JPS62167290A - Vapor growth method for iii-v compound semiconductor - Google Patents

Vapor growth method for iii-v compound semiconductor

Info

Publication number
JPS62167290A
JPS62167290A JP903486A JP903486A JPS62167290A JP S62167290 A JPS62167290 A JP S62167290A JP 903486 A JP903486 A JP 903486A JP 903486 A JP903486 A JP 903486A JP S62167290 A JPS62167290 A JP S62167290A
Authority
JP
Japan
Prior art keywords
doping amount
doping
base plate
substrate temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP903486A
Other languages
Japanese (ja)
Inventor
Hiroshi Terao
博 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP903486A priority Critical patent/JPS62167290A/en
Publication of JPS62167290A publication Critical patent/JPS62167290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To make dependency of doping amount for the temp. of a base plate small by using the combination of both a group of SiH4, GeH4 and a group of H2S, H2Se as a raw material for doping in vapor growth of organic metal. CONSTITUTION:In vapor growth of GaAs of the like wherein organic metal such as trimethylgallium and arsine is used as a raw material, both at least one of SiH4, GeH4 and at least one of H2S, H2Se are combined and simultaneously used as a raw material for doping. The dependent temp. of a base plate can freely be controlled by this method and the dependency of doping amount for the temp. of the base plate can almost be eliminated. also even if temp. ununiformity is present in the inside of the base plate, the high-uniform distribution of doping amount can be obtained in the inside of the base plate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はI−V族化合物半導体の気相成長方法、特にn
型不純物のドーピング量の制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for vapor phase growth of IV group compound semiconductors, particularly n
This relates to controlling the doping amount of type impurities.

〔従来の技術〕[Conventional technology]

■−■族化合物半導体の気相成長において、ドーピング
量の制御、基板内でのドーピング量均一性などは最も基
本となる重要な点である。従来、有機金属気相成長法(
MOCVD法)でn型不純物のドーピングを行なう場合
、■族であるシリコン(Si)、ゲルマニウム(Ge)
、あるいは■族である硫黄(S)、セレン(Se)など
の中から一つの元素を選んで用いている。原料となるガ
スはそれぞれシラン(SiH4)、ゲルマン(GeHl
)、硫化水素(H,S) 、セレン化水素(H2Se)
などの水素化物である。
In the vapor phase growth of a ■-■ group compound semiconductor, control of the doping amount and uniformity of the doping amount within the substrate are the most fundamental and important points. Conventionally, metal-organic vapor phase epitaxy (
When doping with n-type impurities by MOCVD method, silicon (Si) and germanium (Ge), which are group II, are used.
Alternatively, one element is selected and used from group Ⅰ such as sulfur (S) and selenium (Se). The raw material gases are silane (SiH4) and germane (GeHl), respectively.
), hydrogen sulfide (H,S), hydrogen selenide (H2Se)
and other hydrides.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

■−■族化合物半導体のMOCVD法においては、成長
速度は広い基板温度範囲にわたってほぼ一定であること
が知られている。このため、成長速度の制御は容易であ
り、たとえ基板内で温度に不均一があっても成長層の膜
厚の均一性は良好な値を保つ。しかしながら、ドーピン
グ量については強い基板温度依存性を持っているため、
基板温度を変化させた時のドーピング量の制御が容易で
なく、さらに基板内の温度のわずかな不均一性のために
比較的大きなドーピング量の不均一が生ずるという問題
がある。このことがMOCVD法によって大面積高均一
成長を目指した時、成長層の膜厚分布については容易に
良好な結果が得られるのに対し、ドーピング量(すなわ
ち成長層のキャリア濃度)の均一化が困難であるという
理由である。たとえば、S IH4,GeHaによるS
i、Geのドーピングに対しては、原料ガスの分解過程
がドーピング量を決定するために、基板温度が高い程、
多くのSi、Geが成長層に入る。その基板温度依存性
は両者共はぼ同じで、基板温度に対し指数関数的であり
、通常の基板温度範囲550℃〜700℃の間では10
℃の温度上昇で〜1.16倍、50℃の温度上昇で〜2
.1倍となる。一方、H2S、 H2S eによるS、
Seのドーピングに対しては、原料ガスの分解は十分速
く、S、Seの基板への吸着がドーピング量を決定する
ので、基板温度が低い程、多くのS、Seが成長層に入
る。その基板温度依存性は両者共はぼ同じで、やはり基
板温度に対し指数関数的であり、先に述べた温度範囲5
50℃〜700℃の間では10℃の温度低下で〜1.2
1倍、50℃の温度低下で〜2.6倍となる。
It is known that in the MOCVD method of group (1)-(2) compound semiconductors, the growth rate is approximately constant over a wide substrate temperature range. Therefore, the growth rate can be easily controlled, and even if the temperature is non-uniform within the substrate, the uniformity of the thickness of the grown layer remains at a good value. However, since the doping amount has a strong substrate temperature dependence,
There is a problem in that it is not easy to control the doping amount when changing the substrate temperature, and furthermore, slight non-uniformity in the temperature within the substrate causes a relatively large non-uniformity in the doping amount. This means that when aiming for highly uniform growth over a large area using the MOCVD method, it is easy to obtain good results regarding the film thickness distribution of the grown layer, but it is difficult to make the doping amount (i.e. the carrier concentration of the grown layer) uniform. The reason is that it is difficult. For example, S IH4, S by GeHa
For i,Ge doping, the decomposition process of the source gas determines the doping amount, so the higher the substrate temperature, the more
Much Si and Ge enter the growth layer. The dependence on the substrate temperature is almost the same for both, and is exponential with respect to the substrate temperature.
~1.16 times with a temperature increase of ℃, ~2 with a temperature increase of 50℃
.. It becomes 1 times. On the other hand, H2S, S by H2S e,
For Se doping, the decomposition of the source gas is sufficiently fast, and the adsorption of S and Se onto the substrate determines the doping amount, so the lower the substrate temperature, the more S and Se enter the growth layer. The dependence on the substrate temperature is almost the same for both, and is also exponential with respect to the substrate temperature, and the temperature range 5 mentioned above is
Between 50°C and 700°C, a temperature drop of 10°C will result in ~1.2
1 times, and becomes ~2.6 times with a temperature decrease of 50°C.

本発明の目的は、以上の問題点を解決し、ドーピング量
の基板温度依存性を極めて小さくすることができる■−
■族化合物半導体の気相成長方法を提供することある。
An object of the present invention is to solve the above problems and to make it possible to extremely reduce the dependence of the doping amount on the substrate temperature.
The present invention provides a method for vapor phase growth of a group compound semiconductor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、有機金属気相成長法による■−v族化合物半
導体の気相成長方法において、ドーピング用原料として
、シラン(SiH,)とゲルマン(G e H4)のう
ちの少なくともひとつと、硫化水素(H2S)とセレン
化水素(H2Se)のうちの少なくともひとつとを同時
に用いることを特徴としている。
The present invention provides a method for vapor phase growth of a -V group compound semiconductor using an organometallic vapor phase growth method, in which at least one of silane (SiH) and germane (G e H4) and hydrogen sulfide are used as doping raw materials. It is characterized by simultaneously using at least one of (H2S) and hydrogen selenide (H2Se).

〔作用〕[Effect]

ドーピング量の基板温度依存性はSiH。 The dependence of doping amount on substrate temperature is SiH.

