JPH0417274A - Electrolyte of metal-bromine battery - Google Patents

Electrolyte of metal-bromine battery

Info

Publication number
JPH0417274A
JPH0417274A JP2119257A JP11925790A JPH0417274A JP H0417274 A JPH0417274 A JP H0417274A JP 2119257 A JP2119257 A JP 2119257A JP 11925790 A JP11925790 A JP 11925790A JP H0417274 A JPH0417274 A JP H0417274A
Authority
JP
Japan
Prior art keywords
bromine
electrolyte
methyl
complexing agent
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2119257A
Other languages
Japanese (ja)
Other versions
JP2853263B2 (en
Inventor
Hiroshi Hosono
寛 細野
Yasuo Ando
保雄 安藤
Yuji Hashiguchi
橋口 裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2119257A priority Critical patent/JP2853263B2/en
Publication of JPH0417274A publication Critical patent/JPH0417274A/en
Application granted granted Critical
Publication of JP2853263B2 publication Critical patent/JP2853263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE:To heighten electric energy efficiency of a metal-bromine battery by adding a conductivity improving agent containing chlorine ion and a bromine complexing agent of N-methyl-N-ethylmorpholinium halide salt and N-methyl-N- ethylpyrrolidinium halide salt in a specified mole ratio to an electrolyte. CONSTITUTION:An aqueous zinc bromide solution in 3 mol/l concentration, a conductivity improving agent having chlorine ion, and a bromine complexing agent of N-methyl-N-ethylmorpholinium halide salt and N-methyl-N- ethylpyrrolidinium in mole ratio within (0.25 : 0.75) to (0.0 : l.0) are contained in an electrolyte. As a result, ability to form a bromine complex compound is heightened and free bromine ion in the electrolyte is decreased. Consequently, self-discharge due to the existance of free bromine ion is decreased and Coulomb efficiency of a zinc-bromine battery and voltage efficiency and energy efficiency are improved.

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は金属−臭素電池の電解液に関し、特に電気エネ
ルギー効率の高い金属−臭素電池の電解液に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an electrolyte for metal-bromine batteries, and more particularly to an electrolyte for metal-bromine batteries with high electrical energy efficiency.

B1発明の概要 本発明は金属−臭素電池の電解液において、塩素イオン
を有する電導変向上剤、及びハロゲン化N−メチルN−
エチルモルホリニウム塩とハロゲン化N−メチルN−エ
チルピロリノニウム塩とのモル比か0.25 : 0.
75〜00・ 1.0である臭素錯化剤を加えることに
より、金属−臭素電池における電気工ネルキー効率を高
めたものである。
B1 Summary of the Invention The present invention provides a conductivity modifier having chlorine ions and a halogenated N-methyl N-
The molar ratio of ethylmorpholinium salt to halogenated N-methyl N-ethylpyrrolinonium salt is 0.25:0.
By adding a bromine complexing agent of 75-00.1.0, the electrician's energy efficiency in metal-bromine batteries is increased.

C0従来の技術 近年、電池電力貯蔵システムの開発が促進されており、
その−環として亜鉛−臭素電池が開発されている。
C0 Conventional Technology In recent years, the development of battery power storage systems has been promoted.
Zinc-bromine batteries have been developed as part of this cycle.

この電池は臭素亜鉛水溶液を電解液とし、カーボンプラ
スチックシートをバイポーラ電極板として構成したコン
パクトな液循環型の積層電池である。充電時は負極でZ
n”+2e−−Zn (1)の反応により負極板上に亜
鉛か析出し、正極で2Br−+Q゛・Br−−”Q゛・
Br3−+2e−(2)の反応により臭素が発生すると
同時に臭素錯化物(Q”・B r−)と結合して臭素錯
化合物(Q”Br*−)を生成する。この臭素錯化合物
は油状物質で電解液から分離して正極タンクの底に沈澱
する。
This battery is a compact liquid circulation type stacked battery that uses a bromine zinc aqueous solution as the electrolyte and carbon plastic sheets as bipolar electrode plates. Z at the negative electrode during charging
Due to the reaction of n''+2e--Zn (1), zinc is precipitated on the negative electrode plate, and 2Br-+Q''・Br--''Q''・
Bromine is generated by the reaction of Br3-+2e-(2) and simultaneously combines with the bromine complex (Q".Br-) to produce a bromine complex (Q"Br*-). This bromine complex compound is separated from the electrolyte as an oily substance and precipitates at the bottom of the positive electrode tank.

一方、放電時は負極で上記(1)の逆反応により亜鉛が
酸化されて亜鉛イオンとなって電解液に溶解し、正極で
上記(2)の逆反応により臭素錯化合物が臭素イオンと
臭素錯化物に分離する。
On the other hand, during discharging, zinc is oxidized at the negative electrode through the reverse reaction of (1) above, becoming zinc ions and dissolved in the electrolyte, and at the positive electrode, the reverse reaction of (2) above converts bromine complex compounds into bromine ions and bromine complexes. Separate into chemical substances.

このようにして臭素−亜鉛二次電池は各電極上での臭素
錯化剤による臭素の結合・解離を通じて高い電気エネル
ギーを放出しうる。
In this way, the bromine-zinc secondary battery can release high electrical energy through the bonding and dissociation of bromine by the bromine complexing agent on each electrode.

従って臭素錯化剤は充電時における臭素錯化合物を形成
し、かつ放電時に臭素を解離する役割を果たすことから
、臭素−亜鉛二次電池のエネルギー効率に重大な影響を
及はす。
Therefore, the bromine complexing agent plays the role of forming a bromine complex compound during charging and dissociating bromine during discharging, and has a significant influence on the energy efficiency of the bromine-zinc secondary battery.

このため本発明者らは臭素錯化剤としてN−メチルN−
エチルモルホリニウムブロマイド(以下、MEMBとい
う)及びN−メチルN−エチルピロリニウムブロマイド
(以下、MEPBという)を3mo12/I以下の臭化
亜鉛水溶液に対しImall!/&を用い、更に塩素を
有する電導変向上剤1mo&/aを加えることにより臭
素錯化合物の形成能力を強化しこれにより臭素の拡散に
よる自己放電を防止すると共に電解液の電気抵抗を減少
し、全体として臭素−亜鉛二次電池のエネルギー効率を
高めることに成功した。
Therefore, the present inventors used N-methyl N- as a bromine complexing agent.
Ethylmorpholinium bromide (hereinafter referred to as MEMB) and N-methyl N-ethylpyrrolinium bromide (hereinafter referred to as MEPB) to a zinc bromide aqueous solution of 3 mo12/I or less. By using /& and further adding 1 mo&/a of a conductivity modifier having chlorine, the ability to form a bromine complex compound is strengthened, thereby preventing self-discharge due to bromine diffusion and reducing the electrical resistance of the electrolytic solution. Overall, we succeeded in increasing the energy efficiency of the bromine-zinc secondary battery.

D8発明が解決しようとする課題 しかしながら、本発明者らは臭素錯化剤としてMEMB
及びMEPBをImoff/ffの濃度で用いていたが
、その後の研究によりMEMBとMEPBとのモル比に
よっては更に高いエネルギー効率か得られることが判明
した。
D8 Problems to be Solved by the Invention However, the present inventors used MEMB as a bromine complexing agent.
and MEPB were used at a concentration of Imoff/ff, but subsequent research revealed that even higher energy efficiency could be obtained depending on the molar ratio of MEMB and MEPB.

従って本発明はこの問題を解決するために創案されたも
のであって、 臭素錯化剤としてMEMBとMEPBとのモル比を0.
25:0.75〜0.〇二1.0にすることによりエネ
ルギー効率をより一層高めた金属−臭素電池の電解液を
提供することを目的とする。
Therefore, the present invention was devised to solve this problem, and the molar ratio of MEMB and MEPB as a bromine complexing agent is set to 0.
25:0.75-0. The purpose of the present invention is to provide an electrolytic solution for a metal-bromine battery that further improves energy efficiency by increasing the energy efficiency to 21.0.

