecting Ga and P or As, the same effect as in the above embodiment can be obtained.
更に、本発明は上述のような非晶質半導体膜のみに限
定されることなく、微結晶半導体膜や多結晶半導体膜に
も適用することができる。Further, the present invention is not limited to the above-described amorphous semiconductor film, but can be applied to a microcrystalline semiconductor film and a polycrystalline semiconductor film.
(ト)発明の効果 本発明によれば、2種類以上の母材元素A,B,C…から
なり、且つ各母材元素に対して置換型不純物元素となり
やすい元素X,Y,Z…が導電型決定不純物としてドーピン
グされてなる多元半導体膜であって、前記各母材元素A,
B,C…の配合比を夫々a,b,c…(但し、a+b+c…=
1)とするときに、ドーピングすべき前記元素X,Y,X…
が、夫々、 0.5×x/a≦y/b≦1.5×x/a 0.5×x/a≦z/c≦1.5×x/a、… を満たすx(at.%),y(at.%),z(at.%)…でド
ーピングされているので、単一元素がドーピングされて
いる場合に比して不純物のドーピング効率が向上した多
元半導体膜が得られる。(G) Effects of the Invention According to the present invention, elements X, Y, Z, which are composed of two or more types of base elements A, B, C, and which are likely to be substitutional impurity elements with respect to each base element, are obtained. A multi-element semiconductor film that is doped as a conductivity type determining impurity, wherein each of the base material elements A,
A, b, c ... (where a + b + c ... =
In the case of 1), the elements X, Y, X,.
, Which satisfy 0.5 × x / a ≦ y / b ≦ 1.5 × x / a 0.5 × x / a ≦ z / c ≦ 1.5 × x / a, respectively, x (at.%), Y (at.% ), Z (at.%)..., A multi-element semiconductor film with improved impurity doping efficiency as compared with the case where a single element is doped can be obtained.
更に、ドーピング効率を向上させることは、半導体膜
中の構造欠陥を減少することにつながり、引いてはこの
半導体膜を用いた半導体デバイスの特性向上をもたら
す。Further, improving the doping efficiency leads to a reduction in structural defects in the semiconductor film, which leads to an improvement in characteristics of a semiconductor device using the semiconductor film.
第1図乃至第4図は、非晶質SiCの暗導電率のB(C
H3)3、Al(CH3)3、NH3及びPH3の流量依存性を示す特性図
である。1 to 4 show B (C) of dark conductivity of amorphous SiC.
FIG. 3 is a characteristic diagram showing the flow rate dependence of H 3 ) 3 , Al (CH 3 ) 3 , NH 3 and PH 3 .
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−167290(JP,A) 特開 昭63−124408(JP,A) 特開 昭63−38230(JP,A) 特公 昭48−44832(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01L 21/205 H01L 21/203──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-167290 (JP, A) JP-A-63-124408 (JP, A) JP-A-63-38230 (JP, A) 44832 (JP, B1) (58) Field surveyed (Int. Cl. 6 , DB name) H01L 21/205 H01L 21/203
Claims (5)
且つ各母材元素に対して置換型不純物元素となりやすい
元素X,Y,Z…が導電型決定不純物としてドーピングされ
てなる多元半導体膜であって、前記各母材元素A,B,C…
の配合比を夫々a,b,c…(但し、a+b+c…=1)と
するときに、ドーピングすべき前記元素X,Y,X…が、夫
々、 0.5×x/a≦y/b≦1.5×x/a 0.5×x/a≦z/c≦1.5×x/a、… を満たすx(at.%),y(at.%),z(at.%)…でドー
ピングされていることを特徴とする多元半導体膜。Claims: 1. A semiconductor device comprising two or more base metal elements A, B, C,.
And a multi-element semiconductor film doped with elements X, Y, Z, which are likely to become substitutional impurity elements with respect to the respective base elements, as the conductivity type determining impurities, wherein the base elements A, B, C,.
(Where a + b + c... = 1), the elements X, Y, X... To be doped are respectively 0.5 × x / a ≦ y / b ≦ 1.5. × x / a 0.5 × x / a ≦ z / c ≦ 1.5 × x / a, etc. Doping with x (at.%), Y (at.%), Z (at.%)… A multi-component semiconductor film characterized by the following.
