JP2853263B2 - Electrolyte for metal-bromine batteries - Google Patents

Electrolyte for metal-bromine batteries

Info

Publication number
JP2853263B2
JP2853263B2 JP2119257A JP11925790A JP2853263B2 JP 2853263 B2 JP2853263 B2 JP 2853263B2 JP 2119257 A JP2119257 A JP 2119257A JP 11925790 A JP11925790 A JP 11925790A JP 2853263 B2 JP2853263 B2 JP 2853263B2
Authority
JP
Japan
Prior art keywords
bromine
mol
complexing agent
mepb
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2119257A
Other languages
Japanese (ja)
Other versions
JPH0417274A (en
Inventor
寛 細野
保雄 安藤
裕司 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2119257A priority Critical patent/JP2853263B2/en
Publication of JPH0417274A publication Critical patent/JPH0417274A/en
Application granted granted Critical
Publication of JP2853263B2 publication Critical patent/JP2853263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は金属−臭素電池の電解液に関し、特に電気エ
ネルギー効率の高い金属−臭素電池の電解液に関する。
The present invention relates to a metal-bromine battery electrolyte, and more particularly to a metal-bromine battery electrolyte having high electric energy efficiency.

B.発明の概要 本発明は金属−臭素電池の電解液において、 塩素イオンを有する電導度向上剤、及びハロゲン化N
−メチルN−エチルモルホリニウム塩とハロゲン化−メ
チルN−エチルピロリジニウム塩とのモル比が0.25:0.7
5〜0.0:1.0である臭素錯化剤を加えることにより、 金属−臭素電池における電気エネルギー効率を高めた
ものである。
B. Summary of the Invention The present invention relates to an electrolyte for a metal-bromine battery, a conductivity improver having chlorine ions, and a halogenated N.
The molar ratio of -methyl N-ethylmorpholinium salt to halogenated -methyl N-ethylpyrrolidinium salt is 0.25: 0.7
By adding a bromine complexing agent of 5 to 0.0: 1.0, the electric energy efficiency of the metal-bromine battery is improved.

C.従来の技術 近年、電池電力貯蔵システムの開発が促進されてお
り、その一環として亜鉛−臭素電池が開発されている。
C. Prior Art In recent years, the development of battery power storage systems has been promoted, and as part of this, zinc-bromine batteries have been developed.

この電池は臭素亜鉛水溶液を電解液とし、カーボンプ
ラスチックシートをバイポーラ電極板として構成したコ
ンパクトな液循環型の積層電池である。充電時は負極で
Zn2++2e-→Zn(1)の反応により負極板上に亜鉛が析
出し、正極で2Br-+Q+・Br-→Q+・Br3 -+2e-(2)の反
応により臭素が発生すると同時に臭素錯化物(Q+・B
r-)と結合して臭素錯化合物(Q+・Br3 -)を生成する。
この臭素錯化合物は油状物質で電解液から分離して正極
タンクの底に沈澱する。
This battery is a compact liquid circulation type laminated battery in which an aqueous solution of zinc bromide is used as an electrolyte and a carbon plastic sheet is used as a bipolar electrode plate. When charging, use the negative electrode
Zn 2+ + 2e - → zinc on the negative electrode plate by the reaction of Zn (1) is deposited, a positive electrode 2Br - + Q + · Br - → Q + · Br 3 - + 2e - If bromine is generated by the reaction of (2) Simultaneously, bromine complex (Q + B
r -) combine with bromine complex compound (Q + · Br 3 -) to generate.
The bromine complex compound is an oily substance and separates from the electrolyte and precipitates at the bottom of the positive electrode tank.

一方、放電時は負極で上記(1)の逆反応により亜鉛
が酸化されて亜鉛イオンとなって電解液に溶解し、正極
で上記(2)の逆反応により臭素錯化合物が臭素イオン
と臭素錯化合物に分離する。
On the other hand, at the time of discharge, zinc is oxidized by the reverse reaction of the above (1) at the negative electrode to become zinc ions and dissolved in the electrolytic solution, and at the positive electrode, the bromine complex compound is converted into a bromine ion and a bromine complex by the reverse reaction of the above (2). Separate into compounds.

このようにして臭素−亜鉛二次電池は各電極上での臭
素錯化剤による臭素の結合・解離を通じて高い電気エネ
ルギーを放出しうる。
In this way, the bromine-zinc secondary battery can emit high electric energy through the binding and dissociation of bromine by the bromine complexing agent on each electrode.

従って臭素錯化剤は充電時における臭素錯化合物を形
成し、かつ放電時に臭素を解離する役割を果たすことか
ら、臭素−亜鉛二次電池のエネルギー効率に重大な影響
を及ぼす。
Accordingly, since the bromine complexing agent forms a bromine complex compound during charging and plays a role of dissociating bromine during discharging, it has a significant effect on the energy efficiency of the bromine-zinc secondary battery.

このため本発明者らは臭素錯化剤としてN−メチルN
−エチルモルホリニウムブロマイド(以下、MEMBとい
う)及びN−メチルN−エチルピロリニウムブロマイド
(以下、MEPBという)を3mol/以下の臭化亜鉛水溶液
に対し1mol/を用い、更に塩素を有する電導度向上剤1
mol/を加えることにより臭素錯化合物の形成能力を強
化しこれにより臭素の拡散による自己放電を防止すると
共に電解液の電気抵抗を減少し、全体として臭素−亜鉛
二次電池のエネルギー効率を高めることに成功した。
Therefore, the present inventors have proposed that N-methyl N
-Electric morpholinium bromide (hereinafter, referred to as MEMB) and N-methyl N-ethylpyrrolinium bromide (hereinafter, referred to as MEPB) in an aqueous solution of zinc bromide of 3 mol / or less, using 1 mol / of conductivity, further containing chlorine. Improver 1
The addition of mol / enhances the ability to form bromine complex compounds, thereby preventing self-discharge due to bromine diffusion, reducing the electrical resistance of the electrolyte, and overall increasing the energy efficiency of the bromine-zinc secondary battery. succeeded in.

D.発明が解決しようとする課題 しかしながら、本発明者らは臭素錯化剤としてMEMB及
びMEPBを1mol/の濃度で用いていたが、その後の研究
によりMEMBとMEPBとのモル比によっては更に高いエネル
ギー効率が得られることが判明した。
D. Problems to be Solved by the Invention However, the present inventors used MMB and MEPB as a bromine complexing agent at a concentration of 1 mol /, but later studies showed that even higher molar ratios between MMB and MEPB were used. It has been found that energy efficiency can be obtained.

従って本発明はこの問題を解決するために創案された
ものであって、 臭素錯化剤としてMEMBとMEPBとのモル比を0.25:0.75
〜0.0:1.0にすることによりエネルギー効率をより一層
高めた金属−臭素電池の電解液を提供することを目的と
する。
Therefore, the present invention was devised to solve this problem, and the molar ratio of MEMB to MEPB was 0.25: 0.75 as a bromine complexing agent.
An object of the present invention is to provide a metal-bromine battery electrolyte solution having a further improved energy efficiency by setting the ratio to 0.0: 1.0.

E.課題を解決するための手段及び作用 本発明者らは金属−臭素電池の電解液中に臭素錯化剤
をMEMBとMEPBとのモル比の0.25:0.75〜0.0:1.0で加える
ことにより金属−臭素電池のエネルギー効率をより一層
高めることに成功し、本発明に係る金属−臭素電池の電
解液を完成した。
E. Means and Action for Solving the Problems The present inventors have found that a metal-bromine battery has a metal bromine battery by adding a bromine complexing agent at a molar ratio of MEMS to MEPB of 0.25: 0.75 to 0.0: 1.0. -Successfully improved the energy efficiency of the bromine battery, and completed the metal-bromine battery electrolyte according to the present invention.

即ち、本発明に係る金属−臭素電池の電解液は、 3mol/以下の臭化亜鉛水溶液,塩素イオンを有する
電導度向上剤,及びハロゲン化N−メチルN−エチルモ
ルホリニウム塩とハロゲン化N−メチルN−エチルピロ
リジニウム塩とのモル比が0.25:0.75〜0.0:1.0である臭
素錯化剤を含むことを、その解決手段としている。
That is, the electrolytic solution of the metal-bromine battery according to the present invention comprises a zinc bromide aqueous solution of 3 mol / or less, a conductivity improver having chlorine ions, an N-methyl N-ethylmorpholinium halide and an N halide. The solution is to include a bromine complexing agent having a molar ratio to -methyl N-ethylpyrrolidinium salt of 0.25: 0.75 to 0.0: 1.0.

以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

まず、本発明に係る金属−臭素電池の電解液としては
3mol/以下の臭化亜鉛水溶液を用いる。ここで「3mol/
以下」としたのは臭化亜鉛の濃度が3mol/を超える
と電解液の内部抵抗が増加するため、エネルギー効率が
低下するためである。
First, as the electrolytic solution of the metal-bromine battery according to the present invention,
Use a zinc bromide aqueous solution of 3 mol / or less. Here, "3mol /
The reason for "below" is that when the concentration of zinc bromide exceeds 3 mol /, the internal resistance of the electrolytic solution increases and the energy efficiency decreases.

また、本発明に係る塩素イオンを有する電導度向上剤
とは例えば塩化カリウム(以下、KClという)、塩化ア
ンモニウム(以下、NH4Clという)などが挙げられ、塩
素イオンの濃度を0.5mol/〜4mol/の範囲、好ましく
は1mol/で用いる。
Examples of the conductivity improver having a chloride ion according to the present invention include potassium chloride (hereinafter, referred to as KCl), ammonium chloride (hereinafter, referred to as NH 4 Cl), and the like. It is used in the range of 4 mol /, preferably 1 mol /.

ここで「0.5mol/以上」としたのは塩素イオンが0.5
mol/未満となると電解液の液抵抗が高くエネルギー効
率が低下するためである。一方、「4mol/以下」とし
たのは塩素イオンが4mol/を超えるといわゆる浮動充
電に際し負極側で水素が発生し、エネルギー利用率が50
%まで低下するためである。従って本発明に係る金属−
臭素電池の電解液においてはこれらの調和点として塩素
イオンを有する電導度向上剤を1mol/の濃度で用いる
のが好ましいと言える。
Here, “0.5 mol / or more” is when chlorine ion is 0.5
This is because if it is less than mol / mol, the liquid resistance of the electrolytic solution is high and the energy efficiency is reduced. On the other hand, “4 mol / or less” means that when chlorine ions exceed 4 mol /, hydrogen is generated on the negative electrode side during so-called floating charging, and the energy utilization rate is 50%.
%. Therefore, the metal according to the present invention
It can be said that it is preferable to use a conductivity improver having a chlorine ion as a harmony point in the electrolytic solution of the bromine battery at a concentration of 1 mol /.

なお、本発明に係る金属−臭素電池の電解液では特に
必要とされないが負極側での水素発生防止剤として亜鉛
化合物、例えばZnCl2,ZnF2などを添加してもよい。これ
により浮動充電時における負極側での水素の発生を好適
に防止でき、エネルギー利用率を一層高めることもでき
る。
Although not particularly required in the electrolytic solution of the metal-bromine battery according to the present invention, a zinc compound such as ZnCl 2 or ZnF 2 may be added as a hydrogen generation inhibitor on the negative electrode side. Thereby, generation of hydrogen on the negative electrode side during floating charging can be suitably prevented, and the energy utilization rate can be further increased.

次に、本発明に係る金属−臭素電池の電解液において
最も特徴をなす臭素錯化剤について説明する。
Next, the bromine complexing agent which is the most characteristic in the electrolytic solution of the metal-bromine battery according to the present invention will be described.

この臭素錯化剤は充電時に正極側で臭素イオンと結合
し、臭素錯化合物を形成し、電気エネルギーを保持する
という重要な役割を果たす。
The bromine complexing agent combines with bromine ions on the positive electrode side during charging to form a bromine complex compound, and plays an important role of retaining electric energy.

本発明においては臭素錯化剤としてハロゲン化N−メ
チルN−エチルモルホリニウム塩、好ましくはMEMB及び
ハロゲン化N−メチルN−エチルピロリジニウム塩、好
ましくはMEPBをそれぞれ0.25:0.75〜0.0:1.0の範囲とし
て用いる。また、両者のモル濃度の総和は0.75〜1mol/
、好ましくは1mol/である。ここで「0.75mol/以
上」としたのはこれ未満となると臭素錯化合物の形成能
力が減少し、フリーの臭素イオンによる自己放電が生ず
るためである。一方、「1mol/以下」としたのはこれ
を超えると電解液の内部抵抗が増加し、エネルギー効率
が低下するためである。
In the present invention, as a bromine complexing agent, a halogenated N-methyl N-ethylmorpholinium salt, preferably MEMB and a halogenated N-methyl N-ethylpyrrolidinium salt, preferably MEPB are each 0.25: 0.75 to 0.0: Use as a range of 1.0. The sum of the molar concentrations of both is 0.75 to 1 mol /
, Preferably 1 mol /. Here, the reason why the content is set to “0.75 mol / or more” is that if the content is less than 0.75 mol / min, the ability to form a bromine complex compound decreases, and self-discharge occurs due to free bromine ions. On the other hand, the reason why it is set to “1 mol / or less” is that if it exceeds this, the internal resistance of the electrolytic solution increases and the energy efficiency decreases.

なお、電解液の内部抵抗を減少するには前述したよう
に電導度向上剤を添加することで解決できる。これらの
ことを総合的に考察すると、臭素錯化剤の濃度は電解液
の内部抵抗を容認しうる最大限である「1mol/」と
し、フリーの臭素イオンの存在をできる限り減少するこ
とで全体としてエネルギー効率を高めることができると
言える。このことが本発明が達成せんとする中心的課題
であり、この課題は臭素錯化剤であるMEMB及びMEPBのモ
ル比を0.25:0.75〜0.0:1.0の範囲とすることで達成する
ことができる。
It should be noted that the internal resistance of the electrolytic solution can be reduced by adding a conductivity improver as described above. Considering these factors comprehensively, the concentration of the bromine complexing agent is set to 1 mol /, which is the maximum acceptable internal resistance of the electrolyte, and the total amount of bromine ions is reduced as much as possible. It can be said that energy efficiency can be improved. This is the central problem to be achieved by the present invention, and this problem can be achieved by setting the molar ratio of the bromine complexing agent, MEMB and MEPB, to the range of 0.25: 0.75 to 0.0: 1.0. .

次に本発明において使用する臭素錯化剤であるMEMB及
びMEPBの構造式とこの臭素錯化剤と臭素との反応式を示
す。
Next, the structural formulas of the bromine complexing agents MEMB and MEPB used in the present invention and the reaction formulas of the bromine complexing agent and bromine are shown.

なお、本発明に係る電解液が好適に使用できる金属−
臭素電池としては亜鉛−臭素電池以外にカドミウム−臭
素電池,ニッケル−臭素電池などが挙げられる。
In addition, the metal which can use the electrolytic solution according to the present invention suitably-
Examples of the bromine battery include a cadmium-bromine battery and a nickel-bromine battery in addition to the zinc-bromine battery.

F.実施例 以下、本発明に係る金属−臭素電池の電解液の詳細な
説明を参考例及び実施例に基づいて説明する。
F. Examples Hereinafter, a detailed description of the electrolytic solution of the metal-bromine battery according to the present invention will be described based on Reference Examples and Examples.

参考例1 臭化亜鉛3mol/水溶液の上澄み液臭素濃度 (1)臭素添加量3molを含む臭化亜鉛3mol/水溶液中
に臭素錯化剤としてMEMBとMEPBをそれぞれ1.0:00,0.75:
0.25,0.5:0.5,0.25:0.75,0.0:1.0のモル比で添加し、液
温22℃,40℃,50℃における上澄み液臭素濃度(mol/)
を測定した。
Reference Example 1 Zinc bromide 3 mol / aqueous solution supernatant bromine concentration (1) MEMB and MEPB as bromine complexing agents in a 3 mol / zinc bromide solution containing 3 mol of bromine added at 1.0: 00 and 0.75 respectively:
0.25, 0.5: 0.5, 0.25: 0.75, 0.0: 1.0 molar ratio of the supernatant bromine concentration at a liquid temperature of 22 ° C, 40 ° C, 50 ° C (mol /)
Was measured.

(2)その結果を表1に示す。表1に示すように臭素錯
化剤としてMEMBとMEPBを0.25:0.75〜0.0:1.0のモル比で
添加することにより臭化亜鉛水溶液の上澄み液の臭素濃
度を一層低減できることがわかる。このことは臭素錯化
剤としてMEPBのモル分率が高い方が臭素錯化合物の形成
能力が高いことを示している。
(2) The results are shown in Table 1. As shown in Table 1, it can be seen that the bromine concentration in the supernatant of the aqueous zinc bromide solution can be further reduced by adding MEMB and MEPB as the bromine complexing agent in a molar ratio of 0.25: 0.75 to 0.0: 1.0. This indicates that the higher the mole fraction of MEPB as the bromine complexing agent, the higher the ability to form a bromine complex compound.

参考例2 臭化亜鉛1mol/水溶液の上澄み液臭素濃度 (1)臭化亜鉛3mol/水溶液に代えて臭化亜鉛1mol/
水溶液を用いる以外は参考例1と同様な方法により上澄
み液臭素濃度(mol/)を測定した。
Reference Example 2 Bromine concentration of 1 mol of zinc bromide / supernatant solution in aqueous solution (1) 1 mol of zinc bromide in place of 3 mol of zinc bromide / water solution
The bromine concentration (mol /) of the supernatant was measured in the same manner as in Reference Example 1 except that an aqueous solution was used.

(2)その結果を表2に示す。表2に示すように臭素錯
化剤としてMEMBとMEPBを0.25:0.75〜0.0:1.0のモル比で
添加することにより臭素濃度を低減できることがわか
る。なお、このことは参考例1で示した結果と同様であ
る。
(2) The results are shown in Table 2. As shown in Table 2, it can be seen that the bromine concentration can be reduced by adding MEMB and MEPB as the bromine complexing agent in a molar ratio of 0.25: 0.75 to 0.0: 1.0. This is the same as the result shown in Reference Example 1.

参考例3 臭化亜鉛1mol/水溶液の上澄み液臭素濃度 (1)臭素添加量3mlに代えて臭素添加量20mlを用いる
以外は実施例2と同様な方法により上澄み液臭素濃度
(mol/)を測定した。
Reference Example 3 Bromine concentration in supernatant of 1 mol of zinc bromide / water solution (1) Supernatant bromine concentration (mol /) was measured by the same method as in Example 2 except that bromine addition amount of 20 ml was used instead of bromine addition amount of 3 ml. did.

(2)その結果を表3に示す。表3に示すように臭素錯
化剤としてMEMBとMEPBを0.25:0.75〜0.0:1.0のモル比で
添加することにより臭素濃度を低減できることがわか
る。なお、このことは参考例1及び2で示した結果と同
様である。
(2) The results are shown in Table 3. As shown in Table 3, it is found that the bromine concentration can be reduced by adding MEMB and MEPB as the bromine complexing agent in a molar ratio of 0.25: 0.75 to 0.0: 1.0. This is similar to the results shown in Reference Examples 1 and 2.