81課題を解決するための手段及び作用本発明者らは金
属−臭素電池の電解液中に臭素錯化剤をM、EMBとへ
4EPBとのモル比の0.25:0.75〜0.0 :
 1.0  で加えることにより金属−臭素電池のエネ
ルギー効率をより一層高めることに成功し、本発明に係
る金属−臭素電池の電解液を完成し1こ。
81 Means and Effects for Solving the Problems The present inventors added a bromine complexing agent to the electrolyte solution of a metal-bromine battery at a molar ratio of M, EMB to 4EPB of 0.25:0.75 to 0.75. 0:
We succeeded in further increasing the energy efficiency of the metal-bromine battery by adding 1.0% of the electrolyte, and completed the electrolyte solution for the metal-bromine battery according to the present invention.

即ち、本発明に係る金属−臭素電池の電解液は、3mo
f!/&以下の臭化亜鉛水溶液、塩素イオンを有する電
導変向上剤、及びハロゲン化N−メチルN−エチルモル
ホリニウム塩とハロゲン化N−メチルN−エチルピロリ
ジニウム塩とのモル比か0.25 : 0.75〜0.
0 : 1.0である臭素錯化剤を含むことを、その解
決手段としている。
That is, the electrolyte solution of the metal-bromine battery according to the present invention is 3 mo
f! /& The following zinc bromide aqueous solution, conductivity modifier having chlorine ions, and molar ratio of halogenated N-methyl N-ethylmorpholinium salt to halogenated N-methyl N-ethylpyrrolidinium salt is 0 .25: 0.75-0.
The solution is to include a bromine complexing agent with a ratio of 0:1.0.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

まず、本発明に係る金属−臭素電池の電解液としては3
 mo(/ Q以下の臭化亜鉛水溶液を用いる。
First, as the electrolyte for the metal-bromine battery according to the present invention, 3
Use a zinc bromide aqueous solution of mo(/Q or less).

ここで73moρ/a以下」としたのは臭化亜鉛の濃度
が3mo(1/(lを超えると電解液の内部抵抗が増加
するため、エネルギー効率が低下するためである。
The reason why the concentration of zinc bromide is set at 73moρ/a or less is that if the concentration of zinc bromide exceeds 3mo(1/(l), the internal resistance of the electrolytic solution increases, resulting in a decrease in energy efficiency.

また、本発明に係る塩素イオンを有する電導変向上剤と
は例えば塩化カリウム(以下、KCgという)、塩化ア
ンモニウム(以下、NH2O(という)などが挙げられ
、塩素イオンの濃度を0.5tnoQ/ (!〜4 m
off/ (lの範囲、好ましくは1mo(1!/Cで
用いる。
Further, the conductivity improving agent having chlorine ions according to the present invention includes, for example, potassium chloride (hereinafter referred to as KCg), ammonium chloride (hereinafter referred to as NH2O), and the concentration of chlorine ions is 0.5tnoQ/( ! ~ 4 m
off/(l range, preferably 1mo(1!/C).

ここでr O,5mo(1/(1以上」としたのは塩素
イオンが0 、5 moQ/ (!未満となると電解液
の液抵抗が高くエネルギー効率が低下するためである。
The reason why rO,5mo(1/(1 or more)) is set here is that when the chlorine ion is less than 0,5moQ/(!), the liquid resistance of the electrolytic solution becomes high and the energy efficiency decreases.

方、r 4 moI2/(l以下」としたのは塩素イオ
ンが4mo(1/(lを超えるといわゆる浮動充電に際
し負極側で水素が発生し、エネルギー利用率が50%ま
で低下するためである。従って本発明に係る金属臭素電
池の電解液においてはこれらの調和点として塩素イオン
を有する電導変向上剤をImo12/12の濃度で用い
るのが好ましいと言える。
On the other hand, the reason for setting r 4 moI2/(l or less) is that if chlorine ions exceed 4 mo(1/(l), hydrogen will be generated on the negative electrode side during so-called floating charging, and the energy utilization rate will drop to 50%. Therefore, it can be said that in the electrolyte solution of the metal bromine battery according to the present invention, it is preferable to use a conductivity modifier having a chlorine ion at a concentration of Imo12/12 as a point of balance.

なお、本発明に係る金属−臭素電池の電解液では特に必
要とされないが負極側での水素発生防止剤として亜鉛化
合物、例えばZ n C(! 2. Z n F 2な
どを添加してもよい。これにより浮動充電時における負
極側での水素の発生を好適に防止でき、エネルギー利用
率を一層高めることもてきる。
Although not particularly required in the electrolyte solution of the metal-bromine battery according to the present invention, a zinc compound such as ZnC(!2.ZnF2) may be added as a hydrogen generation inhibitor on the negative electrode side. As a result, generation of hydrogen on the negative electrode side during floating charging can be suitably prevented, and the energy utilization rate can be further increased.

次に、本発明に係る金属−臭素電池の電解液において最
も特徴をなす臭素錯化剤について説明する。
Next, the bromine complexing agent that is most characteristic in the electrolyte solution of the metal-bromine battery according to the present invention will be explained.

この臭素錯化剤は充電時に正極側で臭素イオンと結合し
、臭素錯化合物を形成し、電気エネルギーを保持すると
いう重要な役割を果たす。
This bromine complexing agent plays an important role in binding with bromine ions on the positive electrode side during charging, forming a bromine complex, and retaining electrical energy.

本発明においては臭素錯化剤としてハロゲン化N−メチ
ルN−エチルモルホリニウム塩、好ましくはMEMB及
びハロケン化N−メチルN−エチルピロリノニウム塩、
好ましくはMEPBをそれぞれ0.25:0.75〜0
.0・1.0 の範囲として用いる。また、両者のモル
濃度の総和は075〜I moQ/Q 、好ましくは1
moc/12である。
In the present invention, the bromine complexing agent is a halogenated N-methyl N-ethylmorpholinium salt, preferably MEMB and a halogenated N-methyl N-ethylpyrrolinonium salt,
Preferably MEPB is 0.25:0.75-0, respectively.
.. Used as a range of 0.1.0. In addition, the sum of the molar concentrations of both is 075 to I moQ/Q, preferably 1
moc/12.

ここてr 0 、75 moQ/Q以上」としたのはこ
れ未満となると臭素錯化合物の形成能力が減少し、フリ
ーの臭素イオンによる自己放電か生ずるためである。一
方、r1moρ/a以下」としたのはこれを超えると電
解液の内部抵抗が増加し、エネルギー効率が低下するた
めである。
The reason why r 0 is set to 75 moQ/Q or more is because if it is less than this, the ability to form a bromine complex compound decreases, and self-discharge due to free bromine ions occurs. On the other hand, the reason why it is set as "r1moρ/a or less" is because if it exceeds this, the internal resistance of the electrolytic solution increases and the energy efficiency decreases.

なお、電解液の内部抵抗を減少するには前述したように
電導変向上剤を添加することて解決できる。これらのこ
とを総合的に考察すると、臭素錯化剤の濃度は電解液の
内部抵抗を容認しうる最大限であるr1moρz’lと
し、フリーの臭素イオンの存在をできる限り減少するこ
とで全体としてエネルギー効率を高めることかできると
言える。このことか本発明が達成せんとする中心的課題
てあり、この課題は臭素錯化剤であるM E M B及
びMEPBのモル比を0.25・0.75〜0.01.
0の範囲とすることで達成することかできる。
Note that the internal resistance of the electrolytic solution can be reduced by adding a conductivity modifier as described above. Considering these things comprehensively, the concentration of the bromine complexing agent is set to r1moρz'l, which is the maximum that allows the internal resistance of the electrolyte, and the presence of free bromine ions is reduced as much as possible, so that the overall It can be said that energy efficiency can be improved. This is the central problem that the present invention aims to achieve, and this problem is achieved by adjusting the molar ratio of the bromine complexing agent MEMB and MEPB to 0.25.0.75 to 0.01.
This can be achieved by setting the range to 0.

次に本発明において使用する臭素錯化剤であるMEMB
及びMEPBの構造式とこの臭素錯化剤と臭素との反応
式を示す。
Next, MEMB, which is a bromine complexing agent used in the present invention,
The structural formula of MEPB and the reaction formula between this bromine complexing agent and bromine are shown.

MEPB MEMB (N−メチルN−工fルビaリジニウムプaフィト)(
N−メチルN−エチルモルホリニウムブaフィト)M、
W   194.19 M、W、   210.19 QBr+nBr2:  Q(Bra)nBr(Q:臭素
錯化剤) (但し、n=1〜4)なお、本発明に係る電
解液が好適に使用できる金属−臭素電池としては亜鉛−
臭素電池以外にカドミウム−臭素電池、ニッケルー臭素
電池などが挙げられる。
MEPB MEMB (N-Methyl
N-methyl N-ethylmorpholinium aphyto) M,
W 194.19 M, W, 210.19 QBr+nBr2: Q (Bra) nBr (Q: bromine complexing agent) (however, n = 1 to 4) Note that metals for which the electrolytic solution according to the present invention can be suitably used - Zinc for bromine batteries
In addition to bromine batteries, examples include cadmium-bromine batteries and nickel-bromine batteries.

F、実施例 以下、本発明に係る金属−臭素電池の電解液の詳細な説
明を参考例及び実施例に基づいて説明する。
F. Examples Hereinafter, a detailed explanation of the electrolyte solution of the metal-bromine battery according to the present invention will be explained based on Reference Examples and Examples.

参考例1 臭化亜鉛3moC/12水溶液の上澄み液臭
素濃度 (1)臭素添加量31を含む臭化亜鉛3 mof2/ρ
水溶液中に臭素錯化剤としてMEMBとMEPBをそれ
ぞれ1.0:00 0.75:0.25 0.5・0.
5,0.25 : 0.75,0.0 : 1.0  
のモル比で添加し、液温22°C340℃、50℃にお
ける上澄み液臭素濃度(moI2/σ)を測定した。
Reference Example 1 Bromine concentration in supernatant liquid of zinc bromide 3moC/12 aqueous solution (1) Zinc bromide 3mof2/ρ containing bromine addition amount 31
MEMB and MEPB were added as bromine complexing agents in the aqueous solution at 1.0:00 0.75:0.25 0.5 and 0.0, respectively.
5,0.25: 0.75,0.0: 1.0
The bromine concentration (mol2/σ) of the supernatant liquid was measured at liquid temperatures of 22°C, 340°C, and 50°C.

(2)その結果を表1に示す。表1に示すように臭素錯
化剤としてMEMBとMEPBを0250.75〜0.
0 : 1.0のモル比で添加することにより臭化亜鉛
水溶液の上澄み液の臭素濃度を一層低減できることがわ
かる。このことは臭素錯化剤としてMEPBのモル分率
が高い方が臭素錯化合物の形成能力が高いことを示して
いる。
(2) The results are shown in Table 1. As shown in Table 1, MEMB and MEPB were used as bromine complexing agents in the range of 0.250.75 to 0.025.
It can be seen that by adding at a molar ratio of 0:1.0, the bromine concentration in the supernatant liquid of the zinc bromide aqueous solution can be further reduced. This indicates that the higher the molar fraction of MEPB as a bromine complexing agent, the higher the ability to form a bromine complex compound.

表1:臭化亜鉛amo&/Q水溶液の上澄み液臭素濃度
075〜0.0 : 1.0  のモル比で添加するこ
とにより臭素濃度を低減できることがわかる。なお、こ
のことは参考例1で示した結果と同様である。
Table 1: Supernatant solution of zinc bromide amo&/Q aqueous solution Bromine concentration: 075 to 0.0: It can be seen that the bromine concentration can be reduced by adding at a molar ratio of 0.0:1.0. Note that this is similar to the result shown in Reference Example 1.

表2:臭化亜鉛1moρ/ρ水溶液の上澄み液臭素a度
臭素添加量 3靜 参考例2 臭化亜鉛1moQ/Q水溶液の上澄み液臭素
濃度 (1)臭化亜鉛3moρ/ρ水溶液に代えて臭化亜鉛1
mo12/(!水溶液を用いる以外は参考例Iと同様な
方法により上澄み液臭素濃度(mo(/C)を測定した
Table 2: Amount of bromine added in the supernatant liquid of zinc bromide 1 mo ρ/ρ aqueous solution 3 ts Reference example 2 Bromine concentration in the supernatant liquid of zinc bromide 1 mo Q/Q aqueous solution (1) Odor added in place of zinc bromide 3 mo ρ/ρ aqueous solution Zinc chloride 1
The supernatant bromine concentration (mo(/C)) was measured in the same manner as in Reference Example I except that mo12/(!Aqueous solution was used.

(2)その結果を表2に示す。表2に示すように臭素錯
化剤としてMEMBとMEPBを0.25臭素添加量 
3m(1 参考例3 臭化亜鉛1mof7/ρ水溶液の上澄み液臭
素濃度 (1)臭素添加量3mQに代えて臭素添加量20*(!
を用いる以外は参考例2と同様な方法により上澄み液臭
素濃度(mo(10を測定した。
(2) The results are shown in Table 2. As shown in Table 2, MEMB and MEPB were used as bromine complexing agents in an amount of 0.25 bromine added.
3 m (1 Reference Example 3 Bromine concentration in supernatant liquid of zinc bromide 1mof7/ρ aqueous solution (1) Added amount of bromine 20 * (!
The supernatant liquid bromine concentration (mo(10) was measured in the same manner as in Reference Example 2 except that bromine concentration (mo(10) was used.

(2)その結果を表3に示す。表3に示すように臭素錯
化剤としてMEMBとMEPBを0.25:0.75〜
0.0 : 1.0  のモル比で添加することにより
臭素濃度を低減できることがわかる。なお、このことは
参考例1及び2で示した結果と同様である。
(2) The results are shown in Table 3. As shown in Table 3, MEMB and MEPB were mixed as bromine complexing agents from 0.25:0.75 to
It can be seen that the bromine concentration can be reduced by adding at a molar ratio of 0.0:1.0. Note that this is similar to the results shown in Reference Examples 1 and 2.

(以下余白) 表3=臭化亜鉛1moC/(2水溶液の上澄み液臭素濃
度臭素添加量 20m(7 (1)臭素濃度0 、3 moQ/ρを含む臭化亜鉛1
moρ/Q水溶液中に臭素錯化剤(MEMB、MEPB
混合) I mo(1/(l中のMEPBをそれぞれ0
.25%、50%、75%、IQO%のモル分率で添加
し、液温22℃、40℃、50℃における上澄み液臭素
濃度(moσ/a)を測定した。
(Left below) Table 3 = Zinc bromide 1 moC/(2 Aqueous solution supernatant bromine concentration Bromine addition amount 20 m (7) (1) Zinc bromide 1 containing bromine concentration 0, 3 moQ/ρ
Bromine complexing agents (MEMB, MEPB) in moρ/Q aqueous solution
mixture) I mo(1/(MEPB in l is 0)
.. It was added at a mole fraction of 25%, 50%, 75%, and IQO%, and the bromine concentration (moσ/a) in the supernatant liquid was measured at liquid temperatures of 22°C, 40°C, and 50°C.

(2)その結果を第1図に示す。第1図に示すように臭
素錯化剤としてMEPBのモル分率が増加することによ
り臭化亜鉛水溶液中の臭素濃度が低下することがわかる
。このことは臭素錯化剤としてMEPBのモル分率か高
い方が臭素錯化合物の形成能力が高いことを示している
(2) The results are shown in Figure 1. As shown in FIG. 1, it can be seen that as the molar fraction of MEPB as a bromine complexing agent increases, the bromine concentration in the zinc bromide aqueous solution decreases. This indicates that the higher the molar fraction of MEPB as a bromine complexing agent, the higher the ability to form a bromine complex compound.

(1)臭化亜鉛1mof2/12水溶液に代えて臭化亜
鉛3mo(1/Q水溶液を用いること以外は参考例4と
同様な方法により上澄み液臭素濃度(mo(/(1)を
測定した。
(1) The bromine concentration (mo(/(1)) of the supernatant solution was measured in the same manner as in Reference Example 4 except that a 1/Q aqueous solution of zinc bromide was used instead of a 1 mof2/12 aqueous solution of zinc bromide.

(2)その結果を第2図に示す。第2図に示すように第
1図とほぼ同様に臭素錯化剤としてMEPBのモル分率
が高い方が臭素錯化合物の形成能力が高いことかわかる
(2) The results are shown in Figure 2. As shown in FIG. 2, similar to FIG. 1, it can be seen that the higher the molar fraction of MEPB as the bromine complexing agent, the higher the ability to form a bromine complex compound.

(1)臭素濃度0,3moρ/aに代えて臭素濃度2 
、0 mof!/ Qを用いる以外は参考例4と同様な
方法により上澄み液臭素濃度(moc/12)を測定し
た。
(1) Bromine concentration 2 instead of bromine concentration 0.3moρ/a
, 0 mof! The supernatant bromine concentration (moc/12) was measured in the same manner as in Reference Example 4 except that /Q was used.

