JP2853262B2 - Bromine complexing agent for metal-bromine batteries - Google Patents

Bromine complexing agent for metal-bromine batteries

Info

Publication number
JP2853262B2
JP2853262B2 JP2119256A JP11925690A JP2853262B2 JP 2853262 B2 JP2853262 B2 JP 2853262B2 JP 2119256 A JP2119256 A JP 2119256A JP 11925690 A JP11925690 A JP 11925690A JP 2853262 B2 JP2853262 B2 JP 2853262B2
Authority
JP
Japan
Prior art keywords
bromine
mol
complexing agent
mepb
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2119256A
Other languages
Japanese (ja)
Other versions
JPH0417273A (en
Inventor
寛 細野
保雄 安藤
裕司 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2119256A priority Critical patent/JP2853262B2/en
Publication of JPH0417273A publication Critical patent/JPH0417273A/en
Application granted granted Critical
Publication of JP2853262B2 publication Critical patent/JP2853262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は金属−臭素電池の臭素錯化剤に関し、特に電
気エネルギー効率の高い金属−臭素電池の臭素錯化剤に
関する。
The present invention relates to a bromine complexing agent for a metal-bromine battery, and more particularly to a bromine complexing agent for a metal-bromine battery having high electric energy efficiency.

B.発明の概要 本発明は金属−臭素電池の臭素錯化剤において、 ハロゲン化N−メチルN−エチルモルホリニウム塩と
ハロゲン化N−メチルN−エチルピロリジニウム塩との
モル比を0.25:0.75〜0.0:1.0とすることにより、 金属−臭素電池における電気エネルギー効率を高めた
ものである。
B. Summary of the Invention The present invention relates to a bromine complexing agent for a metal-bromine battery, wherein the molar ratio of the halogenated N-methyl N-ethylmorpholinium salt to the halogenated N-methyl N-ethylpyrrolidinium salt is 0.25. : 0.75 to 0.0: 1.0, thereby improving the electric energy efficiency of the metal-bromine battery.

C.従来の技術 近年、電池電力貯蔵システムの開発が促進されてお
り、その一環として亜鉛−臭素電池が開発されている。
C. Prior Art In recent years, the development of battery power storage systems has been promoted, and as part of this, zinc-bromine batteries have been developed.

この電池は臭素亜鉛水溶液を電解液とし、カーボンプ
ラスチックシートをバイポーラ電極板として構成したコ
ンパクトな液循環型の積層電池である。充電時は負極で
Zn2++2e-→Zn(1)の反応により負極板上に亜鉛が析
出し、正極で2Br-+Q+・Br-→Q+・Br3 -+2e-(2)の反
応により臭素が発生すると同時に臭素錯化物(Q+・B
r-)と結合して臭素錯化合物(Q+・Br3 -)を生成する。
この臭素錯化合物は油状物質で電解液から分離して正極
タンクの底に沈澱する。
This battery is a compact liquid circulation type laminated battery in which an aqueous solution of zinc bromide is used as an electrolyte and a carbon plastic sheet is used as a bipolar electrode plate. When charging, use the negative electrode
Zn 2+ + 2e - → zinc on the negative electrode plate by the reaction of Zn (1) is deposited, a positive electrode 2Br - + Q + · Br - → Q + · Br 3 - + 2e - If bromine is generated by the reaction of (2) Simultaneously, bromine complex (Q + B
r -) combine with bromine complex compound (Q + · Br 3 -) to generate.
The bromine complex compound is an oily substance and separates from the electrolyte and precipitates at the bottom of the positive electrode tank.

一方、放電時は負極で上記(1)の逆反応により亜鉛
が酸化されて亜鉛イオンとなって電解液に溶解し、正極
で上記(2)の逆反応により臭素錯化合物が臭素イオン
と臭素錯化物に分離する。
On the other hand, at the time of discharging, zinc is oxidized by the reverse reaction of the above (1) at the negative electrode to become zinc ions and dissolved in the electrolytic solution, and at the positive electrode, the bromine complex compound is converted into a bromine ion and a bromine complex by the reverse reaction of the above (2). Separation into compounds.

このようにして臭素−亜鉛電池は各電極上での臭素錯
化剤による臭素の結合・解離を通じて高い電気エネルギ
ーを放出しうる。
In this way, a bromine-zinc battery can emit high electrical energy through the binding and dissociation of bromine by the bromine complexing agent on each electrode.

従って臭素錯化剤は充電時における臭素錯化合物を形
成し、かつ放電時に臭素を解離する役割を果たすことか
ら、臭素−亜鉛電池のエネルギー効率に重大な影響を及
ぼす。
Accordingly, the bromine complexing agent forms a bromine complex compound during charging and plays a role in dissociating bromine during discharging, which has a significant effect on the energy efficiency of the bromine-zinc battery.

このため本発明者らは臭素錯化剤としてN−メチルN
−エチルモルホリニウムブロマイド(以下、MEMBとい
う)及びN−メチルN−エチルピロリジニウムブロマイ
ド(以下、MEPBという)を3mol/以下の臭化亜鉛水溶
液に対し1mol/を用い、更に塩素を有する電導度向上
剤1mol/を加えることにより臭素錯化合物の形成能力
を強化しこれにより臭素の拡散による自己放電を防止す
ると共に電解液の電気抵抗を減少し、全体として臭素−
亜鉛電池のエネルギー効率を高めることに成功した。
Therefore, the present inventors have proposed that N-methyl N
-Ethyl morpholinium bromide (hereinafter referred to as MEMB) and N-methyl N-ethylpyrrolidinium bromide (hereinafter referred to as MEPB) in an amount of 1 mol / with respect to an aqueous zinc bromide solution of 3 mol / or less, and further containing chlorine. By adding 1 mol / of a degree improver, the ability to form a bromine complex compound is strengthened, thereby preventing self-discharge due to the diffusion of bromine and reducing the electric resistance of the electrolytic solution.
We succeeded in improving the energy efficiency of zinc batteries.

D.発明が解決しようとする課題 しかしながら、本発明者らは臭素錯化剤としてMEMB及
びMEPBを1mol/の濃度で用いていたが、その後の研究
によりMEMBとMEPBとのモル比によっては更に高いエネル
ギー効率が得られることが判明した。
D. Problems to be Solved by the Invention However, the present inventors used MMB and MEPB as a bromine complexing agent at a concentration of 1 mol /, but later studies showed that even higher molar ratios between MMB and MEPB were used. It has been found that energy efficiency can be obtained.

従って本発明はこの問題を解決するために創案された
ものであって、 臭素錯化剤としてMEMBとMEPBとのモル比を0.25:0.75
〜0.0:1.0にすることによりエネルギー効率をより一層
高めた金属−臭素電池の臭素錯化剤を提供することを目
的とする。
Therefore, the present invention was devised to solve this problem, and the molar ratio of MEMB to MEPB was 0.25: 0.75 as a bromine complexing agent.
An object of the present invention is to provide a bromine complexing agent for a metal-bromine battery in which the energy efficiency is further enhanced by setting the ratio to 0.0: 1.0.

E.課題を解決するための手段及び作用 本発明者らは金属−臭素電池の電解液中に臭素錯化剤
をMEMBとMEPBとのモル比の0.25:0.75〜0.0:1.0で加える
ことにより金属−臭素電池のエネルギー効率をより一層
高めることに成功し、本発明に係る金属−臭素電池の臭
素錯化剤を完成した。
E. Means and Actions for Solving the Problems The present inventors have found that a metal-bromine battery has a metal complex by adding a bromine complexing agent in a molar ratio of MEMB and MEPB of 0.25: 0.75 to 0.0: 1.0. -Successfully improved the energy efficiency of the bromine battery, and completed the bromine complexing agent for the metal-bromine battery according to the present invention.