グすべき上記元素がB及びAlまたはN及びPであるとを
特徴とする第1項記載の多元半導体膜。2. The multi-element semiconductor film according to claim 1, wherein said base material elements are C and Si, and said elements to be doped are B and Al or N and P.
b=1)のときに、上記B及びAlまたはN及びPが、夫
々 0.5×x/a≦y/b≦1.5×x/a を満たすx(at.%)及びy(at.%)でドーピングされ
ていることを特徴とする第2項記載の多元半導体膜。3. The compounding ratio of C and Si is a, b (where a +
When b = 1), B and Al or N and P are x (at.%) and y (at.%) satisfying 0.5 × x / a ≦ y / b ≦ 1.5 × x / a, respectively. 3. The multi-element semiconductor film according to claim 2, which is doped.
グすべき上記元素がAl及びGaまたはP及びAsであること
を特徴とする第1項記載の多元半導体膜。4. The multi-element semiconductor film according to claim 1, wherein said base material elements are Si and Ge, and said elements to be doped are Al and Ga or P and As.
b=1)のときに、上記Al及びGaまたはP及びAsが、夫
々 0.5×x/a≦y/b≦1.5×x/a を満たすx(at.%)及びy(at.%)でドーピングされ
ていることを特徴とする第4項記載の多元半導体膜。5. The compounding ratio of Si and Ge is a, b (where a +
When b = 1), the above Al and Ga or P and As are x (at.%) and y (at.%) satisfying 0.5 × x / a ≦ y / b ≦ 1.5 × x / a, respectively. 5. The multi-component semiconductor film according to claim 4, which is doped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1110001A JP2854017B2 (en) | 1989-04-28 | 1989-04-28 | Multi-component semiconductor film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1110001A JP2854017B2 (en) | 1989-04-28 | 1989-04-28 | Multi-component semiconductor film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02288327A JPH02288327A (en) | 1990-11-28 |
JP2854017B2 true JP2854017B2 (en) | 1999-02-03 |
Family
ID=14524584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1110001A Expired - Fee Related JP2854017B2 (en) | 1989-04-28 | 1989-04-28 | Multi-component semiconductor film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2854017B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101207582B1 (en) * | 2009-02-17 | 2012-12-05 | 한국생산기술연구원 | Method for fabricating solar cell applications using inductively coupled plasma chemical vapor deposition |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62167290A (en) * | 1986-01-21 | 1987-07-23 | Nec Corp | Vapor growth method for iii-v compound semiconductor |
JPS6338230A (en) * | 1986-08-01 | 1988-02-18 | Mitsubishi Chem Ind Ltd | Forming method for amorphous semiconductor |
JPS63124408A (en) * | 1986-11-13 | 1988-05-27 | Nec Corp | Crystal growth method of iii-v compound semiconductor |
-
1989
- 1989-04-28 JP JP1110001A patent/JP2854017B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02288327A (en) | 1990-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
De Graaff et al. | Grain boundary states and the characteristics of lateral polysilicon diodes | |
US20030129802A1 (en) | Silicon germanium heterojunction bipolar transistor with carbon incorporation | |
US4247859A (en) | Epitaxially grown silicon layers with relatively long minority carrier lifetimes | |
EP0778621A3 (en) | Semiconductor device comprising a photodiode and a bipolar element, and method of fabrication | |
US5486704A (en) | Semiconductor device and electronic device by use of the semiconductor | |
JP2854017B2 (en) | Multi-component semiconductor film | |
US6320211B1 (en) | Semiconductor device and electronic device by use of the semiconductor | |
JPH0712089B2 (en) | Infrared sensor and infrared camera including the infrared sensor | |
EP0431835B1 (en) | Bipolar semiconductor device | |
JPH0370185A (en) | Amorphous semiconductor device | |
EP1274133A3 (en) | Thin-film crystal wafer having a pn junction and its manufacturing method | |
JPH04266065A (en) | Diode and its manufacture | |
JPH06291341A (en) | Solar cell | |
JP3474891B2 (en) | Method for manufacturing photovoltaic device | |
Zekry et al. | Reduction of the current gain of the npn transistor component of a thyristor due to the doping concentration of the p-base | |
JP3037709B2 (en) | Semiconductor device and electronic device using the semiconductor device | |
Dugas | Modelling of material properties influence on back junction thin polycrystalline silicon solar cells | |
CA1041673A (en) | Transistor | |
JP3001601B2 (en) | Semiconductor device | |
JP2003037274A (en) | Zener diode and manufacturing method therefor | |
WO1984001055A1 (en) | Phototransistor | |
JPS63244889A (en) | Semiconductor device | |
JPS5627920A (en) | Impurity diffusing method | |
JP2827195B2 (en) | Semiconductor storage device | |
Kressel et al. | Properties of high‐voltage silicon epitaxial diodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |