WO2019124300A1 - Electrolyte solution and redox flow battery - Google Patents

Electrolyte solution and redox flow battery Download PDF

Info

Publication number
WO2019124300A1
WO2019124300A1 PCT/JP2018/046317 JP2018046317W WO2019124300A1 WO 2019124300 A1 WO2019124300 A1 WO 2019124300A1 JP 2018046317 W JP2018046317 W JP 2018046317W WO 2019124300 A1 WO2019124300 A1 WO 2019124300A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic solution
ion
redox flow
positive electrode
flow battery
Prior art date
Application number
PCT/JP2018/046317
Other languages
French (fr)
Japanese (ja)
Inventor
賢太郎 渡邉
淳一 秋山
学 織地
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2019124300A1 publication Critical patent/WO2019124300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolytic solution and a redox flow battery comprising the electrolytic solution.
  • Priority is claimed on Japanese Patent Application No. 2017-242312, filed Dec. 19, 2017, the content of which is incorporated herein by reference.
  • a redox flow battery is known as a large capacity storage battery.
  • a redox flow battery has a positive electrode chamber provided with a positive electrode, a negative electrode chamber provided with a negative electrode, and a diaphragm made of an ion exchange membrane sandwiched between these two electrode chambers.
  • a redox flow battery supplies an electrolytic solution to each of the two electrode chambers to perform charging and discharging.
  • the electrolytic solution supplied to the positive electrode chamber is referred to as a positive electrode electrolytic solution
  • the electrolytic solution supplied to the negative electrode chamber is referred to as a negative electrode electrolytic solution.
  • a redox flow battery uses, as an active material, an aqueous electrolyte solution containing metal ions whose valence changes by oxidation / reduction.
  • an iron-chromium (Fe-Cr) redox flow battery using a positive electrode electrolyte containing iron ions and a negative electrode electrolyte containing chromium ions, a positive electrode electrolyte containing manganese ions and a negative electrode electrolyte containing titanium ions
  • Mn-Ti manganese-titanium
  • development of all-vanadium-based (V-V) redox flow batteries is widely pursued worldwide.
  • crossover is a phenomenon in which an active material (especially metal ion) and a solvent move between a positive electrode chamber and a negative electrode chamber through a diaphragm.
  • an active material especially metal ion
  • the active material in the positive electrode chamber and the active material in the negative electrode chamber are mixed, and the concentration of the active material and the amount of the electrolyte become unbalanced between the positive electrode chamber and the negative electrode chamber. That is, the crossover significantly reduces the electrical capacity of the redox flow battery.
  • various devices have been tried because it is difficult to prevent crossover with only an ion exchange membrane widely used as a diaphragm.
  • the redox flow battery described in the same document includes an organic radical positive / negative active material having a higher electromotive force than vanadium ions and an ion exchange membrane having a pore diameter which does not pass through the positive / negative active material. It is stated that the occurrence of over has been suppressed. However, this method is not suitable for redox flow batteries in which metal ions are used as an active material.
  • Patent Document 2 “a positive electrode cell and a negative electrode cell separated by a diaphragm, a positive electrode and a negative electrode built in each cell, a positive electrode tank for introducing and discharging an electrolytic solution for the positive electrode to the positive electrode cell, and a negative electrode cell
  • An electrolyte flow type battery comprising a negative electrode tank for introducing and discharging a negative electrode electrolyte, provided in a communicating pipe connecting both tanks at a position lower than the liquid level of the electrolytic solution in each tank, and a communicating pipe
  • the means for detecting the state of charge, and the detection result by means for detecting the state of charge the valve is opened when the state of charge of the battery is lower than the specified state, and the amount of And a valve opening and closing mechanism.
  • the object of the present invention is made in view of the above-mentioned problems, and is to provide an electrolytic solution capable of suppressing a decrease in electric capacity due to crossover and a redox flow battery provided with the same.
  • the present inventors diligently studied to solve the problems described above. As a result, by using an electrolyte containing alkali metal ions and vanadium ions in a redox flow battery, the reduction in redox flow battery capacity caused by the crossover of vanadium ions is suppressed, and the cycle life of the battery is improved.
  • the present invention has been completed.
  • the present invention includes the following inventions [1] to [8].
  • the electrolyte according to the first aspect of the present invention contains an alkali metal ion and a vanadium ion, and the total concentration of the alkali metal ions is 0.3 M to 2.0 M.
  • the alkali metal ion may be at least one selected from sodium ion and potassium ion.
  • the concentration of the vanadium ion may be 1.0 M to 4.0 M.
  • the electrolyte solution of the above [1] to [3] may contain a sulfate ion.
  • a redox flow battery according to a second aspect of the present invention comprises the electrolytic solution of the above [1] to [7].
  • capacitance fall can be provided, and a redox flow battery provided with the same.
  • the electrolytic solution according to this embodiment contains an alkali metal ion and a vanadium ion, and the total concentration of the alkali metal ions is 0.3 M to 2.0 M.
  • M shown as a unit of concentration means volume molar concentration, that is, mol / liter (mol / L). The following also shows the same meaning. For example, 0.3 M in the present specification indicates 0.3 mol / L.
  • the electrolyte solution which concerns on this embodiment can be preferably used as electrolyte solution for redox flow batteries so that it may mention later.
  • the alkali metal ions in the electrolytic solution are not limited to these, and examples thereof include lithium ion (Li + ), sodium ion (Na + ), potassium ion (K + ), rubidium ion (Rb + ), And at least one selected from cesium ions (Cs + ).
  • lithium ion (Li + ) and potassium ion (K + ) are preferable, and sodium ion (Na + ) is more preferable, from the viewpoint of cost control.
  • the total concentration of alkali metal ions in the electrolytic solution is 0.3 M to 2.0 M, preferably 0.3 M to 1.5 M, more preferably 0.3 M to 1. It is 0 M, more preferably 0.4 M to 0.8 M.
  • the raw material which is dissolved in the electrolytic solution to generate an alkali metal ion is not particularly limited, but in terms of handling safety, a salt containing the alkali metal ion is preferable. From the viewpoint of improving the stability of the electrolytic solution and the ion conductivity, a halogen salt, a sulfate or a mixture of a halogen salt and a sulfate of the metal ion is particularly preferable.
  • the vanadium ions in the electrolyte solution are divalent vanadium ions (V 2 + ), trivalent vanadium ions (V 3 + ), tetravalent vanadium ions (VO 2 + ), and pentavalent vanadium ions (VO 2 + ). At least one of the That is, for example, trivalent vanadium ion (V 3+ ) and tetravalent vanadium ion (VO 2+ ) may be used in combination.
  • dissolved in water or acidic aqueous solution is preferable.
  • vanadium oxide sulfate (VOSO 4 ) is more preferable.
  • the total concentration of vanadium ions in the electrolytic solution is preferably 1.0 M to 4.0 M. Within this range, generation of vanadium precipitates is suppressed while securing energy density. More preferably, it is 1.0 M to 3.0 M, particularly preferably 1.0 M to 2.5 M.
  • the total concentration of vanadium ions may be 1.0 M to 1.5 M, 1.5 M to 2.0 M, 1.0 M to 2.0 M, or 2.0 M to 3.0 M, as necessary. It is good also as a range. As a specific example, it may be 1.8 M.
  • the electrolytic solution in the present embodiment contains a sulfate ion (SO 4 2 ⁇ ).
  • a sulfate ion SO 4 2 ⁇
  • the concentration of sulfate ion is preferably 1.0 M to 10.0 M, more preferably 1.0 M to 8.0 M, and still more preferably 2.0 M to 6.0 M for stabilization of vanadium ion.