参考例4 臭化亜鉛1mol/水溶液中における1mol/臭
素錯化剤(MEMB,MEPB混合)中のMEPBのモル分率(%)
と上澄み液臭素濃度の関係 (1)臭素濃度0.3mol/を含む臭化亜鉛1mol/水溶液
中に臭素錯化剤(MEMB,MEPB混合)1mol/中のMEPBをそ
れぞれ0.25%,50%,75%,100%のモル分率で添加し、液
温22℃,40℃,50℃における上澄み液臭素濃度(mol/)
を測定した。
Reference Example 4 1 mol / mol fraction of zinc bromide / mol of MEPB in bromine complexing agent (MEMB / MEPB mixture) in aqueous solution (%)
(1) 0.25%, 50%, 75% of bromine complexing agent (MEMB, MEPB mixture) 1 mol / MEPB in 1 mol / water solution of zinc bromide containing 0.3 mol / of bromine , 100% molar fraction, and the bromine concentration in the supernatant liquid at a liquid temperature of 22 ° C, 40 ° C, and 50 ° C (mol /)
Was measured.

(2)その結果を第1図に示す。第1図に示すように臭
素錯化剤としてMEPBのモル分率が増加することにより臭
化亜鉛水溶液中の臭素濃度が低下することがわかる。こ
のことは臭素錯化剤としてMEPBのモル分率が高い方が臭
素錯化合物の形成能力が高いことを示している。
(2) The results are shown in FIG. As shown in FIG. 1, it can be seen that the bromine concentration in the zinc bromide aqueous solution decreases as the mole fraction of MEPB as the bromine complexing agent increases. This indicates that the higher the mole fraction of MEPB as the bromine complexing agent, the higher the ability to form a bromine complex compound.

参考例5 臭化亜鉛3mol/水溶液中における1mol/臭
素錯化剤(MEMB,MEPB混合)中のMEPBのモル分率(%)
と上澄み液臭素濃度の関係 (1)臭化亜鉛1mol/水溶液に代えて臭化亜鉛3mol/
水溶液を用いること以外は参考例4と同様な方法により
上澄み液臭素濃度(mol/)を測定した。
Reference Example 5 3 mol of zinc bromide / mol of 1 mol / mol of MEPB in a bromine complexing agent (mixture of MEMB and MEPB) in aqueous solution (%)
Relationship between the concentration of bromine and the supernatant liquid (1) Zinc bromide 3 mol /
Supernatant bromine concentration (mol /) was measured in the same manner as in Reference Example 4 except that an aqueous solution was used.

(2)その結果を第2図に示す。第2図に示すように第
1図とほぼ同様に臭素錯化剤としてMEPBのモル分率が高
い方が臭素錯化合物の形成能力が高いことがわかる。
(2) The results are shown in FIG. As shown in FIG. 2, almost the same as FIG. 1, the higher the mole fraction of MEPB as the bromine complexing agent, the higher the ability to form a bromine complex compound.

参考例6 臭化亜鉛1mol/水溶液中における1mol/臭
素錯化剤(MEMB,MEPB混合)中のMEPBのモル分率(%)
と上澄み液臭素濃度の関係 (1)臭素濃度0.3mol/に代えて臭素濃度2.0mol/を
用いる以外は参考例4と同様な方法により上澄み液臭素
濃度(mol/)を測定した。
Reference Example 6 1 mol / mol mol of zinc bromide / mol of MEPB in bromine complexing agent (mixture of MEMB and MEPB) in aqueous solution (%)
And the supernatant bromine concentration (1) The bromine concentration (mol /) in the supernatant was measured in the same manner as in Reference Example 4, except that the bromine concentration was 2.0 mol / instead of 0.3 mol /.