即ち、本発明に係る金属−臭素電池の臭素錯化剤は、
ハロゲン化N−メチルN−エチルモルホリニウム塩とハ
ロゲン化N−メチルN−エチルピロリジニウム塩とのモ
ル比を0.25:0.75〜0.0:1.0としたことを、その解決手段
としている。
That is, the bromine complexing agent of the metal-bromine battery according to the present invention is:
The solution is to set the molar ratio between the halogenated N-methyl N-ethylmorpholinium salt and the halogenated N-methyl N-ethylpyrrolidinium salt to be 0.25: 0.75 to 0.0: 1.0.

以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

まず、本発明に係る金属−臭素電池の電解液において
最も特徴をなす臭素錯化剤について説明する。
First, the bromine complexing agent which is the most characteristic in the electrolytic solution of the metal-bromine battery according to the present invention will be described.

この臭素錯化剤は充電時に正極側で臭素イオンと結合
し、臭素錯化合物を形成し、電気エネルギーを保持する
という重要な役割を果たす。
The bromine complexing agent combines with bromine ions on the positive electrode side during charging to form a bromine complex compound, and plays an important role of retaining electric energy.

本発明においては臭素錯化剤としてハロゲン化N−メ
チルN−エチルモルホリニウム塩、好ましくはMEMB及び
ハロゲン化N−メチルN−エチルピロリジニウム塩、好
ましくはMEPBをそれぞれ0.25:0.75〜0.0:1.0の範囲とし
て用いる。また、両者のモル濃度の総和は0.75〜1mol/
、好ましくは1mol/である。ここで「0.75mol/以
上」としたのはこれ未満となると臭素錯化合物の形成能
力が減少し、フリーの臭素イオンによる自己放電が生ず
るためである。一方、「1mol/以下」としたのはこれ
を超えると電解液の内部抵抗が増加し、エネルギー効率
が低下するためである。
In the present invention, as a bromine complexing agent, a halogenated N-methyl N-ethylmorpholinium salt, preferably MEMB and a halogenated N-methyl N-ethylpyrrolidinium salt, preferably MEPB are each 0.25: 0.75 to 0.0: Use as a range of 1.0. The sum of the molar concentrations of both is 0.75 to 1 mol /
, Preferably 1 mol /. Here, the reason why the content is set to “0.75 mol / or more” is that if the content is less than 0.75 mol / min, the ability to form a bromine complex compound decreases, and self-discharge occurs due to free bromine ions. On the other hand, the reason why it is set to “1 mol / or less” is that if it exceeds this, the internal resistance of the electrolytic solution increases and the energy efficiency decreases.

なお、電解液の内部抵抗を減少するには前述したよう
に電導度向上剤を添加することで解決できる。これらの
ことを総合的に考察すると、臭素錯化剤の濃度は電解液
の内部抵抗を容認しうる最大限である「1mol/」と
し、フリーの臭素イオンの存在をできる限り減少するこ
とで全体としてエネルギー効率を高めることができると
言える。このことが本発明が達成せんとする中心的課題
であり、この課題は臭素錯化剤であるMEMB及びMEPBのモ
ル比を0.25:0.75〜0.0:1.0の範囲とすることで達成する
ことができる。
It should be noted that the internal resistance of the electrolytic solution can be reduced by adding a conductivity improver as described above. Considering these factors comprehensively, the concentration of the bromine complexing agent is set to 1 mol /, which is the maximum acceptable internal resistance of the electrolyte, and the total amount of bromine ions is reduced as much as possible. It can be said that energy efficiency can be improved. This is the central problem to be achieved by the present invention, and this problem can be achieved by setting the molar ratio of the bromine complexing agent, MEMB and MEPB, to the range of 0.25: 0.75 to 0.0: 1.0. .

次に本発明において使用する臭素錯化剤であるMEMB及
びMEPBの構造式とこの臭素錯化剤と臭素との反応式を示
す。
Next, the structural formulas of the bromine complexing agents MEMB and MEPB used in the present invention and the reaction formulas of the bromine complexing agent and bromine are shown.

なお、本発明に係る臭素錯化剤が好適に使用できる金
属−臭素電池としては亜鉛−臭素電池以外にカドミウム
−臭素電池,ニッケル−臭素電池などが挙げられる。
In addition, as a metal-bromine battery in which the bromine complexing agent according to the present invention can be preferably used, a cadmium-bromine battery, a nickel-bromine battery and the like can be mentioned in addition to a zinc-bromine battery.

F.実施例 以下、本発明に係る金属−臭素電池の臭素錯化剤の詳
細な説明を実施例に基づいて説明する。
F. Examples Hereinafter, a detailed description of the bromine complexing agent of the metal-bromine battery according to the present invention will be described based on examples.

実施例1 臭化亜鉛3mol/水溶液の上澄み液臭素濃度 (1)臭素添加量3mlを含む臭化亜鉛3mol/水溶液中に
臭素錯化剤としてMEMBとMEPBをそれぞれ1.0:00,0.75:0.
25,0.5:0.5,0.25:0.75,0.0:1.0のモル比で添加し、液温
22℃,40℃,50℃における上澄み液臭素濃度(mol/)を
測定した。
Example 1 Bromine concentration of supernatant of 3 mol of zinc bromide / aqueous solution (1) MEMB and MEPB were used as bromine complexing agents in a 3 mol / aqueous solution of zinc bromide containing 3 ml of bromine at 1.0: 00 and 0.75: 0, respectively.
25,0.5: 0.5,0.25: 0.75,0.0: 1.0
The bromine concentration (mol /) of the supernatant at 22 ° C, 40 ° C and 50 ° C was measured.

(2)その結果を表1に示す。表1に示すように臭素錯
化剤としてMEMBとMEPBを0.25:0.75〜0.0:1.0のモル比で
添加することにより臭化亜鉛水溶液の上澄み液の臭素濃
度を一層低減できることがわかる。このことは臭素錯化
剤としてMEPBのモル分率が高い方が臭素錯化合物の形成
能力が高いことを示している。
(2) The results are shown in Table 1. As shown in Table 1, it can be seen that the bromine concentration in the supernatant of the aqueous zinc bromide solution can be further reduced by adding MEMB and MEPB as the bromine complexing agent in a molar ratio of 0.25: 0.75 to 0.0: 1.0. This indicates that the higher the mole fraction of MEPB as the bromine complexing agent, the higher the ability to form a bromine complex compound.

実施例2 臭化亜鉛1mol/水溶液の上澄み液臭素濃度 (1)臭化亜鉛3mol/水溶液に代えて臭化亜鉛1mol/
水溶液を用いる以外は実施例1と同様な方法により上澄
み液臭素濃度(mol/)を測定した。
Example 2 Zinc bromide 1 mol / aqueous solution supernatant bromine concentration (1) Zinc bromide 1 mol / water instead of zinc bromide 3 mol / water solution
Supernatant bromine concentration (mol /) was measured in the same manner as in Example 1 except that an aqueous solution was used.

(2)その結果を表2に示す。表2に示すように臭素錯
化剤としてMEMBとMEPBを0.25:0.75〜0.1:1.0のモル比で
添加することにより臭素濃度を低減できることがわか
る。なお、このことは実施例1で示した結果と同様であ
る。
(2) The results are shown in Table 2. As shown in Table 2, it can be seen that the bromine concentration can be reduced by adding MEMB and MEPB as the bromine complexing agent in a molar ratio of 0.25: 0.75 to 0.1: 1.0. This is the same as the result shown in the first embodiment.

実施例3 臭化亜鉛1mol/水溶液の上澄み液臭素濃度 (1)臭素添加量3mlに代えて臭素添加量20mlを用いる
以外は実施例2と同様な方法により上澄み液臭素濃度
(mol/)を測定した。
Example 3 Supernatant bromine concentration of 1 mol of zinc bromide / aqueous solution (1) Supernatant bromine concentration (mol /) was measured in the same manner as in Example 2 except that bromine addition amount of 20 ml was used instead of bromine addition amount of 3 ml. did.

(2)その結果を表3に示す。表3に示すように臭素錯
化剤としてMEMBとMEPBを0.25:0.75〜0.0:1.0のモル比で
添加することにより臭素濃度を低減できることがわか
る。なお、このことは実施例1及び2で示した結果と同
様である。
(2) The results are shown in Table 3. As shown in Table 3, it is found that the bromine concentration can be reduced by adding MEMB and MEPB as the bromine complexing agent in a molar ratio of 0.25: 0.75 to 0.0: 1.0. This is the same as the results shown in Examples 1 and 2.

実施例4 臭化亜鉛1mol/水溶液中における1mol/臭
素錯化剤(MEMB,MEPB混合)中のMEPBのモル分率(%)
と上澄み液臭素濃度の関係 (1)臭素濃度0.3mol/を含む臭化亜鉛1mol/水溶液
中に臭素錯化剤(MEMB,MEPB混合)1mol/中のMEMBをそ
れぞれ0,25%,50%,75%,100%のモル分率で添加し、液
温22℃,40℃,50℃における上澄み液臭素濃度(mol/)
を測定した。
Example 4 1 mol / mol of zinc bromide / mol ratio of MEPB in bromine complexing agent (MEMB, MEPB mixture) in aqueous solution (%)
And the supernatant bromine concentration (1) 1 mol / mol of bromine complexing agent (MEMB / MEPB mixture) in 1 mol / mol of zinc bromide containing 0.3 mol / of bromine, and 0,25%, 50%, The bromine concentration of the supernatant liquid at a liquid temperature of 22 ° C, 40 ° C, and 50 ° C was added at a molar fraction of 75% and 100% (mol /).
Was measured.

(2)その結果を第1図に示す。第1図に示すように臭
素錯化剤としてMEPBのモル分率が増加することにより臭
化亜鉛水溶液中の臭素濃度が低下することがわかる。こ
のことは臭素錯化剤としてMEPBのモル分率が高い方が臭
素錯化合物の形成能力が高いことを示している。
(2) The results are shown in FIG. As shown in FIG. 1, it can be seen that the bromine concentration in the zinc bromide aqueous solution decreases as the mole fraction of MEPB as the bromine complexing agent increases. This indicates that the higher the mole fraction of MEPB as the bromine complexing agent, the higher the ability to form a bromine complex compound.

実施例5 臭化亜鉛3mol/水溶液中における1mol/臭
素錯化剤(MEMB,MEPB混合)中のMEPBのモル分率(%)
と上澄み液臭素濃度の関係 (1)臭化亜鉛1mol/水溶液に代えて臭化亜鉛3mol/
水溶液を用いること以外は実施例4と同様な方法により
上澄み液臭素濃度(mol/)を測定した。
Example 5 3 mol of zinc bromide / mol of MEPB in 1 mol / bromine complexing agent (MEMB, MEPB mixture) in aqueous solution (%)
Relationship between the concentration of bromine and the supernatant liquid (1) Zinc bromide 3 mol /
Supernatant bromine concentration (mol /) was measured in the same manner as in Example 4 except that an aqueous solution was used.

(2)その結果を第2図に示す。第2図に示すように第
1図とほぼ同様に臭素錯化剤としてMEPBのモル分率が高
い方が臭素錯化合物の形成能力が高いことがわかる。
(2) The results are shown in FIG. As shown in FIG. 2, almost the same as FIG. 1, the higher the mole fraction of MEPB as the bromine complexing agent, the higher the ability to form a bromine complex compound.

実施例6 臭化亜鉛1mol/水溶液中における1mol/臭
素錯化剤(MEMB,MEPB混合)中のMEPBのモル分率(%)
と上澄み液臭素濃度の関係 (1)臭素濃度0.3mol/に代えて臭素濃度2.0mol/を
用いる以外は実施例4と同様な方法により上澄み液臭素
濃度(mol/)を測定した。
Example 6 1 mol / mol mol of zinc bromide / MEPB in bromine complexing agent (mixture of MEMB and MEPB) (%) in aqueous solution
(1) The bromine concentration (mol /) in the supernatant was measured in the same manner as in Example 4 except that the bromine concentration was 2.0 mol / instead of 0.3 mol /.

(2)その結果を第3図に示す。第3図に示すように第
1図及び第2図とほぼ同様に臭素錯化剤としてMEPBのモ
ル分率が高い方が臭素錯化合物の形成能力が高いことが
わかる。
(2) The results are shown in FIG. As shown in FIG. 3, almost the same as FIGS. 1 and 2, it can be seen that the higher the molar fraction of MEPB as the bromine complexing agent, the higher the ability to form a bromine complex compound.

実施例7 亜鉛−臭素電池に本発明に係る臭素錯化剤を
使用した場合の試験結果 (1)臭素亜鉛2.25mol/水溶液、塩化亜鉛0.4mol/
、塩化アンモニウム1.0mol/、及び臭素錯化剤1mol/
とした電解液組成において、前記臭素錯化剤としてME
MBとMEPBをそれぞれ0.25:0.75,0.0:1.0のモル比で添加
し、電極面積830cm2で5セルを積層した亜鉛−臭素電池
の運転試験を行った。
Example 7 Test results when the bromine complexing agent according to the present invention was used in a zinc-bromine battery (1) 2.25 mol of zinc bromine / aqueous solution, 0.4 mol of zinc chloride /
, Ammonium chloride 1.0 mol /, and bromine complexing agent 1 mol /
In the electrolytic solution composition, ME was used as the bromine complexing agent.
MB and MEPB were added at a molar ratio of 0.25: 0.75 and 0.0: 1.0, respectively, and an operation test of a zinc-bromine battery in which five cells were stacked with an electrode area of 830 cm 2 was performed.

(2)また臭素錯化剤としてMEMBとMEPBをそれぞれ0.5:
0.5のモル比で添加したこと以外は実施例7と同様な方
法により亜鉛−臭素電池の運転試験を行ったものを比較
例とした。
(2) MEMB and MEPB as bromine complexing agents are each 0.5:
A comparative example was obtained by performing an operation test of a zinc-bromine battery in the same manner as in Example 7 except that the addition was performed at a molar ratio of 0.5.

(3)(1)及び(2)の試験結果を表4に示す。表4
に示すように実施例7(1)で示した臭素錯化剤として
MEMBとMEPBをそれぞれ0.25:0.75,0.0:1.0のモル比で添
加したものが比較例(2)で示した臭素錯化剤としてME
MBとMEPBを0.5:0.5のモル比で添加したものに比し、ク
ーロン効率,電圧効率及びエネルギー効率に優れること
がわかる。
(3) Table 4 shows the test results of (1) and (2). Table 4
As shown in Example 7, as the bromine complexing agent shown in Example 7 (1)
MEMB and MEPB were added at a molar ratio of 0.25: 0.75 and 0.0: 1.0, respectively, to obtain ME as a bromine complexing agent shown in Comparative Example (2).
It can be seen that the coulomb efficiency, voltage efficiency and energy efficiency are superior to those in which MB and MEPB are added in a molar ratio of 0.5: 0.5.

電解液の組成 ZnBr2 2.25mol/ ZnCl2 0.45mol/ NH4Cl 1.0 mol/ 臭素錯化剤 1.0 mol/ G.発明の効果 本発明は上述のように構成されることから、臭素錯化
合物の形成能力を高めることができ、これにより電解液
中のフリーの臭素イオンを減少できる。
Composition of electrolytic solution ZnBr 2 2.25 mol / ZnCl 2 0.45 mol / NH 4 Cl 1.0 mol / bromine complexing agent 1.0 mol / G. Effect of the Invention Since the present invention is constituted as described above, formation of a bromine complex compound Capacity can be increased, thereby reducing free bromine ions in the electrolyte.

従って本発明に係る亜鉛−臭素電池の臭素錯化剤によ
ればフリーの臭素イオンの存在による自己放電を減少で
き、そのため亜鉛−臭素電池のクーロン効率,電圧効率
及びエネルギー効率を向上させることができる。
Therefore, according to the bromine complexing agent of the zinc-bromine battery according to the present invention, self-discharge due to the presence of free bromine ions can be reduced, and thus the coulomb efficiency, voltage efficiency and energy efficiency of the zinc-bromine battery can be improved. .

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第3図は臭素錯化剤中のMEPBのモル分率と上澄
み液臭素濃度の関係を示すグラフである。
1 to 3 are graphs showing the relationship between the mole fraction of MEPB in the bromine complexing agent and the bromine concentration in the supernatant.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 12/08──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 12/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ハロゲン化N−メチルN−エチルモルホリ
ニウム塩とハロゲン化N−メチルN−エチルピロリジニ
ウム塩とのモル比を0.25:0.75〜0.0:1.0としたことを特
徴とする金属−臭素電池の臭素錯化剤。
A metal characterized in that the molar ratio of halogenated N-methyl N-ethylmorpholinium salt to halogenated N-methyl N-ethylpyrrolidinium salt is 0.25: 0.75 to 0.0: 1.0. A bromine complexing agent for bromine batteries.
JP2119256A 1990-05-09 1990-05-09 Bromine complexing agent for metal-bromine batteries Expired - Lifetime JP2853262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119256A JP2853262B2 (en) 1990-05-09 1990-05-09 Bromine complexing agent for metal-bromine batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119256A JP2853262B2 (en) 1990-05-09 1990-05-09 Bromine complexing agent for metal-bromine batteries

Publications (2)

Publication Number Publication Date
JPH0417273A JPH0417273A (en) 1992-01-22
JP2853262B2 true JP2853262B2 (en) 1999-02-03

Family

ID=14756829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119256A Expired - Lifetime JP2853262B2 (en) 1990-05-09 1990-05-09 Bromine complexing agent for metal-bromine batteries

Country Status (1)

Country Link
JP (1) JP2853262B2 (en)

Also Published As

Publication number Publication date
JPH0417273A (en) 1992-01-22

Similar Documents

Publication Publication Date Title
CA1066763A (en) Metal-halogen electrochemical cell
WO2004095602A2 (en) Battery with bifunctional electrolyte
US7297437B2 (en) Battery with gelled electrolyte
JPH0357580B2 (en)
US4491625A (en) Zinc-bromine batteries with improved electrolyte
JP3380930B2 (en) Aluminum non-aqueous electrolyte secondary battery
US11177476B2 (en) Complexed iodine-based electrolyte and redox flow battery comprising the same
JP3324101B2 (en) Aluminum non-aqueous electrolyte, battery using the same, and aluminum electrodeposition method
JPS6313310B2 (en)
US11258103B2 (en) Zinc alkaline secondary battery including anchored electrolyte additives
US4631240A (en) Electrochemical cell
JPS6327829B2 (en)
US20100062327A1 (en) Non-toxic alkaline electrolyte with additives for rechargeable zinc cells
JP2853262B2 (en) Bromine complexing agent for metal-bromine batteries
JP2853263B2 (en) Electrolyte for metal-bromine batteries
JPH0722028B2 (en) Solid bromine complexing device
KR102028800B1 (en) An electrolyte for hybrid flow cell including bromine complex agent
US3447971A (en) Neutral secondary battery
EP0109223A1 (en) Electrolyte for zinc-bromine storage batteries
JP2945944B2 (en) Non-aqueous electrolyte for lithium secondary batteries
KR102650133B1 (en) Recovery method for electrolyte of zinc-bromine redox flow battery
JP2819201B2 (en) Lithium secondary battery
JP2977600B2 (en) Lead storage battery
JP2518257B2 (en) Zinc bromide secondary battery charging method
JP2967634B2 (en) Zinc-bromine battery