あるいはGeH,の場合と、H2SあるいはH2Seの
場合とでは逆の関係にある。そこで、5iH1およびG
 e Hsのうちのひとつあるいは両者と、H2Sおよ
びH2Seのうちのひとつあるいは両者とを同時に用い
れば基板温度依存性をその間で自由に制御でき、適当な
割合を選択することでドーピング量の基板温度依存性を
ほぼ無くすことも可能である。この結果、基板内にある
程度の温度不均一があっても極めて高均一の基板内ドー
ピング量(キャリア濃度)分布を得ることができる。ま
た、基板温度を変化させても常に一定のドーピング量が
得られる。さらに、目的によっては原料ガスの混合割合
を変え、所定の基板温度依存性を作り、これを積極的に
利用することもできる。
Alternatively, the relationship is opposite between the case of GeH and the case of H2S or H2Se. Therefore, 5iH1 and G
e If one or both of Hs and one or both of H2S and H2Se are used at the same time, the substrate temperature dependence can be freely controlled between them, and by selecting an appropriate ratio, the doping amount can be adjusted to the substrate temperature dependence. It is also possible to almost eliminate gender. As a result, even if there is some degree of temperature non-uniformity within the substrate, an extremely uniform doping amount (carrier concentration) distribution within the substrate can be obtained. Further, even if the substrate temperature is changed, a constant doping amount can always be obtained. Furthermore, depending on the purpose, it is also possible to change the mixing ratio of the raw material gases to create a predetermined substrate temperature dependence and make positive use of this dependence.

〔実施例〕〔Example〕

以下に、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

トリメチルガリウム(TMGa)、アルシン(ASH3
)を原料とし、水素ガスをキャリアガスとするガリウム
砒素(GaAs)の成長においてドーピング実験を行っ
た。ドーピング用原料としてはSiH4とH2Sの組合
せを選び、目的とする全ドーピング量(SiとSを合わ
せたもので、これがキャリア濃度となる)を2×101
7cm−3と決めた。基板温度600℃で、SiH,単
独の場合にこのドーピング量の55%に相当する1、 
I X10170m−3を与える量のSiH4と、同じ
<H2S単独で45%に相当する0、 9 XIO”c
m−3を与える量のH2Sとを同時に用いてドーピング
をした。このSiH<とH2Sの割合はそれぞれのドー
ピング量の温度依存性から計算し、600℃でのドーピ
ング量の温度に対する変化率がゼロとなるように決めた
ものである。この結果、基板温度600℃での全ドーピ
ング量は両者の和である2、 OX10170m−3と
なり、基板温度を550℃〜650℃と600℃を中心
に上下50℃で大幅に変化させたところ、ドーピング量
は550℃および650℃の両者で増加したが、その変
化は20%以下であった。3184あるいはH2S単独
の場合のドーピング量の変化は、先に述べたように50
℃で2.1倍あるいは2.6倍であるから極めて大きな
改善である。
Trimethyl gallium (TMGa), arsine (ASH3
) was used as a raw material and hydrogen gas was used as a carrier gas. A combination of SiH4 and H2S was selected as the doping raw material, and the target total doping amount (combined Si and S, which is the carrier concentration) was 2 x 101.
I decided on 7cm-3. At a substrate temperature of 600°C, SiH, 1, which corresponds to 55% of this doping amount in the case of alone,
The amount of SiH4 giving IX10170m-3 and the same <0,9
Doping was carried out simultaneously with H2S in an amount giving m-3. The ratio of SiH< and H2S was calculated from the temperature dependence of each doping amount, and was determined so that the rate of change of the doping amount with respect to temperature at 600° C. was zero. As a result, the total doping amount at a substrate temperature of 600°C is the sum of both, 2.OX10170m-3, and when the substrate temperature was significantly changed from 550°C to 650°C and 50°C above and below 600°C, The doping amount increased at both 550°C and 650°C, but the change was less than 20%. As mentioned earlier, the change in doping amount in the case of 3184 or H2S alone is 50
This is an extremely large improvement since it is 2.1 times or 2.6 times as high as ℃.