  • 3.0 M to 6.0 M, 4.0 M to 6.0 M, 4.0 M to 5.5 M, or 4.3 M to 5.3 M may be used.
  • the raw material which dissolves in the electrolytic solution to generate sulfate ions include sulfuric acid or a sulfate of vanadium, and the like, and preferably sulfuric acid in terms of keeping the electrolytic solution acidic.
  • the electrolytic solution according to the present embodiment is at least one selected from the group consisting of fluoride ion (F ⁇ ), chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ), and phosphate ion (PO 4 3- ). It is preferable to further contain the anion of Among these, chloride ion - and more preferably contains (Cl).
  • the electrolytic solution according to the present embodiment is considered to further increase the ion conductivity of the electrolytic solution and the reactivity of the metal ion by further containing an appropriate amount of the anion.
  • the total concentration of the anions is preferably 0.01 M to 2.0 M, more preferably 0.1 M to 1.5 M, still more preferably 0.1 M to 1.0 M.
  • the acid containing the said anion, and a vanadium salt are preferable.
  • the electrolyte solution concerning this embodiment does not necessarily need to be a structure which has an anion. That is, the total concentration of anions may be 0.00M.
  • the redox flow battery according to the present embodiment is characterized by including the electrolyte solution.
  • the redox flow battery of the present invention can adopt a known configuration.
  • it may be a redox flow battery as shown as a preferred example in FIG.
  • FIG. 4 is a schematic view of a redox flow battery used in an experiment according to an example to be described later, and is an example of a redox flow battery according to the present embodiment.
  • the redox flow battery shown in FIG. 4 includes the battery cell 2, the positive electrode electrolyte solution tank 12, the positive electrode return pipe 13, the positive electrode return pipe 14, the negative electrode electrolyte tank 22, the negative electrode return pipe 23, and the negative electrode return pipe 24. And pumps 15 and 25.
  • the tank 12 for positive electrode electrolyte, the positive electrode forward pipe 13, the positive electrode return pipe 14, the negative electrode electrolyte tank 22, the negative electrode forward pipe 23, the negative electrode return pipe 24, and the pumps 15 and 25 are known redox What is used for a flow battery can be applied.
  • the battery cell 2 includes a positive electrode cell 11, a negative electrode cell 21, and a diaphragm that separates the positive electrode cell 11 and the negative electrode cell 21.
  • the positive electrode cell 11 and the negative electrode cell 21 respectively have the positive electrode 10 and the negative electrode 20 inside.
  • the electrolytic solution according to the embodiment is circulated in the positive electrode cell 11 and the negative electrode cell 21.
  • the positive electrode 10 and the negative electrode 20 can use the electrode used for a well-known redox flow battery.
  • the electrolytic solution is stored in the positive electrode electrolytic tank 12, and is supplied to the positive electrode cell 11 by the pump 15 through the positive electrode outward pipe 13.
  • the flow rate of the electrolytic solution supplied to the positive electrode cell 11 can be appropriately selected, and it is preferable to sufficiently supply an amount of the active material necessary to obtain a desired output.
  • the electrolytic solution returns to the positive electrode electrolytic solution tank 12 through the positive electrode return path pipe 14, and circulates the same path again.
  • the discharge amount of the electrolytic solution from the positive electrode cell 11 can be made to be substantially the same flow rate as the supply amount into the positive electrode cell 11.
  • the electrolytic solution also circulates to the negative electrode cell 21 in the same manner as the circulation to the positive electrode cell 11.
  • the electrolytic solution is stored in the negative electrode electrolytic solution tank 22, and is supplied to the negative electrode cell 21 by the pump 25 through the negative electrode outward pipe 23.
  • the flow rate of the electrolytic solution supplied to the negative electrode cell 21 can be appropriately selected, and it is preferable to sufficiently supply an amount of the active material necessary to obtain a desired output.
  • the electrolytic solution returns to the negative electrode electrolyte tank 22 through the negative electrode return pipe 24 and circulates in the same path again.
  • the electrolytic solution supplied to the battery cell 2 contributes to the reaction when charging and discharging in the positive electrode 10 and the negative electrode 20.
  • Charging and discharging use electric power from an external power generation unit (not shown). Electric power is supplied from the power generation unit and supplied to the positive electrode 11 and the negative electrode 21 via an external AC / DC converter (not shown).
  • an external AC / DC converter not shown.
  • the redox flow battery concerning this embodiment can control a fall of the electric capacity by crossover, and can improve cycle life by the composition concerned.
  • Example 1 (Preparation of electrolyte) A solution of sulfuric acid (H 2 SO 4 ) in 100 ml of a 4.0 M aqueous sulfuric acid solution, 0.03 mol sodium sulfate (Na 2 SO 4 ), 0.09 mol vanadium sulfate (V 2 (SO 4 ) 3 ), 0 18 mol of vanadium oxide sulfate (VOSO 4 ) was added, and pure water was added so as to make the solution volume 200 ml, and stirred to prepare 200 ml of an electrolytic solution.
  • Na 2 SO 4 sodium sulfate
  • V 2 (SO 4 ) 3 0.09 mol vanadium sulfate
  • VOSO 4 vanadium oxide sulfate
  • the schematic diagram of the redox flow battery used for experiment is shown in FIG.
  • the battery cell 2 used a carbon felt (AAF 304 ZS) manufactured by Toyobo Co., Ltd. with an area of 50 cm 2 (5 cm ⁇ 10 cm) as the positive electrode 10 and the negative electrode 20, and Nafion (trademark) 212 as an ion exchange membrane.
  • AAF 304 ZS carbon felt manufactured by Toyobo Co., Ltd. with an area of 50 cm 2 (5 cm ⁇ 10 cm) as the positive electrode 10 and the negative electrode 20, and Nafion (trademark) 212 as an ion exchange membrane.
  • the cell voltage at the half of the charging time is V 1
  • the cell voltage at the half of the discharging time is V 2 .
  • the Coulomb efficiency (%) of the 10th cycle (cyc10), the cell resistance ( ⁇ ⁇ cm 2 ), and the discharge capacity of the 10th cycle (cyc10) and the 50th cycle (cyc50) was determined.
  • Examples 2 to 5 Comparative Examples 1 and 2
  • a 200 ml electrolytic solution was prepared in the same manner as in Example 1 except that the amount of sodium sulfate added was as shown in Table 1, and the charge / discharge characteristics were measured.
  • Example 6 A mixed aqueous solution was obtained by mixing 100 ml of a sulfuric acid aqueous solution having a sulfuric acid (H 2 SO 4 ) concentration of 4.0 M and 10 ml of a hydrochloric acid aqueous solution having a hydrochloric acid concentration of 10.0 M.
  • a sulfuric acid aqueous solution having a sulfuric acid (H 2 SO 4 ) concentration of 4.0 M 0.06 mol sodium sulfate (Na 2 SO 4 ), 0.09 mol vanadium sulfate (V 2 (SO 4 ) 3 ) and 0.18 mol vanadium oxide sulfate (VOSO 4 ) are added. Pure water was added to the solution so that the solution volume became 200 ml, and stirred to prepare 200 ml of an electrolyte. And the measurement of the charge / discharge characteristic was implemented similarly to Example 1.
  • Table 1 summarizes the amounts of raw materials used to make the electrolyte in the above Examples and Comparative Examples.
  • Table 2 shows the electrolytic solution compositions of the examples and the comparative examples and the measurement results of the charge and discharge characteristics.
  • the concentration of sodium ion is 0.3 M to 2.0 M, and particularly 0.3 M to 1.0 M is preferable.
  • the comparative examples 1 and 2 which do not contain alkali metal ions or have a small amount of alkali metal ions were inferior in the obtained characteristics as compared with the examples.
  • Example 6 it is presumed that the ion conductivity of the electrolytic solution and the reactivity of the vanadium ion are improved by further including a chloride ion as an anion other than the sulfate ion. Therefore, compared to Example 2, the cell resistance could be reduced while suppressing the decrease in discharge capacity caused by the crossover of vanadium ions.
  • Such an electrolytic solution can be suitably used particularly for high current density (charge / discharge current density is 100 mA / cm 2 or more) redox flow battery.
  • the redox flow battery of the present invention can be applied to the storage of electric power in power stations, substations and the like, and can be used for reduction of electricity charges, measures against voltage sags, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

This electrolyte solution includes alkali metal ions and vanadium ions, the total concentration of alkali metal ions being 0.3–2.0 M.

Description

電解液およびレドックスフロー電池Electrolyte and redox flow battery
 本発明は、電解液および該電解液を備えるレドックスフロー電池に関する。本願は、2017年12月19日に、日本に出願された特願2017-242312号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an electrolytic solution and a redox flow battery comprising the electrolytic solution. Priority is claimed on Japanese Patent Application No. 2017-242312, filed Dec. 19, 2017, the content of which is incorporated herein by reference.
 大容量蓄電池としてレドックスフロー電池が知られている。一般に、レドックスフロー電池は、正極電極を備える正極室と、負極電極を備える負極室と、これら両電極室に挟まれるイオン交換膜からなる隔膜と、を有する。一般に、レドックスフロー電池は、この両電極室にそれぞれ電解液を供給し、充放電を行う。以下、本明細書において、正極室に供給する電解液を正極電解液といい、負極室に供給する電解液を負極電解液という。レドックスフロー電池は、一般的に、活物質として、酸化還元により価数が変化する金属イオンを含む水溶液系電解液を用いる。例えば、鉄イオンを含む正極電解液とクロムイオンを含む負極電解液とを用いる鉄―クロム系(Fe-Cr)レドックスフロー電池、マンガンイオンを含む正極電解液とチタンイオンを含む負極電解液とを用いるマンガン―チタン系(Mn-Ti)レドックスフロー電池、バナジウムイオンを含む正極電解液及び負極電解液を用いる全バナジウム系(V-V)レドックスフロー電池等、が挙げられる。特に、全バナジウム系(V-V)レドックスフロー電池の開発は、世界中で広く進められている。 A redox flow battery is known as a large capacity storage battery. In general, a redox flow battery has a positive electrode chamber provided with a positive electrode, a negative electrode chamber provided with a negative electrode, and a diaphragm made of an ion exchange membrane sandwiched between these two electrode chambers. In general, a redox flow battery supplies an electrolytic solution to each of the two electrode chambers to perform charging and discharging. Hereinafter, in the present specification, the electrolytic solution supplied to the positive electrode chamber is referred to as a positive electrode electrolytic solution, and the electrolytic solution supplied to the negative electrode chamber is referred to as a negative electrode electrolytic solution. In general, a redox flow battery uses, as an active material, an aqueous electrolyte solution containing metal ions whose valence changes by oxidation / reduction. For example, an iron-chromium (Fe-Cr) redox flow battery using a positive electrode electrolyte containing iron ions and a negative electrode electrolyte containing chromium ions, a positive electrode electrolyte containing manganese ions and a negative electrode electrolyte containing titanium ions The manganese-titanium (Mn-Ti) redox flow battery to be used, the all-vanadium (VV) redox flow battery using a positive electrode electrolyte containing vanadium ions and the negative electrode electrolyte, and the like can be mentioned. In particular, development of all-vanadium-based (V-V) redox flow batteries is widely pursued worldwide.
 なお、全バナジウム系レドックスフロー電池では、充放電の際、正極室(正極)と負極室(負極)とでそれぞれ下記の反応が起こる。
正極:VO2++HO→VO +2H+e (充電)
   VO2++HO←VO +2H+e (放電)
負極:V3++e→V2+ (充電)
   V3++e←V2+ (放電)
In the all-vanadium-based redox flow battery, the following reactions occur in the positive electrode chamber (positive electrode) and the negative electrode chamber (negative electrode) during charge and discharge.
Positive electrode: VO 2 + + H 2 O → VO 2 + + 2H + + e (charge)
VO 2+ + H 2 O ← VO 2 + + 2H + + e (discharge)
The negative electrode: V 3+ + e - → V 2+ ( charging)
V 3+ + e - ← V 2+ ( discharge)
 しかしながら、レドックスフロー電池において、充放電を繰り返すと、クロスオーバーという現象が生じる。クロスオーバーは、活物質(特に金属イオン)、および溶媒が隔膜を介して、正極室と負極室とを移動する現象である。クロスオーバーは、正極室の活物質と負極室の活物質が混合し、活物質の濃度および電解液量が正極室と負極室とでアンバランスになる。すなわち、クロスオーバーにより、レドックスフロー電池の電気容量が著しく低下する。現状では、隔膜として広く用いられるイオン交換膜だけで、クロスオーバーを防ぐことが困難であるため、様々な工夫が試みられてきた。 However, in a redox flow battery, when charge and discharge are repeated, a phenomenon called crossover occurs. Crossover is a phenomenon in which an active material (especially metal ion) and a solvent move between a positive electrode chamber and a negative electrode chamber through a diaphragm. In the crossover, the active material in the positive electrode chamber and the active material in the negative electrode chamber are mixed, and the concentration of the active material and the amount of the electrolyte become unbalanced between the positive electrode chamber and the negative electrode chamber. That is, the crossover significantly reduces the electrical capacity of the redox flow battery. At present, various devices have been tried because it is difficult to prevent crossover with only an ion exchange membrane widely used as a diaphragm.
 特許文献1によれば、同文献記載のレドックスフロー電池は、バナジウムイオンより高起電力を有する有機ラジカル正負活物質と、前記正負活物質を通さない孔径のイオン交換膜とを含むことにより、クロスオーバーの発生が抑えられたと記載されている。しかし、この方法は金属イオンが活物質として使用されるレドックスフロー電池には適さない。 According to Patent Document 1, the redox flow battery described in the same document includes an organic radical positive / negative active material having a higher electromotive force than vanadium ions and an ion exchange membrane having a pore diameter which does not pass through the positive / negative active material. It is stated that the occurrence of over has been suppressed. However, this method is not suitable for redox flow batteries in which metal ions are used as an active material.
 特許文献2には、「隔膜で分離された正極セルおよび負極セルと、各セルに内蔵された正極および負極と、正極セルに正極用電解液を導入・排出する正極用タンクと、負極セルに負極用電解液を導入・排出する負極用タンクとを具える電解液流通型電池において、各タンク内の電解液の液面よりも低い位置で両タンクを接続する連通管と、連通管に設けられたバルブと、充電状態を検知する手段と、充電状態を検知する手段による検知結果に基づいて電池の充電状態が規定状態よりも低いときにバルブを開放して両タンクの電解液量を等しくするバルブ開閉機構と、を具えることを特徴とする電解液流通型電池。」が開示されている。この電解液流通型電池は、電解液の量を再バランスすることが示唆されるが、設備が複雑になり、コストが増加する。 In Patent Document 2, “a positive electrode cell and a negative electrode cell separated by a diaphragm, a positive electrode and a negative electrode built in each cell, a positive electrode tank for introducing and discharging an electrolytic solution for the positive electrode to the positive electrode cell, and a negative electrode cell An electrolyte flow type battery comprising a negative electrode tank for introducing and discharging a negative electrode electrolyte, provided in a communicating pipe connecting both tanks at a position lower than the liquid level of the electrolytic solution in each tank, and a communicating pipe Based on the detected valve, the means for detecting the state of charge, and the detection result by means for detecting the state of charge, the valve is opened when the state of charge of the battery is lower than the specified state, and the amount of And a valve opening and closing mechanism. Although this electrolytic solution flow type battery is suggested to rebalance the amount of electrolytic solution, the equipment becomes complicated and the cost increases.
特開2017-117752号公報JP, 2017-117752, A 特開平11-204124号公報Japanese Patent Application Laid-Open No. 11-204124
 本発明の目的は、上記の問題点を鑑みてなされたものであり、クロスオーバーによる電気容量の低下を抑制できる電解液およびそれを備えるレドックスフロー電池を提供することである。 The object of the present invention is made in view of the above-mentioned problems, and is to provide an electrolytic solution capable of suppressing a decrease in electric capacity due to crossover and a redox flow battery provided with the same.
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、アルカリ金属イオンと、バナジウムイオンと、を含む電解液をレドックスフロー電池に用いることで、バナジウムイオンのクロスオーバーが原因であるレドックスフロー電池容量の低下が抑制され、電池のサイクル寿命が向上することを見出し、本発明を完成するに至った。 The present inventors diligently studied to solve the problems described above. As a result, by using an electrolyte containing alkali metal ions and vanadium ions in a redox flow battery, the reduction in redox flow battery capacity caused by the crossover of vanadium ions is suppressed, and the cycle life of the battery is improved. The present invention has been completed.
 本発明は以下[1]~[8]の発明を含む。
[1]本発明の第1の態様にかかる電解液は、アルカリ金属イオンと、バナジウムイオンとを含み、前記アルカリ金属イオンの総濃度が0.3M~2.0Mである。
[2]上記[1]の電解液において、前記アルカリ金属イオンは、ナトリウムイオン、及びカリウムイオンから選ばれる少なくとも一種であってもよい。
[3]上記[1]または[2]の電解液において、前記バナジウムイオンの濃度は1.0M~4.0Mであってもよい。
[4]上記[1]~[3]の電解液は、硫酸イオンを含んでいてもよい。
[5]上記[1]~[4]の電解液において、前記硫酸イオンの濃度は1.0M~10.0Mであってもよい。
[6]上記[1]~[5]の電解液は、さらに、フッ化物イオン、塩化物イオン、臭化物イオン、およびリン酸イオンからなる群から選ばれる少なくとも一種のアニオンを含有していてもよい。
[7]上記[1]~[6]の電解液において、前記アニオンの総濃度は0.01M~2.0Mであってもよい。
[8]本発明の第2の態様にかかるレドックスフロー電池は、上記[1]~[7]の電解液を備える。
The present invention includes the following inventions [1] to [8].
[1] The electrolyte according to the first aspect of the present invention contains an alkali metal ion and a vanadium ion, and the total concentration of the alkali metal ions is 0.3 M to 2.0 M.
[2] In the electrolytic solution of the above-mentioned [1], the alkali metal ion may be at least one selected from sodium ion and potassium ion.
[3] In the electrolyte solution of the above [1] or [2], the concentration of the vanadium ion may be 1.0 M to 4.0 M.
[4] The electrolyte solution of the above [1] to [3] may contain a sulfate ion.
[5] In the electrolyte solution of the above [1] to [4], the concentration of the sulfate ion may be 1.0 M to 10.0 M.
[6] The electrolytic solution of the above [1] to [5] may further contain at least one anion selected from the group consisting of fluoride ion, chloride ion, bromide ion, and phosphate ion .
[7] In the electrolyte solution of the above [1] to [6], the total concentration of the anions may be 0.01 M to 2.0 M.
[8] A redox flow battery according to a second aspect of the present invention comprises the electrolytic solution of the above [1] to [7].
 本発明によれば、レドックスフロー電池に用いると容量低下を抑制できる電解液、およびそれを備えるレドックスフロー電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, when used for a redox flow battery, the electrolyte solution which can suppress a capacity | capacitance fall can be provided, and a redox flow battery provided with the same.
実施例1~5、及び比較例におけるナトリウムイオンの濃度と放電容量低減率の関係を示す図である。It is a figure which shows the relationship between the density | concentration of sodium ion and discharge capacity reduction rate in Examples 1-5 and a comparative example. 実施例1~5、及び比較例におけるナトリウムイオンの濃度とクーロン効率の関係を示す図である。It is a figure which shows the relationship between the density | concentration of the sodium ion and Coulomb efficiency in Examples 1-5 and a comparative example. 実施例1~5、及び比較例におけるナトリウムイオンの濃度とセル抵抗の関係を示す図である。It is a figure which shows the relationship between the density | concentration of sodium ion and cell resistance in Examples 1-5 and a comparative example. 実施例及び比較例で用いたレドックスフロー電池の概略模式図である。It is a schematic diagram of the redox flow battery used by the example and the comparative example.
 以下、本発明を実施するための形態の好ましい例について詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、その効果を奏する範囲内で適宜変更して実施することができる。例えば、本発明の主旨を逸脱しない範囲で材料や寸法や数値や量や比率や特性などについて省略や追加および変更をすることができる。 Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, this invention is not limited only to the following embodiment, It can change suitably and can be implemented in the range which has the effect. For example, materials, dimensions, numerical values, amounts, ratios, characteristics, and the like can be omitted, added, or changed without departing from the spirit of the present invention.
[電解液]
 本実施形態に係る電解液は、アルカリ金属イオンと、バナジウムイオンとを含み、前記アルカリ金属イオンの総濃度が0.3M~2.0Mである。ここで、濃度の単位として示すMとは、体積モル濃度、即ちモル/リットル(mol/L)を意味する。以下も同様の意味を示す。例えば、本明細書において0.3Mは、0.3mоl/Lを示す。また、本実施形態に係る電解液は、後述するようにレドックスフロー電池用の電解液として好ましく用いることができる。
[Electrolyte solution]
The electrolytic solution according to this embodiment contains an alkali metal ion and a vanadium ion, and the total concentration of the alkali metal ions is 0.3 M to 2.0 M. Here, M shown as a unit of concentration means volume molar concentration, that is, mol / liter (mol / L). The following also shows the same meaning. For example, 0.3 M in the present specification indicates 0.3 mol / L. Moreover, the electrolyte solution which concerns on this embodiment can be preferably used as electrolyte solution for redox flow batteries so that it may mention later.
[アルカリ金属イオン]
 前記電解液中のアルカリ金属イオンは、これらに限定されるものではないが、例えば、リチウムイオン(Li)、ナトリウムイオン(Na)、カリウムイオン(K)、ルビジウムイオン(Rb)、及びセシウムイオン(Cs)から選択される少なくとも一種である。その中で、コスト抑制の観点で、ナトリウムイオン(Na)、及びカリウムイオン(K)が好ましく、ナトリウムイオン(Na)がより好ましい。このような電解液をレドックスフロー電池に用いると、電解液中のバナジウムイオンのクロスオーバーが原因である電池容量の低下が抑制できる。また、セル抵抗の上昇を抑える観点から、前記電解液中のアルカリ金属イオンの総濃度は0.3M~2.0M、好ましくは0.3M~1.5M、より好ましくは0.3M~1.0M、さらに好ましくは0.4M~0.8Mである。前記電解液に溶解して、アルカリ金属イオンを生じさせる原料としては、特に限定されるものではないが、取扱い安全上では、前記アルカリ金属イオンを含む塩が好ましい。電解液の安定性、およびイオン伝導性を向上する観点から、前記金属イオンのハロゲン塩、硫酸塩またはハロゲン塩と硫酸塩の混合物が特に好ましい。
[Alkali metal ion]
The alkali metal ions in the electrolytic solution are not limited to these, and examples thereof include lithium ion (Li + ), sodium ion (Na + ), potassium ion (K + ), rubidium ion (Rb + ), And at least one selected from cesium ions (Cs + ). Among them, sodium ion (Na + ) and potassium ion (K + ) are preferable, and sodium ion (Na + ) is more preferable, from the viewpoint of cost control. When such an electrolytic solution is used in a redox flow battery, it is possible to suppress a decrease in battery capacity caused by crossover of vanadium ions in the electrolytic solution. Also, from the viewpoint of suppressing an increase in cell resistance, the total concentration of alkali metal ions in the electrolytic solution is 0.3 M to 2.0 M, preferably 0.3 M to 1.5 M, more preferably 0.3 M to 1. It is 0 M, more preferably 0.4 M to 0.8 M. The raw material which is dissolved in the electrolytic solution to generate an alkali metal ion is not particularly limited, but in terms of handling safety, a salt containing the alkali metal ion is preferable. From the viewpoint of improving the stability of the electrolytic solution and the ion conductivity, a halogen salt, a sulfate or a mixture of a halogen salt and a sulfate of the metal ion is particularly preferable.