(2)その結果を第3図に示す。第3図に示すように第
1図及び第2図とほぼ同様に臭素錯化剤としてMEPB
のモル分率か高い方が臭素錯化合物の形成能力が高いこ
とがわかる。
(2) The results are shown in Figure 3. As shown in FIG. 3, MEPB is used as a bromine complexing agent in the same way as in FIGS. 1 and 2.
It can be seen that the higher the molar fraction of , the higher the ability to form a bromine complex compound.

(1)臭素亜鉛2.25moQ、/ρ水溶液、塩化亜鉛
0 、4 mof2/ Q、塩化アンモニウム1 、0
 mof!/ Q、及び臭素錯化剤1mof!/12と
した電解液組成において、前記臭素錯化剤としてMEM
EとMEPBをそれぞれ0.25 :0.75.o、o
 : 1.0のモル比で添加し、電極面積830cm2
で5セルを積層した亜鉛−臭素電池の運転試験を行った
(1) Zinc bromine 2.25 moQ, /ρ aqueous solution, zinc chloride 0,4 mof2/Q, ammonium chloride 1,0
mof! / Q, and bromine complexing agent 1mof! /12, MEM is used as the bromine complexing agent.
E and MEPB are respectively 0.25:0.75. o, o
: Added at a molar ratio of 1.0, electrode area 830 cm2
An operational test was conducted on a zinc-bromine battery consisting of five stacked cells.

(2)また臭素錯化剤としてMEMBとMEPBをそれ
ぞれ0.5 : 0.5のモル比で添加したこと以外は
実施例1と同様な方法により亜鉛〜臭素電池の運転試験
を行ったものを比較例とした。
(2) In addition, a zinc-bromine battery was subjected to an operational test in the same manner as in Example 1, except that MEMB and MEPB were added as bromine complexing agents at a molar ratio of 0.5:0.5, respectively. This was used as a comparative example.

(3)(1)及び(2)の試験結果を表4に示す。(3) The test results of (1) and (2) are shown in Table 4.

表4に示すように実施例1(1)で示した臭素錯化剤と
してMEMBとMEPBをそれぞれ0.25 : 0.
75,0.0・1.0  のモル比で添加したものが比
較例(2)で示した臭素錯化剤としてMEMBとMEP
Bを0,5 : 0.5のモル比で添加したものに比し
、クーロン効率、電圧効率及びエネルギー効率に優れる
ことがわかる。
As shown in Table 4, as the bromine complexing agent shown in Example 1 (1), MEMB and MEPB were mixed in a ratio of 0.25:0.
MEMB and MEP were added as bromine complexing agents shown in Comparative Example (2) in a molar ratio of 75,0.0 and 1.0.
It can be seen that the coulombic efficiency, voltage efficiency, and energy efficiency are superior to those in which B is added at a molar ratio of 0.5:0.5.

(以下余白) 表4  亜鉛−臭素電池の電解液を使用した場合の試験
結果電解液の組成 ZnBr。
(Margin below) Table 4 Test results when using zinc-bromine battery electrolyte Composition of electrolyte ZnBr.

nCQv NH4Cρ 臭素錯化剤 G0発明の効果 2.25 0.45 1.0 1.0 mo(!/ρ mo(1/Q moρ/ρ rnoQ/(1 本発明は上述のように構成されることから、臭により電
解液中のフリーの臭素イオンを減少できる。
nCQv NH4Cρ Bromine complexing agent G0 Effect of the invention 2.25 0.45 1.0 1.0 mo(!/ρ mo(1/Q moρ/ρ rnoQ/(1) The present invention is constructed as described above. Therefore, free bromine ions in the electrolyte can be reduced by odor.

従って本発明に係る亜鉛〜臭素電池の電解液によればフ
リーの臭素イオンの存在による自己放電を減少てき、そ
のため亜鉛−臭素電池のクーロン効率、電圧効率及びエ
ネルギー効率を向上させることができる。
Therefore, the electrolyte solution of the zinc-bromine battery according to the present invention can reduce self-discharge due to the presence of free bromine ions, thereby improving the coulombic efficiency, voltage efficiency, and energy efficiency of the zinc-bromine battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は臭素錯化剤中のMEPBのモル分率と
上澄み液臭素濃度の関係を示すグラフである。 外2名 素錯化合物の形成能力を高めることができ、これ第1図 1mof/1臭素鑓化剤中のMEPBのモル分率第2図
Figures 1 to 3 are graphs showing the relationship between the molar fraction of MEPB in the bromine complexing agent and the bromine concentration in the supernatant liquid. The ability to form other complex compounds can be enhanced, and this Figure 1 shows the molar fraction of MEPB in 1mof/1 bromine-strengthening agent.

Claims (1)

【特許請求の範囲】[Claims] (1)3mol/l以下の臭化亜鉛水溶液、塩素イオン
を有する電導度向上剤、及びハロゲン化N−メチルN−
エチルモルホリニウム塩とハロゲン化N−メチルN−エ
チルピロリジニウム塩とのモル比が0.25:0.75
〜0.0:1.0である臭素錯化剤を含む金属−臭素電
池の電解液。
(1) Zinc bromide aqueous solution of 3 mol/l or less, conductivity improver having chlorine ions, and halogenated N-methyl N-
The molar ratio of ethylmorpholinium salt and halogenated N-methyl N-ethylpyrrolidinium salt is 0.25:0.75
A metal-bromine battery electrolyte comprising a bromine complexing agent of ~0.0:1.0.
JP2119257A 1990-05-09 1990-05-09 Electrolyte for metal-bromine batteries Expired - Lifetime JP2853263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119257A JP2853263B2 (en) 1990-05-09 1990-05-09 Electrolyte for metal-bromine batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119257A JP2853263B2 (en) 1990-05-09 1990-05-09 Electrolyte for metal-bromine batteries

Publications (2)

Publication Number Publication Date
JPH0417274A true JPH0417274A (en) 1992-01-22
JP2853263B2 JP2853263B2 (en) 1999-02-03

Family

ID=14756855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119257A Expired - Lifetime JP2853263B2 (en) 1990-05-09 1990-05-09 Electrolyte for metal-bromine batteries

Country Status (1)

Country Link
JP (1) JP2853263B2 (en)

Also Published As

Publication number Publication date
JP2853263B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US20190198881A1 (en) Electrolyte for rechargeable electrochemical cell
CA1046137A (en) Rechargeable electrochemical cell
KR101503879B1 (en) Magnesium hybrid battery and its fabrication method
US9722240B2 (en) Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators
EP1425807A4 (en) Vanadium / polyhalide redox flow battery
Li et al. Vanadium redox-flow-battery electrolyte preparation with reducing agents
US20210028500A1 (en) Electrolyte solution, battery and battery pack
US4491625A (en) Zinc-bromine batteries with improved electrolyte
US11177476B2 (en) Complexed iodine-based electrolyte and redox flow battery comprising the same
WO2024056104A1 (en) Vanadium-chromium electrolyte, preparation method therefor, and flow battery comprising same
JPH0417274A (en) Electrolyte of metal-bromine battery
JP2001102080A (en) Redox cell
CN115149117A (en) Additive of aqueous battery electrolyte and application thereof
Bryans et al. Synthesis and characterisation of novel additives for use in the hybrid ZnBr2 flow battery
JPH0628167B2 (en) Secondary battery rebalancing method
JPH0417273A (en) Bromine complexing agent of metal-bromine battery
JP4811635B2 (en) Lead-acid battery and negative electrode and negative electrode active material used therefor
Zavadil et al. Stable Electrolytes for High Voltage Mg Ion Batteries: Decoupling Weakly Coordinating Anion and Solvent Stability to Reveal Design Principles.
JPS63148563A (en) Rebalancing method for secondary battery
US3565696A (en) Acid additive for rechargeable batteries employing an organic depolarizer
CN115377473A (en) Vanadium battery electrolyte and vanadium redox flow battery
JPH04184874A (en) Bromine complexing agent for metal-bromine battery
WO2019124300A1 (en) Electrolyte solution and redox flow battery
JPH04184873A (en) Bromine complexing agent for metal-bromine battery
JPH03289065A (en) Nonaqueous electrolyte for lithium secondary battery