また、2インチのウェーハ全面でのドーピング量の変動
は、SiH,あるいはH2S単独の場合には10%程度
であり、これは、その変動の要因がすべて基板温度の不
均一にあるとすれば約6℃の変化と見積られるが、本実
施例によるS i H455%とH2S45%の同時ド
ーピングの場合には2%以下と極めて高均一の成長層が
得られた。
Also, the variation in doping amount over the entire surface of a 2-inch wafer is about 10% in the case of SiH or H2S alone, which is about 10% if the cause of the variation is all due to non-uniform substrate temperature. The change is estimated to be 6° C., but in the case of simultaneous doping of 455% S i H and 45% H 2 S according to this example, an extremely uniform growth layer of 2% or less was obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の方法によれば、MOCVD法
でのn型不純物のドーピングにおいて、ドーピング量の
基板温度依存性を極めて小さくすることができ、この結
果、ドーピング量の再現性が向上し、また基板面内での
均一性が大幅に良くなるという効果がある。さらには、
基板温度依存性を目的とする値に制御して、意図的なド
ーピング量変化を基板内につけたりすることも可能であ
る。
As described above, according to the method of the present invention, the dependence of the doping amount on the substrate temperature can be made extremely small in doping with n-type impurities in the MOCVD method, and as a result, the reproducibility of the doping amount is improved. , and also has the effect of significantly improving the uniformity within the substrate surface. Furthermore,
It is also possible to intentionally change the doping amount in the substrate by controlling the substrate temperature dependence to a desired value.

Claims (1)

【特許請求の範囲】[Claims] (1)有機金属気相成長法によるIII−V族化合物半導
体の気相成長方法において、ドーピング用原料として、
シラン(SiH_4)とゲルマン(GeH_4)のうち
の少なくともひとつと、硫化水素(H_2S)とセレン
化水素(H_2Se)のうちの少なくともひとつとを同
時に用いることを特徴とするIII−V族化合物半導体の
気相成長方法。
(1) In the vapor phase growth method of III-V compound semiconductors by organometallic vapor phase epitaxy, as a doping raw material,
A III-V compound semiconductor semiconductor characterized by simultaneously using at least one of silane (SiH_4) and germane (GeH_4) and at least one of hydrogen sulfide (H_2S) and hydrogen selenide (H_2Se). Phase growth method.
JP903486A 1986-01-21 1986-01-21 Vapor growth method for iii-v compound semiconductor Pending JPS62167290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP903486A JPS62167290A (en) 1986-01-21 1986-01-21 Vapor growth method for iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP903486A JPS62167290A (en) 1986-01-21 1986-01-21 Vapor growth method for iii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPS62167290A true JPS62167290A (en) 1987-07-23

Family

ID=11709367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP903486A Pending JPS62167290A (en) 1986-01-21 1986-01-21 Vapor growth method for iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPS62167290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288327A (en) * 1989-04-28 1990-11-28 Sanyo Electric Co Ltd Plural semiconductor film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288327A (en) * 1989-04-28 1990-11-28 Sanyo Electric Co Ltd Plural semiconductor film

Similar Documents

Publication Publication Date Title
US4859627A (en) Group VI doping of III-V semiconductors during ALE
JP2948414B2 (en) Method of depositing Ge on substrate and method of manufacturing semiconductor device
JPS63240012A (en) Iii-v compound semiconductor and formation thereof
JPH06204149A (en) Manufacture of compound semi- conductor
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
EP0148357B1 (en) A metal organic chemical vapour deposition process for depositing silicon doped intermetallic semiconductor compounds
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPS62167290A (en) Vapor growth method for iii-v compound semiconductor
JPH0510317B2 (en)
US5229319A (en) Method for producing compound semiconductors and apparatus therefor
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
JP3223575B2 (en) Compound semiconductor and manufacturing method thereof
JPH03215390A (en) Method for epitaxial growth and doping of compound crystal
JP2736655B2 (en) Compound semiconductor crystal growth method
JPH0374839A (en) Formation of iii-v compound semiconductor
JPH07226380A (en) Atomic layer crystal growth method
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JPH04162418A (en) Chemical vapor growth method
JPH03110829A (en) Manufacture of compound semiconductor thin film
JPH03280419A (en) Method for formation of compound semiconductor thin film
Watanabe et al. Atomic layer epitaxy
JPH03159995A (en) Doping in epitaxial crystal growth process
JPH02262332A (en) Manufacture of compound semiconductor thin film