[バナジウムイオン]
 前記電解液中のバナジウムイオンは、2価のバナジウムイオン(V2+)、3価のバナジウムイオン(V3+)、4価のバナジウムイオン(VO2+)、および5価のバナジウムイオン(VO )の少なくとも一種である。すなわち、例えば、3価のバナジウムイオン(V3+)と、4価のバナジウムイオン(VO2+)と、を組み合わせて用いてもよい。前記電解液に溶解して、このようなバナジウムイオンを生じさせる原料としては、水または酸性水溶液に溶解できるバナジウム塩が好ましい。水への溶解度が高いという観点から、酸化硫酸バナジウム(VOSO)がより好ましい。前記電解液中のバナジウムイオンの総濃度は、好ましくは1.0M~4.0Mであり、この範囲内であれば、エネルギー密度を確保しつつ、バナジウムの沈殿物の発生が抑制される。より好ましくは1.0M~3.0M、特に好ましくは1.0M~2.5Mである。例えば、バナジウムイオンの総濃度は、必要に応じて、1.0M~1.5Mや、1.5M~2.0Mや、1.0M~2.0Mや、2.0M~3.0Mや、などの範囲としても良い。具体例を挙げれば、1.8Mとしても良い。
[Vanadium ion]
The vanadium ions in the electrolyte solution are divalent vanadium ions (V 2 + ), trivalent vanadium ions (V 3 + ), tetravalent vanadium ions (VO 2 + ), and pentavalent vanadium ions (VO 2 + ). At least one of the That is, for example, trivalent vanadium ion (V 3+ ) and tetravalent vanadium ion (VO 2+ ) may be used in combination. As a raw material which melt | dissolves in the said electrolyte solution and produces | generates such a vanadium ion, the vanadium salt which can be melt | dissolved in water or acidic aqueous solution is preferable. From the viewpoint of high solubility in water, vanadium oxide sulfate (VOSO 4 ) is more preferable. The total concentration of vanadium ions in the electrolytic solution is preferably 1.0 M to 4.0 M. Within this range, generation of vanadium precipitates is suppressed while securing energy density. More preferably, it is 1.0 M to 3.0 M, particularly preferably 1.0 M to 2.5 M. For example, the total concentration of vanadium ions may be 1.0 M to 1.5 M, 1.5 M to 2.0 M, 1.0 M to 2.0 M, or 2.0 M to 3.0 M, as necessary. It is good also as a range. As a specific example, it may be 1.8 M.
[硫酸イオン]
 本実施形態における電解液は、硫酸イオン(SO 2-)を含むことが好ましい。適度な量の硫酸イオンが存在すると、バナジウムイオンはより安定に溶解する傾向がある。バナジウムイオンの安定化のために硫酸イオンの濃度は、好ましくは1.0M~10.0M、より好ましくは1.0M~8.0M、さらに好ましくは2.0M~6.0Mである。また、必要に応じて、例えば、3.0M~6.0Mや、4.0M~6.0Mや、4.0M~5.5Mや、4.3M~5.3Mとしても良い。電解液に溶解して硫酸イオンを生じさせる原料としては、例えば、硫酸またはバナジウムの硫酸塩等が挙げられ、電解液を酸性に保つ点において好ましくは硫酸が挙げられる。
[Sulfate ion]
It is preferable that the electrolytic solution in the present embodiment contains a sulfate ion (SO 4 2− ). In the presence of a modest amount of sulfate ion, the vanadium ion tends to dissolve more stably. The concentration of sulfate ion is preferably 1.0 M to 10.0 M, more preferably 1.0 M to 8.0 M, and still more preferably 2.0 M to 6.0 M for stabilization of vanadium ion. In addition, as necessary, for example, 3.0 M to 6.0 M, 4.0 M to 6.0 M, 4.0 M to 5.5 M, or 4.3 M to 5.3 M may be used. Examples of the raw material which dissolves in the electrolytic solution to generate sulfate ions include sulfuric acid or a sulfate of vanadium, and the like, and preferably sulfuric acid in terms of keeping the electrolytic solution acidic.
[硫酸イオン以外のアニオン]
 本実施形態に係る電解液は、フッ化物イオン(F)、塩化物イオン(Cl)、臭化物イオン(Br)、およびリン酸イオン(PO 3-)からなる群から選ばれる少なくとも一種のアニオンをさらに含有することが好ましい。これらの中でも、塩化物イオン(Cl)を含むことがより好ましい。本実施形態にかかる電解液は、適度な量の前記アニオンをさらに含むことにより、電解液のイオン伝導度や金属イオンの反応性が高くなると考えられる。そのため、前記アニオンを含む電解液を有するレドックスフロー電池は、電池の内部抵抗が小さくなる。さらに、電解液中のバナジウムイオンの溶解度の向上という効果も得られる。前記アニオンの総濃度は、好ましくは0.01M~2.0M、より好ましくは0.1M~1.5M、さらに好ましくは0.1M~1.0Mである。前記電解液に溶解して前記アニオンを生じさせる原料としては、前記アニオンを含む酸、バナジウム塩が好ましい。また、本実施形態にかかる電解液は、必ずしもアニオンを有する構成でなくてもよい。すなわち、アニオンの総濃度が0.00Mであってもよい。
[Anion other than sulfate ion]
The electrolytic solution according to the present embodiment is at least one selected from the group consisting of fluoride ion (F ), chloride ion (Cl ), bromide ion (Br ), and phosphate ion (PO 4 3- ). It is preferable to further contain the anion of Among these, chloride ion - and more preferably contains (Cl). The electrolytic solution according to the present embodiment is considered to further increase the ion conductivity of the electrolytic solution and the reactivity of the metal ion by further containing an appropriate amount of the anion. Therefore, in the redox flow battery having the electrolyte containing the anion, the internal resistance of the battery is reduced. Furthermore, the effect of improving the solubility of vanadium ions in the electrolytic solution can also be obtained. The total concentration of the anions is preferably 0.01 M to 2.0 M, more preferably 0.1 M to 1.5 M, still more preferably 0.1 M to 1.0 M. As a raw material which melt | dissolves in the said electrolyte solution and produces the said anion, the acid containing the said anion, and a vanadium salt are preferable. Moreover, the electrolyte solution concerning this embodiment does not necessarily need to be a structure which has an anion. That is, the total concentration of anions may be 0.00M.