(2)その結果を第3図に示す。第3図に示すように第
1図及び第2図とほぼ同様に臭素錯化剤としてMEPBのモ
ル分率が高い方が臭素錯化合物の形成能力が高いことが
わかる。
(2) The results are shown in FIG. As shown in FIG. 3, almost the same as FIGS. 1 and 2, it can be seen that the higher the molar fraction of MEPB as the bromine complexing agent, the higher the ability to form a bromine complex compound.

実施例1 亜鉛−臭素電池に本発明に係る電解液を使用
した場合の試験結果 (1)臭素亜鉛2.25mol/水溶液、塩化亜鉛0.4mol/
、塩化アンモニウム1.0mol/、及び臭素錯化剤1mol/
とした電解液組成において、前記臭素錯化剤としてME
MBとMEPBをそれぞれ0.25:0.75,0.0:1.0のモル比で添加
し、電極面積830cm2で5セルを積層した亜鉛−臭素電池
の運転試験を行った。
Example 1 Test results when the electrolyte according to the present invention was used in a zinc-bromine battery (1) 2.25 mol of zinc bromine / aqueous solution, 0.4 mol of zinc chloride /
, Ammonium chloride 1.0 mol /, and bromine complexing agent 1 mol /
In the electrolytic solution composition, ME was used as the bromine complexing agent.
MB and MEPB were added at a molar ratio of 0.25: 0.75 and 0.0: 1.0, respectively, and an operation test of a zinc-bromine battery in which five cells were stacked with an electrode area of 830 cm 2 was performed.

(2)また臭素錯化剤としてMEMBとMEPBをそれぞれ0.5:
0.5のモル比で添加したこと以外は実施例1と同様な方
法により亜鉛−臭素電池の運転試験を行ったものを比較
例とした。
(2) MEMB and MEPB as bromine complexing agents are each 0.5:
A comparative example was obtained by performing an operation test of a zinc-bromine battery in the same manner as in Example 1 except that the addition was performed at a molar ratio of 0.5.

(3)(1)及び(2)の試験結果を表4に示す。表4
に示すように実施例1(1)で示した臭素錯化剤として
MEMBとMEPBをそれぞれ0.25:0.75,0.0:1.0のモル比で添
加したものが比較例(2)で示した臭素錯化剤としてME
MBとMEPBを0.5:0.5のモル比で添加したものに比し、ク
ーロン効率,電圧効率及びエネルギー効率に優れること
がわかる。
(3) Table 4 shows the test results of (1) and (2). Table 4
As shown in Example 1, the bromine complexing agent shown in Example 1 (1)
MEMB and MEPB were added at a molar ratio of 0.25: 0.75 and 0.0: 1.0, respectively, to obtain ME as a bromine complexing agent shown in Comparative Example (2).
It can be seen that the coulomb efficiency, voltage efficiency and energy efficiency are superior to those in which MB and MEPB are added in a molar ratio of 0.5: 0.5.

電解液の組成 ZnBr2 2.25 mol/ ZnCl2 0.45 mol/ NH4Cl 1.0 mol/ 臭素錯化剤 1.0 mol/ G.発明の効果 本発明は上述のように構成されることから、臭素錯化
合物の形成能力を高めることができ、これにより電解液
中のフリーの臭素イオンを減少できる。
Composition of electrolytic solution ZnBr 2 2.25 mol / ZnCl 2 0.45 mol / NH 4 Cl 1.0 mol / bromine complexing agent 1.0 mol / G. Effect of the Invention Since the present invention is constituted as described above, formation of a bromine complex compound Capacity can be increased, thereby reducing free bromine ions in the electrolyte.

従って本発明に係る亜鉛−臭素電池の電解液によれば
フリーの臭素イオンの存在による自己放電を減少でき、
そのため亜鉛−臭素電池をクーロン効率,電圧効率及び
エネルギー効率を向上させることができる。
Therefore, according to the zinc-bromine battery electrolyte according to the present invention, self-discharge due to the presence of free bromine ions can be reduced,
Therefore, the coulomb efficiency, voltage efficiency, and energy efficiency of the zinc-bromine battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第3図は臭素錯化剤中のMEPBのモル分率と上澄
み液臭素濃度の関係を示すグラフである。
1 to 3 are graphs showing the relationship between the mole fraction of MEPB in the bromine complexing agent and the bromine concentration in the supernatant.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 12/08──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 12/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3mol/以下の臭化亜鉛水溶液,塩素イオ
ンを有する電導度向上剤,及びハロゲン化N−メチルN
−エチルモルホリニウム塩とハロゲン化N−メチルN−
エチルピロリジニウム塩とのモル比が0.25:0.75〜0.0:
1.0である臭素錯化剤を含む金属−臭素電池の電解液。
1. An aqueous zinc bromide solution of 3 mol / or less, a conductivity improver containing chlorine ions, and a halogenated N-methyl N
-Ethylmorpholinium salt and halogenated N-methyl N-
The molar ratio with the ethylpyrrolidinium salt is 0.25: 0.75 to 0.0:
Electrolyte for metal-bromine batteries containing a bromine complexing agent of 1.0.
JP2119257A 1990-05-09 1990-05-09 Electrolyte for metal-bromine batteries Expired - Lifetime JP2853263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119257A JP2853263B2 (en) 1990-05-09 1990-05-09 Electrolyte for metal-bromine batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119257A JP2853263B2 (en) 1990-05-09 1990-05-09 Electrolyte for metal-bromine batteries

Publications (2)

Publication Number Publication Date
JPH0417274A JPH0417274A (en) 1992-01-22
JP2853263B2 true JP2853263B2 (en) 1999-02-03

Family

ID=14756855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119257A Expired - Lifetime JP2853263B2 (en) 1990-05-09 1990-05-09 Electrolyte for metal-bromine batteries

Country Status (1)

Country Link
JP (1) JP2853263B2 (en)

Also Published As

Publication number Publication date
JPH0417274A (en) 1992-01-22

Similar Documents

Publication Publication Date Title
US4064324A (en) Metal-Halogenelectrochemical cell
JPH0357580B2 (en)
US20170214077A1 (en) Electrolyte System For Rechargeable Flow Battery
US4491625A (en) Zinc-bromine batteries with improved electrolyte
US20200075952A1 (en) Complexed Iodine-Based Electrolyte and Redox Flow Battery Comprising the Same
JP3380930B2 (en) Aluminum non-aqueous electrolyte secondary battery
JP3324101B2 (en) Aluminum non-aqueous electrolyte, battery using the same, and aluminum electrodeposition method
JPH0685332B2 (en) Electrolyte additives that improve battery performance
US4079174A (en) Accumulator equipped with cathodes of manganese dioxide or lead dioxide
JPS6313310B2 (en)
US4631240A (en) Electrochemical cell
US20100062327A1 (en) Non-toxic alkaline electrolyte with additives for rechargeable zinc cells
EP0411614B1 (en) Method of operating a zinc bromide battery
JPH09120816A (en) Aluminum nonaquoeus electrolyte secondary battery
JP2853263B2 (en) Electrolyte for metal-bromine batteries
JP2853262B2 (en) Bromine complexing agent for metal-bromine batteries
KR102028800B1 (en) An electrolyte for hybrid flow cell including bromine complex agent
US3447971A (en) Neutral secondary battery
JP2945944B2 (en) Non-aqueous electrolyte for lithium secondary batteries
CN111180777A (en) Positive electrode electrolyte for zinc-bromine single flow battery
JP2819201B2 (en) Lithium secondary battery
KR0135513B1 (en) Zine bromine batteries with an improved electolyte
JP2518257B2 (en) Zinc bromide secondary battery charging method
JP2977600B2 (en) Lead storage battery
JP2967634B2 (en) Zinc-bromine battery