 [レドックスフロー電池]
 本実施形態に係るレドックスフロー電池は前記電解液を含むことを特徴とする。本発明のレドックスフロー電池は、公知の構成を採用することができる。例えば、図4に好ましい例として示すようなレドックスフロー電池であってもよい。図4は、後述する実施例に係る実験に使用したレドックスフロー電池の模式図であり、本実施形態にかかるレドックスフロー電池の一例である。図4に示すレドックスフロー電池は、電池セル2と、正極電解液タンク12と、正極往路配管13と、正極復路配管14と、負極電解液タンク22と、負極往路配管23と、負極復路配管24と、ポンプ15及び25と、を有する。正極電解液用タンク12と、正極往路配管13と、正極復路配管14と、負極電解液タンク22と、負極往路配管23と、負極復路配管24と、ポンプ15及び25と、は、公知のレドックスフロー電池に用いられるものを適用できる。電池セル2は、正極セル11と、負極セル21と、正極セル11および負極セル21を隔てる隔膜を有する。正極セル11と負極セル21は、それぞれ正極電極10と負極電極20とを内部に有する。また、正極セル11および負極セル21内部は、前記実施形態にかかる電解液が循環する。正極電極10と負極電極20とは、公知のレドックスフロー電池に用いられる電極を使用することができる。
[Redox flow battery]
The redox flow battery according to the present embodiment is characterized by including the electrolyte solution. The redox flow battery of the present invention can adopt a known configuration. For example, it may be a redox flow battery as shown as a preferred example in FIG. FIG. 4 is a schematic view of a redox flow battery used in an experiment according to an example to be described later, and is an example of a redox flow battery according to the present embodiment. The redox flow battery shown in FIG. 4 includes the battery cell 2, the positive electrode electrolyte solution tank 12, the positive electrode return pipe 13, the positive electrode return pipe 14, the negative electrode electrolyte tank 22, the negative electrode return pipe 23, and the negative electrode return pipe 24. And pumps 15 and 25. The tank 12 for positive electrode electrolyte, the positive electrode forward pipe 13, the positive electrode return pipe 14, the negative electrode electrolyte tank 22, the negative electrode forward pipe 23, the negative electrode return pipe 24, and the pumps 15 and 25 are known redox What is used for a flow battery can be applied. The battery cell 2 includes a positive electrode cell 11, a negative electrode cell 21, and a diaphragm that separates the positive electrode cell 11 and the negative electrode cell 21. The positive electrode cell 11 and the negative electrode cell 21 respectively have the positive electrode 10 and the negative electrode 20 inside. The electrolytic solution according to the embodiment is circulated in the positive electrode cell 11 and the negative electrode cell 21. The positive electrode 10 and the negative electrode 20 can use the electrode used for a well-known redox flow battery.
 電解液は、正極電解液タンク12に蓄えられ、ポンプ15により正極往路配管13を介して正極セル11に供給される。正極セル11に供給される電解液の流量は、適宜選択することができ、所望する出力を得るのに必要な量の活物質を十分供給することが好ましい。また、電解液は、正極セル11内で充放電を行った後、正極復路配管14を介して正極電解液タンク12へ戻り、再度同じ経路を循環する。正極セル11からの電解液の排出量は、正極セル11内への供給量とほぼ同じ流量とすることができる。
 電解液は、負極セル21に対しても、正極セル11への循環と同様の循環をする。すなわち、電解液は、負極電解液タンク22に蓄えられ、ポンプ25により負極往路配管23を介して負極セル21に供給される。負極セル21に供給される電解液の流量は、適宜選択することができ、所望する出力を得るのに必要な量の活物質を十分供給することが好ましい。また、電解液は、負極セル21内で充放電を行った後、負極復路配管24を介して負極電解液タンク22へ戻り、再度同じ経路を循環する。
The electrolytic solution is stored in the positive electrode electrolytic tank 12, and is supplied to the positive electrode cell 11 by the pump 15 through the positive electrode outward pipe 13. The flow rate of the electrolytic solution supplied to the positive electrode cell 11 can be appropriately selected, and it is preferable to sufficiently supply an amount of the active material necessary to obtain a desired output. In addition, after performing the charge and discharge in the positive electrode cell 11, the electrolytic solution returns to the positive electrode electrolytic solution tank 12 through the positive electrode return path pipe 14, and circulates the same path again. The discharge amount of the electrolytic solution from the positive electrode cell 11 can be made to be substantially the same flow rate as the supply amount into the positive electrode cell 11.
The electrolytic solution also circulates to the negative electrode cell 21 in the same manner as the circulation to the positive electrode cell 11. That is, the electrolytic solution is stored in the negative electrode electrolytic solution tank 22, and is supplied to the negative electrode cell 21 by the pump 25 through the negative electrode outward pipe 23. The flow rate of the electrolytic solution supplied to the negative electrode cell 21 can be appropriately selected, and it is preferable to sufficiently supply an amount of the active material necessary to obtain a desired output. In addition, after the electrolyte solution is charged and discharged in the negative electrode cell 21, the electrolytic solution returns to the negative electrode electrolyte tank 22 through the negative electrode return pipe 24 and circulates in the same path again.
電池セル2へ供給された電解液は、正電極10および負電極20で充放電する際の反応に寄与する。充放電は、図示しない外部の発電部からの電力を利用する。電力は、発電部から供給され、図示しない外部の交流/直流変換器を介して正電極11および負電極21に供給される。
 正極セル11と負極セル21とを隔てる隔膜30は、公知のイオン交換膜を用いることができる。
The electrolytic solution supplied to the battery cell 2 contributes to the reaction when charging and discharging in the positive electrode 10 and the negative electrode 20. Charging and discharging use electric power from an external power generation unit (not shown). Electric power is supplied from the power generation unit and supplied to the positive electrode 11 and the negative electrode 21 via an external AC / DC converter (not shown).
As the diaphragm 30 which separates the positive electrode cell 11 and the negative electrode cell 21, a known ion exchange membrane can be used.
 本実施形態にかかるレドックスフロー電池は、当該構成により、クロスオーバーによる電気容量の低下を抑制し、サイクル寿命を向上することができる。 The redox flow battery concerning this embodiment can control a fall of the electric capacity by crossover, and can improve cycle life by the composition concerned.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be more specifically described below based on examples, but the present invention is not limited to these examples.
[実施例1]
(電解液の調製)
 硫酸(HSO)濃度が4.0Mの硫酸水溶液100mlに、0.03molの硫酸ナトリウム(NaSO)と、0.09molの硫酸バナジウム(V(SO)と、0.18molの酸化硫酸バナジウム(VOSO)と、を添加して、溶液の体積が200mlになるように、純水を加え、撹拌して電解液を200ml調製した。
Example 1
(Preparation of electrolyte)
A solution of sulfuric acid (H 2 SO 4 ) in 100 ml of a 4.0 M aqueous sulfuric acid solution, 0.03 mol sodium sulfate (Na 2 SO 4 ), 0.09 mol vanadium sulfate (V 2 (SO 4 ) 3 ), 0 18 mol of vanadium oxide sulfate (VOSO 4 ) was added, and pure water was added so as to make the solution volume 200 ml, and stirred to prepare 200 ml of an electrolytic solution.
(充放電特性の測定)
 実験に使用したレドックスフロー電池の模式図を図4に示す。電池セル2は、正極電極10および負極電極20として面積50cm(5cm×10cm)の東洋紡(株)製カーボンフェルト(AAF304ZS)と、イオン交換膜としてNafion(商標)212を用いた。正極電解液および負極電解液として、前記作製した電解液をそれぞれ50mlずつ用意し、正極セル11および負極セル21に、電解液を50ml/minの流量で循環しながら、10Aの電流(電流密度0.2A/cm)で充放電を行った。最初に充電を行い、電圧が1.75Vになったところで充電を停止し、次に放電を行い、電圧が1.0Vになったところで放電終了とした。この充放電をさらに49サイクル(全部で50サイクル)繰り返し、各サイクルの充電時間(h)、放電時間(h)、および充放電中のセル電圧(V)を測定した。充電時間の半分になる時点のセル電圧をV、放電時間の半分になる時点のセル電圧をVとした。そして、下記式の通り、第10サイクル目(cyc10)のクーロン効率(%)と、セル抵抗(Ω・cm)、および第10サイクル目(cyc10)と第50サイクル目(cyc50)の放電容量低減率(以下、放電容量低減率と称する)を求めた。
・充電容量(Ah)=充電電流×充電時間
・放電容量(Ah)=放電電流×放電時間
・クーロン効率(%)=([放電容量] /[充電容量])×100
・セル抵抗(Ω・cm)=(V-V)/(2×電流密度)
・放電容量低減率(%)=(1-[放電容量(cyc50)] /[放電容量(cyc10)])×100
(Measurement of charge and discharge characteristics)
The schematic diagram of the redox flow battery used for experiment is shown in FIG. The battery cell 2 used a carbon felt (AAF 304 ZS) manufactured by Toyobo Co., Ltd. with an area of 50 cm 2 (5 cm × 10 cm) as the positive electrode 10 and the negative electrode 20, and Nafion (trademark) 212 as an ion exchange membrane. Prepare 50 ml of each of the prepared electrolytes as a positive electrode electrolytic solution and a negative electrode electrolytic solution, and circulate the electrolytic solution at a flow rate of 50 ml / min through the positive electrode cell 11 and the negative electrode cell 21 to a current of 10 A (current density 0 Charging / discharging was performed at 2 A / cm 2 ). First, charging was performed, charging was stopped when the voltage reached 1.75 V, and then discharging was performed, and discharging was finished when the voltage reached 1.0 V. This charge / discharge was further repeated for 49 cycles (50 cycles in total), and charge time (h), discharge time (h), and cell voltage (V) during charge / discharge were measured for each cycle. The cell voltage at the half of the charging time is V 1 , and the cell voltage at the half of the discharging time is V 2 . And as the following formula, the Coulomb efficiency (%) of the 10th cycle (cyc10), the cell resistance (Ω · cm 2 ), and the discharge capacity of the 10th cycle (cyc10) and the 50th cycle (cyc50) The reduction rate (hereinafter referred to as the discharge capacity reduction rate) was determined.
· Charge capacity (Ah) = charge current × charge time · discharge capacity (Ah) = discharge current × discharge time · coulomb efficiency (%) = ([discharge capacity] / [charge capacity]) × 100
・ Cell resistance (Ω · cm 2 ) = (V 1 −V 2 ) / (2 × current density)
· Discharge capacity reduction ratio (%) = (1-[discharge capacity (cyc50)] / [discharge capacity (cyc10))) × 100
[実施例2~5、比較例1、2]
 添加した硫酸ナトリウムの量は表1に示す通りとした以外は実施例1と同様に200ml電解液を作製し、充放電特性の測定を実施した。
[Examples 2 to 5, Comparative Examples 1 and 2]
A 200 ml electrolytic solution was prepared in the same manner as in Example 1 except that the amount of sodium sulfate added was as shown in Table 1, and the charge / discharge characteristics were measured.
[実施例6]
 硫酸(HSO)濃度が4.0Mの硫酸水溶液100mlと、塩酸濃度が10.0Mの塩酸水溶液10mlを混合して、混合水溶液を得た。前記混合水溶液に、0.06molの硫酸ナトリウム(NaSO)と、0.09molの硫酸バナジウム(V(SO)と、0.18molの酸化硫酸バナジウム(VOSO)と、を添加して、溶液の体積が200mlになるように、純水を加え、撹拌して電解液を200ml調製した。そして、実施例1と同様に充放電特性の測定を実施した。
[Example 6]
A mixed aqueous solution was obtained by mixing 100 ml of a sulfuric acid aqueous solution having a sulfuric acid (H 2 SO 4 ) concentration of 4.0 M and 10 ml of a hydrochloric acid aqueous solution having a hydrochloric acid concentration of 10.0 M. In the mixed aqueous solution, 0.06 mol sodium sulfate (Na 2 SO 4 ), 0.09 mol vanadium sulfate (V 2 (SO 4 ) 3 ) and 0.18 mol vanadium oxide sulfate (VOSO 4 ) are added. Pure water was added to the solution so that the solution volume became 200 ml, and stirred to prepare 200 ml of an electrolyte. And the measurement of the charge / discharge characteristic was implemented similarly to Example 1.
 上記実施例および比較例に、電解液を作製するため、使用された原料の量を表1にまとめた。各実施例および比較例の電解液組成と、充放電特性の測定結果を表2に示す。 Table 1 summarizes the amounts of raw materials used to make the electrolyte in the above Examples and Comparative Examples. Table 2 shows the electrolytic solution compositions of the examples and the comparative examples and the measurement results of the charge and discharge characteristics.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2と図1、2から明らかなように、電解液中にアルカリ金属イオンとしてナトリウムイオンが0.3M含まれると、放電容量低減率が十分低くなり、さらに電解液中のナトリウムイオンの濃度が増加すると、放電容量の低減率がさらに低くなり、また、クーロン効率が高くなった。これらより、バナジウムイオンを含む電解液に、さらに適度な量のアルカリ金属イオンが含まれると、バナジウムイオンを含む電解液のクロスオーバーを抑制できることが確認された。一方で、図3に示すように、電解液中ナトリウムイオン量の増加と共に、セル抵抗の上昇も観察され、ひいてはセル抵抗による電力の消耗が高くなることが分かった。クロスオーバーの抑制と、セル抵抗上昇の抑制を両立する観点から、ナトリウムイオンの濃度は、0.3M~2.0Mであり、特に0.3M~1.0Mが好ましいことが分かった。
 アルカリ金属イオンを含まない、或いはアルカリ金属イオンの量が少ない比較例1と2は、実施例と比較すると得られた特性が劣った。
As apparent from Table 2 and FIGS. 1 and 2, when 0.3 M of sodium ion as an alkali metal ion is contained in the electrolytic solution, the discharge capacity reduction rate becomes sufficiently low, and the concentration of sodium ion in the electrolytic solution is As it increased, the rate of reduction of the discharge capacity decreased further, and the coulombic efficiency increased. From these, it was confirmed that the crossover of the electrolyte solution containing vanadium ion can be suppressed when the electrolyte solution containing vanadium ion further contains an appropriate amount of alkali metal ion. On the other hand, as shown in FIG. 3, with the increase of the amount of sodium ions in the electrolytic solution, an increase in cell resistance was also observed, and it was found that the consumption of power due to the cell resistance was high. From the viewpoint of achieving both suppression of crossover and suppression of rise in cell resistance, it was found that the concentration of sodium ion is 0.3 M to 2.0 M, and particularly 0.3 M to 1.0 M is preferable.
The comparative examples 1 and 2 which do not contain alkali metal ions or have a small amount of alkali metal ions were inferior in the obtained characteristics as compared with the examples.
 実施例6では、硫酸イオン以外のアニオンとして、塩化物イオンをさらに含むことで、電解液のイオン伝導度およびバナジウムイオンの反応性が向上したと推定される。そのため、実施例2と比べ、バナジウムイオンのクロスオーバーが原因である放電容量の低下を抑制しながら、セル抵抗を低減させることができた。このような電解液は、特に高電流密度(充放電電流密度は100mA/cm以上)レドックスフロー電池には好適に利用できる。 In Example 6, it is presumed that the ion conductivity of the electrolytic solution and the reactivity of the vanadium ion are improved by further including a chloride ion as an anion other than the sulfate ion. Therefore, compared to Example 2, the cell resistance could be reduced while suppressing the decrease in discharge capacity caused by the crossover of vanadium ions. Such an electrolytic solution can be suitably used particularly for high current density (charge / discharge current density is 100 mA / cm 2 or more) redox flow battery.
 本発明のレドックスフロー電池は、発電所や変電所等の電力貯蔵に適用でき、電気料金の低減や瞬低対策等に利用することができる。 INDUSTRIAL APPLICABILITY The redox flow battery of the present invention can be applied to the storage of electric power in power stations, substations and the like, and can be used for reduction of electricity charges, measures against voltage sags, and the like.
 1  レドックスフロー電池
 2  電池セル
 10  正極電極
 11  正極セル
 12  正極電解液タンク
 13  正極往路配管
 14  正極復路配管
 15  ポンプ
 20  負極電極
 21  負極セル
 22  負極電解液タンク
 23  負極往路配管
 24  負極復路配管
 25  ポンプ
 30  隔膜
DESCRIPTION OF SYMBOLS 1 redox flow battery 2 battery cell 10 positive electrode 11 positive electrode cell 12 positive electrode electrolyte tank 13 positive outgoing pipe 14 positive return pipe 15 pump 20 negative electrode 21 negative cell 22 negative electrolyte tank 23 negative outgoing pipe 24 negative return pipe 25 pump 30 diaphragm

Claims (8)

  1.  アルカリ金属イオンと、バナジウムイオンとを含み、前記アルカリ金属イオンの総濃度が0.3M~2.0Mである電解液。 An electrolytic solution containing an alkali metal ion and a vanadium ion, wherein the total concentration of the alkali metal ion is 0.3M to 2.0M.
  2.  前記アルカリ金属イオンは、ナトリウムイオン、およびカリウムイオンから選ばれる少なくとも一種である、請求項1に記載の電解液。 The electrolytic solution according to claim 1, wherein the alkali metal ion is at least one selected from sodium ion and potassium ion.
  3.  前記バナジウムイオンの濃度は1.0M~4.0Mである、請求項1または2に記載の電解液。 The electrolytic solution according to claim 1 or 2, wherein the concentration of the vanadium ion is 1.0M to 4.0M.
  4.  硫酸イオンを含む請求項1~3のいずれかに記載の電解液。 The electrolytic solution according to any one of claims 1 to 3, which contains a sulfate ion.
  5.  前記硫酸イオンの濃度は1.0M~10.0Mである、請求項4に記載の電解液。 The electrolytic solution according to claim 4, wherein the concentration of the sulfate ion is 1.0M to 10.0M.
  6.  さらに、フッ化物イオン、塩化物イオン、臭化物イオン、およびリン酸イオンからなる群から選ばれる少なくとも一種のアニオンを含有する請求項1~5のいずれかに記載の電解液。 The electrolytic solution according to any one of claims 1 to 5, further comprising at least one anion selected from the group consisting of fluoride ions, chloride ions, bromide ions, and phosphate ions.
  7.  前記アニオンの総濃度は0.01M~2.0Mである、請求項6に記載の電解液。 The electrolytic solution according to claim 6, wherein the total concentration of the anion is 0.01M to 2.0M.
  8.  請求項1~7のいずれかに記載の電解液を備えるレドックスフロー電池。 A redox flow battery comprising the electrolytic solution according to any one of claims 1 to 7.
PCT/JP2018/046317 2017-12-19 2018-12-17 Electrolyte solution and redox flow battery WO2019124300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017242312A JP2021028866A (en) 2017-12-19 2017-12-19 Electrolyte solution and redox flow battery
JP2017-242312 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124300A1 true WO2019124300A1 (en) 2019-06-27

Family

ID=66993421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046317 WO2019124300A1 (en) 2017-12-19 2018-12-17 Electrolyte solution and redox flow battery

Country Status (3)

Country Link
JP (1) JP2021028866A (en)
TW (1) TW201931658A (en)
WO (1) WO2019124300A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012064A (en) * 1998-06-25 2000-01-14 Sumitomo Electric Ind Ltd Vanadium redox battery electrolyte and vanadium redox battery using the same
JP2013543217A (en) * 2010-09-28 2013-11-28 バッテル メモリアル インスティチュート Redox flow battery based on support solution containing chloride
JP2014235946A (en) * 2013-06-04 2014-12-15 旭化成イーマテリアルズ株式会社 Electrolyte and redox flow battery
CN104300168A (en) * 2013-07-18 2015-01-21 中国科学院大连化学物理研究所 Inorganic ammonium phosphate-containing positive electrode electrolyte for whole vanadium flow battery
JP2016527678A (en) * 2013-07-17 2016-09-08 大連融科儲能技術発展有限公司 All vanadium redox flow battery and operation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012064A (en) * 1998-06-25 2000-01-14 Sumitomo Electric Ind Ltd Vanadium redox battery electrolyte and vanadium redox battery using the same
JP2013543217A (en) * 2010-09-28 2013-11-28 バッテル メモリアル インスティチュート Redox flow battery based on support solution containing chloride
JP2014235946A (en) * 2013-06-04 2014-12-15 旭化成イーマテリアルズ株式会社 Electrolyte and redox flow battery
JP2016527678A (en) * 2013-07-17 2016-09-08 大連融科儲能技術発展有限公司 All vanadium redox flow battery and operation method thereof
CN104300168A (en) * 2013-07-18 2015-01-21 中国科学院大连化学物理研究所 Inorganic ammonium phosphate-containing positive electrode electrolyte for whole vanadium flow battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SARAH, ROE ET AL.: "A High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 163, no. 1, 23 July 2015 (2015-07-23) - 2016, pages A5023 - A5028, XP055620585 *

Also Published As

Publication number Publication date
JP2021028866A (en) 2021-02-25
TW201931658A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
AU2014303614B2 (en) Redox flow battery
JP6742337B2 (en) Balancing cell for flow battery with bipolar membrane for simultaneously improving negative and positive electrolytes
US8288030B2 (en) Redox flow battery
JP5007849B1 (en) Redox flow battery and operation method thereof
US8771857B2 (en) Redox flow battery
US8916281B2 (en) Rebalancing electrolytes in redox flow battery systems
AU2002328660B2 (en) Vanadium / polyhalide redox flow battery
WO2011111717A1 (en) Redox flow battery
JPWO2011049103A1 (en) Vanadium battery
JP5712688B2 (en) Redox flow battery
JP4728217B2 (en) New vanadium halide redox flow battery
JP2017535035A (en) All vanadium sulfate acidic redox flow battery system
JP2018517236A (en) Balancing cell for flow battery with bipolar membrane and method of use thereof
US20150357653A1 (en) Vanadium Solid-Salt Battery and Method for Producing Same
JP6621584B2 (en) Redox flow battery electrolyte and redox flow battery
JP2011210696A (en) Redox flow battery
JP2016539473A (en) High capacity alkaline / oxidant battery
WO2020036107A1 (en) Electrolyte solution for redox flow batteries, redox flow battery and method for operating same
WO2019124300A1 (en) Electrolyte solution and redox flow battery
WO2019078146A1 (en) Liquid electrolyte and redox flow cell
WO2019181983A1 (en) Electrolyte solution and redox flow battery
JP5489008B2 (en) Redox flow battery
JP2020107415A (en) Redox flow battery
JP2012204347A (en) Redox flow battery, and operation method thereof
Mishra et al. Zinc‐Cerium Hybrid Redox Flow Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP