JP2012204347A - Redox flow battery, and operation method thereof - Google Patents

Redox flow battery, and operation method thereof Download PDF

Info

Publication number
JP2012204347A
JP2012204347A JP2012111101A JP2012111101A JP2012204347A JP 2012204347 A JP2012204347 A JP 2012204347A JP 2012111101 A JP2012111101 A JP 2012111101A JP 2012111101 A JP2012111101 A JP 2012111101A JP 2012204347 A JP2012204347 A JP 2012204347A
Authority
JP
Japan
Prior art keywords
negative electrode
redox flow
flow battery
positive electrode
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012111101A
Other languages
Japanese (ja)
Inventor
Yongrong Dong
雍容 董
Toshio Shigematsu
敏夫 重松
Takahiro Kumamoto
貴浩 隈元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012111101A priority Critical patent/JP2012204347A/en
Publication of JP2012204347A publication Critical patent/JP2012204347A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a redox flow battery which can generate a high electromotive force, and to provide an operation method thereof.SOLUTION: The redox flow battery 1 performs charge/discharge by supplying a positive electrode electrolyte stored in a tank 106 for positive electrode, and a negative electrode electrolyte stored in a tank 107 for negative electrode to a battery element 100. The positive electrode electrolyte in the redox flow battery 1 contains Mn ions as a positive electrode active material, and the negative electrode electrolyte contains at least one kind of Ti ions, V ions, and Cr ions as a negative electrode active material. The redox flow battery 1 includes negative electrode side introduction piping 10 communicating with the inside of the tank 107 for negative electrode from the outside and introducing an oxidizing gas into the tank 107 for negative electrode, and a supply mechanism 11 for supplying the oxidizing gas into the tank 107 for negative electrode via the negative electrode side introduction piping 10.

Description

本発明は、レドックスフロー電池、及びその運転方法に関するものである。特に、高い起電力が得られるレドックスフロー電池に関するものである。   The present invention relates to a redox flow battery and an operation method thereof. In particular, the present invention relates to a redox flow battery capable of obtaining a high electromotive force.

昨今、地球温暖化への対策として、太陽光発電、風力発電といった新エネルギーの導入が世界的に推進されている。これらの発電出力は、天候に影響されるため、大量に導入が進むと、周波数や電圧の維持が困難になるといった電力系統の運用に際しての問題が予測されている。この問題の対策の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の貯蓄、負荷平準化などを図ることが期待される。   In recent years, introduction of new energy such as solar power generation and wind power generation has been promoted worldwide as a countermeasure against global warming. Since these power generation outputs are affected by the weather, it is predicted that there will be a problem in the operation of the electric power system such that it becomes difficult to maintain the frequency and voltage when the mass introduction is advanced. As one of the countermeasures against this problem, it is expected to install a large-capacity storage battery to smooth the output fluctuation, save surplus power, and level the load.

大容量の蓄電池の一つにレドックスフロー電池がある。レドックスフロー電池は、正極電極と負極電極との間に隔膜を介在させた電池要素に正極電解液及び負極電解液をそれぞれ供給して充放電を行う。上記電解液は、代表的には、酸化還元により価数が変化する金属イオンを含有する水溶液が利用される。正極に鉄イオン、負極にCrイオンを用いる鉄−クロム系レドックスフロー電池の他、正極及び負極の両極にVイオンを用いるバナジウム系レドックスフロー電池が代表的である(例えば、特許文献1)。   One of the large-capacity storage batteries is a redox flow battery. In a redox flow battery, charge and discharge are performed by supplying a positive electrode electrolyte and a negative electrode electrolyte respectively to a battery element in which a diaphragm is interposed between a positive electrode and a negative electrode. As the electrolytic solution, typically, an aqueous solution containing metal ions whose valence changes by oxidation-reduction is used. Typical examples include an iron-chromium redox flow battery using iron ions for the positive electrode and Cr ions for the negative electrode, and a vanadium redox flow battery using V ions for both the positive electrode and the negative electrode (for example, Patent Document 1).

特開2006−147374号公報JP 2006-147374 A

バナジウム系レドックスフロー電池は、実用化されており、今後も使用が期待される。しかし、従来の鉄−クロム系レドックスフロー電池やバナジウム系レドックスフロー電池では、起電力が十分に高いとは言えない。今後の世界的な需要に対応するためには、更に高い起電力を有し、かつ、活物質に用いる金属イオンを安定して供給可能な、好ましくは安定して安価に供給可能な新たなレドックスフロー電池の開発が望まれる。   Vanadium redox flow batteries have been put to practical use and are expected to be used in the future. However, the conventional iron-chromium redox flow battery and vanadium redox flow battery cannot be said to have a sufficiently high electromotive force. To meet future global demand, a new redox that has a higher electromotive force and can stably supply metal ions used in active materials, preferably stably and inexpensively. Development of a flow battery is desired.

そこで、本発明の目的の一つは、高い起電力が得られるレドックスフロー電池を提供することにある。また、本発明の他の目的は、優れた電池特性を有する状態を維持できるレドックスフロー電池の運転方法を提供することにある。   Then, one of the objectives of this invention is providing the redox flow battery from which a high electromotive force is obtained. Another object of the present invention is to provide a redox flow battery operating method capable of maintaining a state having excellent battery characteristics.

起電力を向上するためには、標準酸化還元電位が高い金属イオンを活物質に用いることが考えられる。従来のレドックスフロー電池に利用されている正極活物質の金属イオンの標準酸化還元電位は、Fe2+/Fe3+が0.77V、V4+/V5+が1.0Vである。本発明者らは、正極活物質の金属イオンとして、水溶性の金属イオンであり、従来の金属イオンよりも標準酸化還元電位が高く、バナジウムよりも比較的安価であって資源供給面においても優れると考えられるマンガンを用いたレドックスフロー電池を検討した。Mn2+/Mn3+の標準酸化還元電位は、1.51Vであり、Mnイオンは、起電力がより大きなレドックス対を構成するための好ましい特性を有する。 In order to improve the electromotive force, it is conceivable to use a metal ion having a high standard redox potential as the active material. The standard redox potential of the metal ion of the positive electrode active material used in the conventional redox flow battery is 0.77 V for Fe 2+ / Fe 3+ and 1.0 V for V 4+ / V 5+ . The present inventors are water-soluble metal ions as the metal ions of the positive electrode active material, have a higher standard redox potential than conventional metal ions, are relatively cheaper than vanadium, and are excellent in terms of resource supply. The redox flow battery using manganese, which is considered to be The standard oxidation-reduction potential of Mn 2+ / Mn 3+ is 1.51 V, and Mn ions have preferable characteristics for constituting a redox pair having a larger electromotive force.

ここで、レドックスフロー電池は、電解液として水溶液を用いる電池である。そのため、このレドックスフロー電池では、充放電反応に伴う副反応として、水の分解により負極では水素ガス、正極では酸素ガスが発生する場合がある。本発明者らが検討した結果、正極活物質としてMnイオンを含有する正極電解液を用いたレドックスフロー電池では、正極活物質であるMnの酸化還元電位が、従来正極活物質として用いられていたFeやVに比べてより貴な電位を有していることから、正極での副反応が支配的となることを見出した。この場合、負極電解液の充電状態(SOC:State of Charge、充電深度と言うこともある)が次第に正極電解液よりも高い状態となる。このように、両電解液に充電状態の差が生じると、レドックスフロー電池の電池容量が初期状態に比べて大きく減じられるため、その対策が必要となる。   Here, the redox flow battery is a battery using an aqueous solution as an electrolytic solution. Therefore, in this redox flow battery, hydrogen gas may be generated at the negative electrode and oxygen gas may be generated at the positive electrode due to water decomposition as a side reaction accompanying the charge / discharge reaction. As a result of investigations by the present inventors, in a redox flow battery using a positive electrode electrolyte containing Mn ions as a positive electrode active material, the oxidation-reduction potential of Mn as the positive electrode active material has been conventionally used as the positive electrode active material. It has been found that the side reaction at the positive electrode is dominant because it has a more noble potential than Fe and V. In this case, the state of charge of the negative electrode electrolyte (SOC: State of Charge, sometimes referred to as charge depth) gradually becomes higher than that of the positive electrode electrolyte. As described above, when a difference in the state of charge occurs between the two electrolyte solutions, the battery capacity of the redox flow battery is greatly reduced as compared with the initial state, and thus a countermeasure is required.

以上説明した検討・知見に基づき、本発明を以下に規定する。   Based on the examination and knowledge described above, the present invention is defined below.

本発明レドックスフロー電池は、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池要素に、正極用タンクに貯留される正極電解液、及び負極用タンクに貯留される負極電解液を供給して充放電を行うレドックスフロー電池である。この本発明レドックスフロー電池における正極電解液は、正極活物質としてMnイオンを含有し、負極電解液は、負極活物質としてTiイオン、Vイオン、およびCrイオンの少なくとも1種を含有する。そして、本発明レドックスフロー電池は、負極用タンクの外部から内部に連通され、その負極用タンク内部に酸化性気体を導入するための負極側導入配管と、負極側導入配管を介して負極用タンク内部に酸化性気体を供給する負極側供給機構と、を備えることを特徴とする。   The redox flow battery of the present invention is stored in a positive electrode electrolyte stored in a positive electrode tank and in a negative electrode tank in a battery element including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes. It is a redox flow battery that charges and discharges by supplying a negative electrode electrolyte. The positive electrode electrolyte in the redox flow battery of the present invention contains Mn ions as the positive electrode active material, and the negative electrode electrolyte contains at least one of Ti ions, V ions, and Cr ions as the negative electrode active material. The redox flow battery of the present invention communicates from the outside to the inside of the negative electrode tank, and the negative electrode side introduction pipe for introducing the oxidizing gas into the negative electrode tank, and the negative electrode tank through the negative electrode side introduction pipe And a negative electrode side supply mechanism for supplying an oxidizing gas therein.

また、本発明レドックスフロー電池の運転方法は、上記本発明レドックスフロー電池を用いたレドックスフロー電池の運転方法であって、負極電解液に含まれる負極活物質を酸化するために、前記負極用タンク内部に前記酸化性気体を導入することを特徴とする。   Further, the operating method of the redox flow battery of the present invention is an operating method of the redox flow battery using the above redox flow battery of the present invention, in order to oxidize the negative electrode active material contained in the negative electrode electrolyte, the negative electrode tank The oxidizing gas is introduced inside.

上記本発明レドックスフロー電池、およびその運転方法によれば、充放電を繰り返すうちに正極電解液と負極電解液の充電状態に差が生じたときに、負極電解液に酸化性気体を導入して負極電解液を酸化させることで、その差を小さくすることができる。両電解液の充電状態の差が小さくなれば、レドックスフロー電池の電池容量を、初期の電池容量に近い状態に復帰させることができる。   According to the above-described redox flow battery of the present invention and its operation method, when the charge state between the positive electrode electrolyte and the negative electrode electrolyte is different while charging and discharging are repeated, an oxidizing gas is introduced into the negative electrode electrolyte. The difference can be reduced by oxidizing the negative electrode electrolyte. If the difference between the charged states of both electrolytes is reduced, the battery capacity of the redox flow battery can be restored to a state close to the initial battery capacity.

以下、本発明レドックスフロー電池、及びその運転方法の好ましい形態について説明する。   Hereinafter, preferred embodiments of the redox flow battery of the present invention and the operation method thereof will be described.

本発明レドックスフロー電池の一形態として、酸化性気体は、酸素を含む気体であることが好ましい。   As one embodiment of the redox flow battery of the present invention, the oxidizing gas is preferably a gas containing oxygen.

酸化性気体としては、負極電解液を酸化することができれば特に限定されず、例えば、塩素などであっても良い。しかし、酸化性気体の取り扱い時の安全性を考慮すれば、酸素を含む気体、例えば、純粋酸素、オゾン、あるいは空気などを利用することが好ましい。   The oxidizing gas is not particularly limited as long as the negative electrode electrolyte can be oxidized. For example, chlorine may be used. However, in consideration of safety when handling the oxidizing gas, it is preferable to use a gas containing oxygen, for example, pure oxygen, ozone, or air.

上記本発明レドックスフロー電池は、正極用タンクの気相と、負極用タンクの気相と、を連通する気相連通管を備えることが好ましい。   The redox flow battery of the present invention preferably includes a gas phase communication pipe that communicates the gas phase of the positive electrode tank and the gas phase of the negative electrode tank.

既に述べたように、正極側では副反応として酸素ガスが発生する。そのため、上記気相連通管を設けておけば、正極側で発生した酸素ガスを負極電解液の酸化のために利用することができる。気相連通管は、常時開放しておくことで、正極用タンクから負極用タンクに酸素ガスを導入することができる。もちろん、気相連通管は、常時は閉鎖しておいて、負極側導入配管から負極用タンクに酸化性気体を導入する際に開放しても良い。   As already described, oxygen gas is generated as a side reaction on the positive electrode side. Therefore, if the gas-phase communication pipe is provided, the oxygen gas generated on the positive electrode side can be used for oxidation of the negative electrode electrolyte. By always opening the gas phase communication pipe, oxygen gas can be introduced from the positive electrode tank to the negative electrode tank. Of course, the gas phase communication pipe may be normally closed and may be opened when the oxidizing gas is introduced from the negative electrode side introduction pipe into the negative electrode tank.

上記本発明レドックスフロー電池は、レドックスフロー電池の充電状態をモニタするモニタ機構を備えることが好ましい。   The redox flow battery of the present invention preferably includes a monitor mechanism for monitoring the state of charge of the redox flow battery.

モニタ機構としては、例えば電池要素と同様の構成を備えるモニタセルを用いることが挙げられる。モニタセルには、正極用タンクと負極用タンクからそれぞれ実際に使用している正負の電解液を供給するように構成すると良い。その他、電解液の透明度を目視できるようにするモニタ機構(例えば、タンクやタンクと電池要素とを繋ぐ配管に設けられる透明な窓など)を挙げることもできる。後述するように、負極活物質としてTiイオンを利用する場合、3価のTiイオン(Ti3+)の溶液は黒色、4価のTiイオン(Ti4+)の溶液はほぼ透明である。つまり、レドックスフロー電池を完全に放電させて、負極電解液においてTi4+が支配的になったときに、負極電解液の透明度が低ければ、負極電解液の充電状態は正極電解液の充電状態よりも高いと判断でき、負極電解液の透明度が高ければ、両電解液の充電状態は同等程度と判断できる。 Examples of the monitoring mechanism include using a monitor cell having the same configuration as the battery element. The monitor cell may be configured to supply positive and negative electrolytic solutions actually used from the positive electrode tank and the negative electrode tank. In addition, a monitor mechanism (for example, a transparent window provided in a pipe connecting the tank and the tank and the battery element) that makes it possible to visually check the transparency of the electrolytic solution can be exemplified. As will be described later, when Ti ions are used as the negative electrode active material, the solution of trivalent Ti ions (Ti 3+ ) is black, and the solution of tetravalent Ti ions (Ti 4+ ) is almost transparent. That is, when the redox flow battery is completely discharged and Ti 4+ becomes dominant in the negative electrode electrolyte, if the transparency of the negative electrode electrolyte is low, the charged state of the negative electrode electrolyte is higher than the charged state of the positive electrode electrolyte. If the transparency of the negative electrode electrolyte is high, the state of charge of both electrolytes can be determined to be comparable.

上記本発明レドックスフロー電池に備わる負極側導入配管は、負極用タンクの液相内に開口していることが好ましい。   It is preferable that the negative electrode side introduction pipe provided in the redox flow battery of the present invention is opened in the liquid phase of the negative electrode tank.

負極側導入配管は、気相中に開口していても良いが、液相中に開口している方が、より効率的に負極電解液を酸化できる。   The negative electrode side introduction pipe may be opened in the gas phase, but opening in the liquid phase can oxidize the negative electrode electrolyte more efficiently.

上記本発明レドックスフロー電池は、負極用タンク内部に設けられ、負極電解液を撹拌する撹拌機構を備えることが好ましい。   The redox flow battery of the present invention preferably includes a stirring mechanism that is provided inside the negative electrode tank and stirs the negative electrode electrolyte.

負極電解液を撹拌することで、負極電解液を効率的に酸化できる。その効果は、負極側導入配管を液相中に開口させることと組み合わせることで向上する。   The negative electrode electrolyte can be efficiently oxidized by stirring the negative electrode electrolyte. The effect is improved by combining with opening the negative electrode side introduction pipe into the liquid phase.

上記本発明レドックスフロー電池に用いる正極電解液は、Tiイオンを含有することが好ましい。   The positive electrode electrolyte used in the redox flow battery of the present invention preferably contains Ti ions.

正極活物質としてMnイオンを用いた場合、充放電に伴い、MnOが析出するという問題がある。これに対して、本発明者らの検討の結果、詳しいメカニズムは不明であるものの、正極電解液にMnイオンと共にTiイオンを存在させることで、上記析出を効果的に抑制できることが明らかになっている。 When Mn ions are used as the positive electrode active material, there is a problem that MnO 2 is deposited with charge and discharge. On the other hand, as a result of the study by the present inventors, although the detailed mechanism is unknown, it becomes clear that the above precipitation can be effectively suppressed by making the positive electrode electrolyte contain Ti ions together with Mn ions. Yes.

上述のように、正極電解液にMnイオンとTiイオンを含有させる場合、負極電解液は、負極活物質としてTiイオンを含有し、さらにMnイオンを含有することが好ましい。   As described above, when the positive electrode electrolyte contains Mn ions and Ti ions, the negative electrode electrolyte preferably contains Ti ions as the negative electrode active material, and further contains Mn ions.

上記構成は、正極電解液中の金属イオン種と、負極電解液中の金属イオン種とを等しくする構成である。そうすることで、(1)金属イオンが電池要素の隔膜を介して対極に移動して、各極で本来反応する金属イオンが相対的に減少することによる電池容量の減少現象を効果的に回避できる、(2)充放電に伴って経時的に液移り(一方の極の電解液が隔膜を介して他方の極に移動する現象)が生じて両極の電解液の液量やイオン濃度にばらつきが生じた場合でも、両極の電解液を混合するなどして、上記ばらつきを容易に是正できる、(3)電解液の製造性に優れる、といった効果を奏する。   The said structure is a structure which makes the metal ion seed | species in a positive electrode electrolyte solution, and the metal ion seed | species in a negative electrode electrolyte equal. By doing so, (1) the metal ions move to the counter electrode through the diaphragm of the battery element, effectively avoiding the phenomenon of battery capacity reduction due to the relative reduction of the metal ions that originally react at each electrode Yes, (2) Liquid transfer with charge / discharge over time (a phenomenon in which the electrolyte solution of one electrode moves to the other electrode through the diaphragm) causes variations in the electrolyte volume and ion concentration of both electrodes Even if this occurs, effects such as (3) excellent electrolyte solution manufacturability can be obtained by mixing the electrolyte solutions of both electrodes and the like.

両電解液に含まれる金属イオン種を同じとする場合、本発明レドックスフロー電池は、正極用タンクの液相と、負極用タンクの液相と、を連通する液相連通管を備えることが好ましい。   When the metal ion species contained in both electrolytes are the same, the redox flow battery of the present invention preferably includes a liquid phase communication pipe that communicates the liquid phase of the positive electrode tank and the liquid phase of the negative electrode tank. .

両電解液に含まれる金属イオン種が共通であるということは、両電解液を混合してもかまわないということである。両電解液を混合すると、レドックスフロー電池は完全放電状態になる。また、後述するように、両電解液にTi/Mn系の電解液を利用する場合、両電解液を混合し、完全放電状態としてから混合電解液を酸化させる方が、当該酸化操作の終了時点を容易に判別できる。それは、Ti/Mn系の電解液は、放電されたときに透明になるからである。   The fact that the metal ion species contained in both electrolytes is common means that both electrolytes may be mixed. When both electrolytes are mixed, the redox flow battery is completely discharged. Further, as will be described later, when a Ti / Mn electrolyte is used for both electrolytes, it is preferable to oxidize the mixed electrolyte after mixing both electrolytes and complete discharge state. Can be easily identified. This is because the Ti / Mn electrolyte solution becomes transparent when discharged.

上記液相連通管を備える場合、本発明レドックスフロー電池は、正極用タンクの外部から内部に連通され、その正極用タンク内部に酸化性気体を導入するための正極側導入配管と、正極側導入配管を介して前記正極側タンク内部に前記酸化性気体を供給する正極側供給機構と、を備えることが好ましい。   When the liquid phase communication pipe is provided, the redox flow battery of the present invention communicates from the outside of the positive electrode tank to the inside, and introduces a positive electrode side introduction pipe for introducing an oxidizing gas into the positive electrode tank, and a positive electrode side introduction And a positive electrode side supply mechanism that supplies the oxidizing gas into the positive electrode side tank through a pipe.

上記構成とすれば、液相連通管を開放させて両電解液を混合したときに、混合電解液を速やかに酸化させることができる。   If it is set as the said structure, when opening a liquid phase communicating pipe | tube and mixing both electrolyte solution, a mixed electrolyte solution can be oxidized rapidly.

一方、本発明レドックスフロー電池の運転方法の一形態として、酸化性気体の導入は、正極電解液と負極電解液の充電状態が異なったときに行うことが好ましい。   On the other hand, as an embodiment of the operation method of the redox flow battery of the present invention, the introduction of the oxidizing gas is preferably performed when the charge states of the positive electrode electrolyte and the negative electrode electrolyte are different.

両電解液の充電状態が異なったときにその差を補正することで、効率的なレドックスフロー電池の運転を行うことができる。なお、この構成とは異なり、酸化性気体を負極用タンクに導入しながらレドックスフロー電池を運転することもできる。   By correcting the difference when the charged states of the two electrolytes are different, efficient redox flow battery operation can be performed. Unlike this configuration, the redox flow battery can be operated while introducing the oxidizing gas into the negative electrode tank.

本発明レドックスフロー電池の運転方法の一形態として、酸化性気体の導入量を制御することで、正極電解液と負極電解液の充電状態をほぼ同じ状態にすることが好ましい。   As one mode of the operation method of the redox flow battery of the present invention, it is preferable that the charged state of the positive electrode electrolyte and the negative electrode electrolyte are made substantially the same by controlling the amount of the oxidizing gas introduced.

酸化性気体の導入量の調節は、モニタセルにより両電解液の充電状態を監視し、その監視結果に基づいて行うと良い。このように両電解液の充電状態を揃えることで、再び両電解液の充電状態に差が生じるまでの時間を長くすることができる。   Adjustment of the introduction amount of the oxidizing gas is preferably performed based on the monitoring results of monitoring the charge states of both electrolytes with a monitor cell. In this way, by aligning the state of charge of both electrolytes, it is possible to lengthen the time until a difference occurs between the states of charge of both electrolytes.

本発明レドックスフロー電池の運転方法の一形態として、負極電解液の透明度を用いても良い。   As an embodiment of the operation method of the redox flow battery of the present invention, the transparency of the negative electrode electrolyte may be used.

上述したように、負極活物質にTiイオンを利用する場合、レドックスフロー電池を完全に放電させて負極電解液中におけるTi4+が支配的になったときに、負極電解液の透明度を観察することで、両電解液の充電状態の差を確認できる。放電させた負極電解液中にTi3+が存在すればするほど、負極電解液の透明度は低下し、両電解液に充電状態の差があることが分かる。また、後述する実施形態に示すように、正極活物質としてMnイオンを利用する場合、正極電解液の充電状態も正極電解液の透明度で判断することができる。この点については、実施形態に詳しく説明する。 As described above, when Ti ions are used as the negative electrode active material, the transparency of the negative electrode electrolyte is observed when the redox flow battery is completely discharged and Ti 4+ in the negative electrode electrolyte becomes dominant. Thus, the difference between the charged states of both electrolytes can be confirmed. It can be seen that the more Ti 3+ is present in the discharged negative electrode electrolyte, the lower the transparency of the negative electrode electrolyte and there is a difference in the state of charge between the two electrolytes. Moreover, as shown in the embodiment described later, when Mn ions are used as the positive electrode active material, the state of charge of the positive electrode electrolyte can also be determined from the transparency of the positive electrode electrolyte. This point will be described in detail in the embodiment.

本発明レドックスフロー電池の運転方法の一形態として、レドックスフロー電池の充電状態をモニタリングしながら運転することが好ましい。   As one form of the operation method of the redox flow battery of the present invention, it is preferable to operate while monitoring the charge state of the redox flow battery.

モニタリングの手法には、上記電解液の透明度を利用しても良いし、モニタセルを備えるレドックスフロー電池であれば、そのモニタセルを利用すれば良い。   For the monitoring method, the transparency of the electrolytic solution may be used, and if it is a redox flow battery including a monitor cell, the monitor cell may be used.

本発明レドックスフロー電池は、高起電力で、かつ充放電に伴う電池容量の低下を回復させることができるレドックスフロー電池である。また、本発明レドックスフロー電池の運転方法は、充放電に伴って本発明レドックスフロー電池の電池容量が低下した際、その低下した電池容量を回復させることができる。   The redox flow battery of the present invention is a redox flow battery having a high electromotive force and capable of recovering a decrease in battery capacity caused by charging and discharging. Moreover, the operating method of the redox flow battery of the present invention can recover the reduced battery capacity when the battery capacity of the redox flow battery of the present invention decreases due to charging / discharging.

実施形態1に示すレドックスフロー電池の概略図である。1 is a schematic diagram of a redox flow battery shown in Embodiment 1. FIG. 図1に示すレドックスフロー電池の負極用タンクにおける負極側導入配管の形成状態を示す模式説明図であって、(A)は負極側導入配管が負極用タンクの気相に開口した状態、(B)は負極側導入配管が負極用タンクの液相に開口した状態、(C)は(A)の状態に加えて液相中に撹拌機構が存在する状態、(D)は(B)の状態に加えて液相中に撹拌機構が存在する状態を示す図である。It is a schematic explanatory drawing which shows the formation state of the negative electrode side introduction piping in the negative electrode tank of the redox flow battery shown in FIG. 1, (A) is the state which the negative electrode side introduction piping opened to the gaseous phase of the negative electrode tank, (B ) Is a state where the negative electrode side introduction pipe is open to the liquid phase of the negative electrode tank, (C) is a state where a stirring mechanism is present in the liquid phase in addition to the state of (A), and (D) is a state of (B). It is a figure which shows the state which has a stirring mechanism in a liquid phase in addition to. 実施形態2に示すレドックスフロー電池の概略図である。3 is a schematic diagram of a redox flow battery shown in Embodiment 2. FIG. 試験例1に示すレドックスフロー電池の運転日数と電池容量(Ah)との関係を示すグラフである。6 is a graph showing the relationship between the number of operating days of the redox flow battery shown in Test Example 1 and the battery capacity (Ah).

<実施形態1>
≪全体構成≫
以下、正極活物質としてMnイオン、負極活物質としてTiイオンを用いたレドックスフロー電池(以下、RF電池)1の概要を図1,2に基づいて説明する。図1における実線矢印は、充電、破線矢印は、放電を意味する。なお、図1に示す金属イオンは代表的な形態を示しており、図示される以外の形態も含み得る。例えば、図1では、4価のTiイオンとしてTi4+を示すが、TiO2+などのその他の形態も含み得る。
<Embodiment 1>
≪Overall structure≫
Hereinafter, an outline of a redox flow battery (hereinafter referred to as RF battery) 1 using Mn ions as a positive electrode active material and Ti ions as a negative electrode active material will be described with reference to FIGS. A solid line arrow in FIG. 1 means charging, and a broken line arrow means discharging. In addition, the metal ion shown in FIG. 1 has shown the typical form, and forms other than illustration may be included. For example, FIG. 1 shows Ti 4+ as the tetravalent Ti ions, but other forms such as TiO 2+ may also be included.

図1に示すように、RF電池1は、代表的には、交流/直流変換器を介して、発電部(例えば、太陽光発電機、風力発電機、その他、一般の発電所など)と電力系統や需要家などの負荷とに接続され、発電部を電力供給源として充電を行い、負荷を電力提供対象として放電を行う。このRF電池1は、従来のRF電池と同様に、電池要素100と、この電池要素100に電解液を循環させる循環機構(タンク、配管、ポンプ)とを備える。そして、このRF電池1の従来と異なる点は、正極電解液の正極活物質としてMnイオンを用い、かつ充放電に伴う電池容量の低下を抑制するための構成(後述する負極側導入配管10および負極側供給機構11)を備えることにある。以下、RF電池1の各構成を詳細に説明し、次いでRF電池1の運転方法を説明する。   As shown in FIG. 1, the RF battery 1 typically includes a power generation unit (for example, a solar power generator, a wind power generator, other general power plants, etc.) and power via an AC / DC converter. It is connected to a load such as a grid or a customer, is charged using the power generation unit as a power supply source, and is discharged using the load as a power supply target. Similar to the conventional RF battery, the RF battery 1 includes a battery element 100 and a circulation mechanism (tank, piping, pump) that circulates the electrolyte in the battery element 100. The RF battery 1 is different from the conventional one in that Mn ions are used as the positive electrode active material of the positive electrode electrolyte solution, and a configuration for suppressing a decrease in battery capacity due to charge / discharge (a negative electrode side introduction pipe 10 and The negative electrode side supply mechanism 11) is provided. Hereinafter, each configuration of the RF battery 1 will be described in detail, and then an operation method of the RF battery 1 will be described.

[電池要素と循環機構]
RF電池1に備わる電池要素100は、正極電極104を内蔵する正極セル102と、負極電極105を内蔵する負極セル103と、両セル102,103を分離すると共にイオンを透過する隔膜101と、を備える。正極セル102には、正極電解液を貯留する正極用タンク106が配管108,110を介して接続される。負極セル103には、負極電解液用を貯留する負極用タンク107が配管109,111を介して接続される。配管108,109には、各極の電解液を循環させるためのポンプ112,113を備える。電池要素100は、配管108〜111、ポンプ112,113を利用して、正極セル102(正極電極104)、負極セル103(負極電極105)にそれぞれ正極用タンク106の正極電解液、負極用タンク107の負極電解液を循環供給して、各極の電解液中の活物質となる金属イオン(正極にあってはMnイオン、負極にあってはTiイオン)の価数変化反応に伴って充放電を行う。
[Battery elements and circulation mechanism]
The battery element 100 provided in the RF battery 1 includes a positive electrode cell 102 incorporating a positive electrode 104, a negative electrode cell 103 incorporating a negative electrode 105, and a diaphragm 101 that separates the cells 102 and 103 and transmits ions. Prepare. A positive electrode tank 106 that stores a positive electrode electrolyte is connected to the positive electrode cell 102 via pipes 108 and 110. A negative electrode tank 107 for storing a negative electrode electrolyte solution is connected to the negative electrode cell 103 via pipes 109 and 111. The pipes 108 and 109 are provided with pumps 112 and 113 for circulating the electrolyte solution of each electrode. The battery element 100 uses the pipes 108 to 111 and the pumps 112 and 113 to the positive electrode cell 102 (positive electrode 104) and the negative electrode cell 103 (negative electrode 105), respectively. The negative electrode electrolyte solution 107 is circulated and charged in accordance with the valence change reaction of metal ions (Mn ions for the positive electrode and Ti ions for the negative electrode) that become the active material in the electrolyte solution of each electrode. Discharge.

電池要素100は通常、複数積層されたセルスタックと呼ばれる形態で利用される。電池要素100を構成するセル102,103は、一面に正極電極104、他面に負極電極105が配置される双極板(図示せず)と、電解液を供給する給液孔及び電解液を排出する排液孔を有し、かつ上記双極板の外周に形成される枠体(図示せず)とを備えるセルフレームを用いた構成が代表的である。複数のセルフレームを積層することで、上記給液孔及び排液孔は電解液の流路を構成し、この流路は配管108〜111に接続される。セルスタックは、セルフレーム、正極電極104、隔膜101、負極電極105、セルフレーム、…と順に繰り返し積層されて構成される。なお、RF電池の基本構成は、公知の構成を適宜利用することができる。   The battery element 100 is normally used in a form called a cell stack in which a plurality of battery elements are stacked. The cells 102 and 103 constituting the battery element 100 discharge a bipolar plate (not shown) in which a positive electrode 104 is disposed on one surface and a negative electrode 105 on the other surface, a liquid supply hole for supplying an electrolytic solution, and an electrolytic solution. A configuration using a cell frame having a drain hole to be formed and having a frame (not shown) formed on the outer periphery of the bipolar plate is representative. By laminating a plurality of cell frames, the liquid supply hole and the drainage hole constitute an electrolyte flow path, and the flow path is connected to the pipes 108 to 111. The cell stack is configured by repeatedly stacking a cell frame, a positive electrode 104, a diaphragm 101, a negative electrode 105, a cell frame,. As the basic configuration of the RF battery, a known configuration can be used as appropriate.

[電解液]
本実施形態のRF電池1に用いられる正負の電解液には、MnイオンとTiイオンを含有する共通のものを使用している。正極側にあってはMnイオンが正極活物質として働き、負極側にあってはTiイオンが負極活物質として働く。また、正極側におけるTiイオンは、理由は不明ではあるが、MnOの析出を抑制する。Mnイオン及びTiイオンの各濃度はいずれも0.3M以上5M以下とすることが好ましい。
[Electrolyte]
As the positive and negative electrolytes used in the RF battery 1 of the present embodiment, a common one containing Mn ions and Ti ions is used. On the positive electrode side, Mn ions work as a positive electrode active material, and on the negative electrode side, Ti ions work as a negative electrode active material. Further, the Ti ions on the positive electrode side suppress the precipitation of MnO 2 for unknown reasons. Each concentration of Mn ions and Ti ions is preferably 0.3M or more and 5M or less.

電解液の溶媒としては、HSO、KSO、NaSO、HPO、H、KPO、NaPO、KPO、HNO、KNO、及びNaNOから選択される少なくとも一種の水溶液を利用することができる。 Solvents for the electrolyte include H 2 SO 4 , K 2 SO 4 , Na 2 SO 4 , H 3 PO 4 , H 4 P 2 O 7 , K 2 PO 4 , Na 3 PO 4 , K 3 PO 4 , HNO 3 , at least one aqueous solution selected from KNO 3 and NaNO 3 can be used.

[負極側導入配管]
負極側導入配管10は、負極用タンク107の内部に酸化性気体を導入するための配管である。酸化性気体としては、純粋酸素、空気、オゾンなどを利用することができる。この負極側導入配管10は、負極用タンク107に連通していれば良い。例えば、図2(A)に示すように、負極用タンク107の気相に開口している形態、図2(B)に示すように、負極用タンク107の液相に開口する形態とすることが挙げられる。その他、図2(C)や(D)に示すように、図2(A)や(B)の構成にさらにスクリューなどの撹拌機構12を加えた形態とすることもできる。なお、負極用タンク107には、図示しない開放弁が設けられており、負極側導入配管10から酸化性気体を導入しても、いたずらに負極用タンク107の圧力が高くならないようになっている。
[Negative electrode side piping]
The negative electrode side introduction pipe 10 is a pipe for introducing an oxidizing gas into the negative electrode tank 107. As the oxidizing gas, pure oxygen, air, ozone and the like can be used. The negative electrode side introduction pipe 10 only needs to communicate with the negative electrode tank 107. For example, as shown in FIG. 2A, the anode tank 107 is opened in the gas phase, and as shown in FIG. 2B, the anode tank 107 is opened in the liquid phase. Is mentioned. In addition, as shown to FIG.2 (C) and (D), it can also be set as the form which added the stirring mechanism 12, such as a screw, to the structure of FIG. 2 (A) or (B). The negative electrode tank 107 is provided with an open valve (not shown) so that the pressure in the negative electrode tank 107 does not become unnecessarily high even if the oxidizing gas is introduced from the negative electrode side introduction pipe 10. .

上記負極側導入配管10には、バルブなどの開閉機構を設けておくことが好ましく、そうすることで負極側導入配管10の連通・非連通を制御することができる。常時は、負極側導入配管10を閉じておいて、負極電解液の蒸発を抑制することが好ましい。   The negative electrode side introduction pipe 10 is preferably provided with an opening / closing mechanism such as a valve, so that communication / non-communication of the negative electrode side introduction pipe 10 can be controlled. It is preferable that the negative electrode side introduction pipe 10 is closed at all times to suppress evaporation of the negative electrode electrolyte.

[負極側供給機構]
負極側供給機構11は、上記負極側導入配管10を介して負極用タンク107の内部に酸化性気体を導入するための構成である。例えば、送風機(負極側導入配管10が気相連通の場合)や、圧送ポンプなどを利用することができる。
[Negative electrode supply mechanism]
The negative electrode side supply mechanism 11 is configured to introduce an oxidizing gas into the negative electrode tank 107 through the negative electrode side introduction pipe 10. For example, a blower (when the negative electrode side introduction pipe 10 is in gas phase communication), a pressure feed pump, or the like can be used.

[その他]
図示しないが、RF電池1は、電池容量を監視するモニタセルを備えていても良い。モニタセルは基本的に電池要素100と同一の構成を備える電池要素100よりも小型の単セルであり、正極用タンク106と負極用タンク107から正負の電解液の供給を受けて、電池要素100と同様に起電力を生じる。その起電力からRF電池1の電池容量を知ることができる。
[Others]
Although not shown, the RF battery 1 may include a monitor cell for monitoring the battery capacity. The monitor cell is basically a single cell smaller than the battery element 100 having the same configuration as that of the battery element 100. The monitor cell receives positive and negative electrolytes from the positive electrode tank 106 and the negative electrode tank 107, and Similarly, an electromotive force is generated. The battery capacity of the RF battery 1 can be known from the electromotive force.

≪RF電池の運転方法≫
上記構成を備えるRF電池1を運転する(充放電を繰り返す)と、徐々に電池容量が低下していく。その場合、RF電池1を完全放電状態とすると共に、上述した負極側導入配管10を開放し、負極側供給機構11を動作させて、負極用タンク107の内部に酸化性気体を導入する。酸化性気体を導入するタイミングの判断、酸化性気体の導入量の判断は、RF電池1にモニタセルが備わっている場合はモニタセルで検知される起電力に基づいて行えば良い。その他、負極電解液の透明度により上記判断を行うこともできる。3価のTi(Ti3+)は褐色、4価のTi(Ti4+)はほぼ無色透明であるので、負極電解液の透明度の低下を目視あるいは分光分析や光の透過率で確認したら酸化性気体の導入を開始し、同様に透明度の上昇をもって酸化性気体の導入を終了すると良い。
≪Operation method of RF battery≫
When the RF battery 1 having the above configuration is operated (charging / discharging is repeated), the battery capacity gradually decreases. In that case, the RF battery 1 is completely discharged, the negative electrode side introduction pipe 10 described above is opened, and the negative electrode side supply mechanism 11 is operated to introduce an oxidizing gas into the negative electrode tank 107. The determination of the timing for introducing the oxidizing gas and the determination of the introduction amount of the oxidizing gas may be performed based on the electromotive force detected by the monitor cell when the RF battery 1 has a monitor cell. In addition, the above determination can be made based on the transparency of the negative electrode electrolyte. Trivalent Ti (Ti 3+ ) is brown, and tetravalent Ti (Ti 4+ ) is almost colorless and transparent. Therefore, if the decrease in transparency of the negative electrode electrolyte is confirmed visually or by spectroscopic analysis or light transmittance, oxidizing gas It is preferable that the introduction of the oxidizing gas is started and the introduction of the oxidizing gas is ended with an increase in transparency.

ここで、酸化性気体の導入は、RF電池1の運転時に同時に行ってもかまわない。そうすることで、RF電池1の電池容量の低下を抑制しつつRF電池1の運転を行うことができる。その際、負極電解液の蒸発を考慮して、負極側導入配管10は常時開放するのではなく、断続的に開放するようにすることが好ましい。加えて、負極電解液の液量を監視し、必要な場合には適宜溶媒を追加することが好ましい。   Here, the introduction of the oxidizing gas may be performed simultaneously with the operation of the RF battery 1. By doing so, the RF battery 1 can be operated while suppressing a decrease in the battery capacity of the RF battery 1. At this time, in consideration of evaporation of the negative electrode electrolyte, it is preferable that the negative electrode side introduction pipe 10 is not opened constantly but is opened intermittently. In addition, it is preferable to monitor the amount of the negative electrode electrolyte and add a solvent as needed.

<実施形態2>
実施形態2では、図3に基づいて、実施形態1の構成にさらに付加的な構成を備えるRF電池2を説明する。なお、図3は、各配管の接続状態のみを示す簡易的な図面である。
<Embodiment 2>
In the second embodiment, an RF battery 2 having an additional configuration to the configuration of the first embodiment will be described based on FIG. FIG. 3 is a simple drawing showing only the connection state of each pipe.

≪全体構成≫
実施形態2のRF電池2は、実施形態1のRF電池の構成に加えて、気相連通管13と、液相連通管14と、正極側導入配管15と、正極側供給機構16と、を備える。
≪Overall structure≫
In addition to the configuration of the RF battery of the first embodiment, the RF battery 2 of the second embodiment includes a gas phase communication pipe 13, a liquid phase communication pipe 14, a positive electrode side introduction pipe 15, and a positive electrode side supply mechanism 16. Prepare.

[気相連通管]
気相連通管13は、正極用タンク106の気相と、負極用タンク107の気相と、を連通する配管である。気相連通管13を設けることで、充放電に伴って正極側で副反応により発生する酸素を、負極用タンク107に導入することができる。この気相連通管13にはバルブなどを設けて、両タンク106,107間の連通・非連通を調節できるようにしておくことが好ましい。
[Gas-phase communication pipe]
The gas phase communication pipe 13 is a pipe that communicates the gas phase of the positive electrode tank 106 and the gas phase of the negative electrode tank 107. By providing the gas-phase communication pipe 13, oxygen generated by a side reaction on the positive electrode side with charge / discharge can be introduced into the negative electrode tank 107. It is preferable to provide a valve or the like in the gas-phase communication pipe 13 so that communication / non-communication between the tanks 106 and 107 can be adjusted.

[液相連通管]
液相連通管14は、正極用タンク106の液相と、負極用タンク107の液相と、を連通する配管である。液相連通管14を設けることで、両タンク106,107内の電解液を混合させることができる。この液相連通管14には、充放電時に両タンク106,107に貯留される両電解液同士が混合しないように、バルブなどを設けておく。
[Liquid phase communication pipe]
The liquid phase communication pipe 14 is a pipe that communicates the liquid phase of the positive electrode tank 106 and the liquid phase of the negative electrode tank 107. By providing the liquid phase communication pipe 14, the electrolyte solution in both tanks 106 and 107 can be mixed. The liquid phase communication pipe 14 is provided with a valve or the like so that the electrolytes stored in the tanks 106 and 107 are not mixed during charging and discharging.

ここで、正極電解液と負極電解液とを混合できる液相連通管14を有する構成の場合、両電解液に含まれる金属イオン種は共有している必要がある。例えば、両電解液共に、MnイオンとTiイオンを含有する電解液とすることが挙げられる。正極電解液においてはMnイオンが正極活物質として働き、負極電解液においてはTiイオンが負極活物質として働く。   Here, in the case of the configuration having the liquid phase communication pipe 14 that can mix the positive electrode electrolyte and the negative electrode electrolyte, the metal ion species contained in both electrolytes must be shared. For example, both electrolytic solutions may be electrolytic solutions containing Mn ions and Ti ions. In the positive electrode electrolyte, Mn ions function as a positive electrode active material, and in the negative electrode electrolyte, Ti ions function as a negative electrode active material.

[正極側導入配管と正極側供給機構]
正極側導入配管15及び正極側供給機構16はそれぞれ、負極導入配管10及び負極側供給機構11と同じ構成を採用することができる。
[Positive electrode inlet piping and positive electrode supply mechanism]
The positive electrode side introduction pipe 15 and the positive electrode side supply mechanism 16 can adopt the same configurations as the negative electrode introduction pipe 10 and the negative electrode side supply mechanism 11, respectively.

[その他]
正極用タンク106の液相内には、実施形態1と同様に撹拌機構を設けることが好ましい。
[Others]
A stirring mechanism is preferably provided in the liquid phase of the positive electrode tank 106 as in the first embodiment.

≪RF電池の運転方法≫
上記RF電池2で充放電を行う際は、気相連通管13は基本的に開放しておき、液相連通管14は閉じておく。一方、RF電池2の電池容量を回復させる際は、気相連通管13は開放しておき、液相連通管14も開放する。液相連通管14を開放することで、正負の電解液が混ざり合い、RF電池2は速やかに放電状態となる。そして、負極側導入配管10から負極用タンク107内に酸化性気体を導入すると共に、正極側導入配管15から正極用タンク106内にも酸化性気体を導入する。その際、両タンク106,107内に撹拌機構を備えるのであれば、その撹拌機構を動作させておくと良い。
≪Operation method of RF battery≫
When charging / discharging with the RF battery 2, the gas phase communication pipe 13 is basically opened, and the liquid phase communication pipe 14 is closed. On the other hand, when the battery capacity of the RF battery 2 is recovered, the gas phase communication pipe 13 is opened and the liquid phase communication pipe 14 is also opened. By opening the liquid phase communication tube 14, the positive and negative electrolytes are mixed together, and the RF battery 2 is quickly discharged. Then, an oxidizing gas is introduced from the negative electrode side introduction pipe 10 into the negative electrode tank 107, and an oxidizing gas is also introduced from the positive electrode side introduction pipe 15 into the positive electrode tank 106. At that time, if the tanks 106 and 107 are provided with a stirring mechanism, the stirring mechanism may be operated.

RF電池2の電池容量を回復されるタイミング、酸化性気体の導入量と導入終了のタイミングの判断には、実施形態1と同様に、モニタセルや、正負の電解液が混合された混合電解液の透明度を利用することができる。ここで、Mn3+の溶液は有色、Mn2+の溶液はほぼ無色透明であり、RF電池2を放電させた場合、電解液中でMn2+が支配的になれば、電解液の透明度は高くなる。同様に、RF電池2を放電させたときに、電解液中で支配的になるTi4+の溶液はほぼ無色透明である。従って、電池容量が低下した状態で得られた混合電解液の透明度は低く、酸化性気体で電池容量が回復した状態の混合電解液の透明度は高くなる。 As in the first embodiment, the timing for recovering the battery capacity of the RF battery 2, the introduction amount of the oxidizing gas, and the timing of the end of the introduction are the same as those in the first embodiment. Transparency can be used. Here, the Mn 3+ solution is colored, and the Mn 2+ solution is almost colorless and transparent. When the RF battery 2 is discharged, if Mn 2+ becomes dominant in the electrolyte, the transparency of the electrolyte becomes high. . Similarly, when the RF battery 2 is discharged, the Ti 4+ solution that becomes dominant in the electrolyte is almost colorless and transparent. Therefore, the transparency of the mixed electrolyte obtained in a state where the battery capacity is reduced is low, and the transparency of the mixed electrolyte in a state where the battery capacity is restored by the oxidizing gas is increased.

<試験例1>
次に、図3を参照して説明した実施形態2と同様の構成を備えるRF電池2を作製した。正極電解液と負極電解液には、濃度2Mの硫酸、1MのMnSO(Mn2+)、1MのTiOSO(Ti4+)を混合させた電解液を用いた。正負の電解液は、各々3Lとし、各々のタンク106,107に外部空気と気密した状態で封入した。気相部には酸化を抑制するために窒素ガスを封入した。また、電池要素100には、カーボンフェルト電極、陽イオン交換膜を適用した電極面積500cmを有する単セルを用いた。また、液相連通管14と気相連通管13は共に閉じておいた。
<Test Example 1>
Next, an RF battery 2 having the same configuration as that of Embodiment 2 described with reference to FIG. 3 was produced. As the positive electrode electrolyte and the negative electrode electrolyte, an electrolyte mixed with sulfuric acid having a concentration of 2M, 1M MnSO 4 (Mn 2+ ), and 1M TiOSO 4 (Ti 4+ ) was used. The positive and negative electrolytes were 3 L each, and sealed in the respective tanks 106 and 107 in an airtight state with external air. Nitrogen gas was sealed in the gas phase portion to suppress oxidation. The battery element 100 used was a single cell having an electrode area of 500 cm 2 to which a carbon felt electrode and a cation exchange membrane were applied. The liquid phase communication pipe 14 and the gas phase communication pipe 13 were both closed.

こうして試作したTi/Mn系RF電池2を用いて充放電試験を行った。初期性能は、電流効率99%、セル抵抗率1.5Ωcm、電池容量45Ahであった。このRF電池2を約1ケ月間の運転(充放電)したところ、その電池容量は次第に減少し、初期の約75%程度となった。さらにRF電池2の運転を継続し、運転開始後約65日目にRF電池2の電池容量が初期の約65%となった時点で一旦RF電池2の運転を停止した。なお、RF電池2の運転期間中も、液相連通管14と気相連通管13は共に閉鎖しておいた。 A charge / discharge test was conducted using the Ti / Mn RF battery 2 thus fabricated. The initial performance was a current efficiency of 99%, a cell resistivity of 1.5 Ωcm 2 , and a battery capacity of 45 Ah. When the RF battery 2 was operated (charged / discharged) for about one month, the battery capacity gradually decreased to about 75% of the initial level. Further, the operation of the RF battery 2 was continued. When the battery capacity of the RF battery 2 reached about 65% of the initial value about 65 days after the start of the operation, the operation of the RF battery 2 was once stopped. Note that both the liquid-phase communication pipe 14 and the gas-phase communication pipe 13 were closed during the operation period of the RF battery 2.

RF電池2の運転を停止した時点で、正極用タンク106の気相に滞留するガスの成分を分析した。酸素ガスが数体積%検知され、ごくわずかのCOも検知された。水素ガスは検知限界以下であった。一方、負極用タンク107の気相のガス成分は、ほぼ窒素ガスであった。 When the operation of the RF battery 2 was stopped, the components of the gas staying in the gas phase of the positive electrode tank 106 were analyzed. Oxygen gas was detected at several volume percent, and very little CO 2 was detected. Hydrogen gas was below the detection limit. On the other hand, the gas component in the gas phase in the negative electrode tank 107 was almost nitrogen gas.

次に、液相連通管14を開放し、正極電解液と負極電解液とを十分に混合させることで、RF電池2を完全放電状態とした。この時点で混合された電解液は黒色(有色不透明)を呈していた。   Next, the liquid phase communication tube 14 was opened, and the positive electrode electrolyte and the negative electrode electrolyte were sufficiently mixed, whereby the RF battery 2 was completely discharged. The electrolyte solution mixed at this time was black (colored and opaque).

次に、正極用タンク106と負極用タンク107とに設けておいた正極側導入配管15と負極側導入配管10とから各タンク106,107内に空気(酸化性気体)を導入した。その際、各タンク106,107中の混合電解液を目視にて観察すると、混合電解液は徐々に透明に変化していくことが確認された。最終的に、混合電解液がほぼ透明になったことを目視で確認した時点で、空気の導入を停止した(導入開始から終了までおよそ7日間)。そして、空気の導入の終了後、再度充放電を繰り返した。試験の開始から終了に至るまでのRF電池2の電池容量の変化を図4のグラフに示す。   Next, air (oxidizing gas) was introduced into the tanks 106 and 107 from the positive electrode side introduction pipe 15 and the negative electrode side introduction pipe 10 provided in the positive electrode tank 106 and the negative electrode tank 107. At that time, when the mixed electrolyte in each of the tanks 106 and 107 was visually observed, it was confirmed that the mixed electrolyte gradually changed to transparency. Finally, when it was visually confirmed that the mixed electrolyte was almost transparent, the introduction of air was stopped (approximately 7 days from the start to the end). And after completion | finish of introduction | transduction of air, charging / discharging was repeated again. The graph of FIG. 4 shows changes in the battery capacity of the RF battery 2 from the start to the end of the test.

図4に示すグラフの結果から明らかなように、混合電解液への空気の導入により、RF電池2の電池容量が大幅に回復したことが確認された。   As is clear from the results of the graph shown in FIG. 4, it was confirmed that the battery capacity of the RF battery 2 was significantly recovered by introducing air into the mixed electrolyte.

<試験例2>
試験例1と同様の構成を備えるRF電池2を用いて、今度は、気相連通管13を開放した状態(液相連通管14は閉)で充放電試験を開始した。そうすることで、試験開始後、電池容量が初期の約65%に低下するまで約90日となり、RF電池2の電池容量の減少速度が緩やかになることを確認した。この結果は、RF電池2の電池容量の減少を効果的に抑制できるといえるほどではなかった。
<Test Example 2>
Using the RF battery 2 having the same configuration as in Test Example 1, this time, the charge / discharge test was started in a state where the gas phase communication tube 13 was opened (the liquid phase communication tube 14 was closed). By doing so, it was about 90 days after the start of the test until the battery capacity dropped to about 65% of the initial stage, and it was confirmed that the rate of decrease of the battery capacity of the RF battery 2 was moderate. This result was not enough to say that the decrease in the battery capacity of the RF battery 2 could be effectively suppressed.

そこで、次に、負極側導入配管10から負極用タンク107の内部に空気を導入させながら充放電(気相連通管13は開、液相連通管14は閉)を繰り返した。その結果、次第に電池容量が回復する現象を観察した。その際、負極用タンク107への空気導入量を、負極側導入配管10のバルブ開閉、負極側供給機構11の送風圧力制御、送風時間制御等によって調整することで、電池容量の回復の程度が制御できた。さらに、正負の電解液の充電状態をモニタセルで測定しながらその状態に応じて空気導入量を制御したところ、常時電池容量を一定に制御することが可能であった。この結果を応用することで、例えば、モニタセルでの測定結果から電池容量が初期容量に比べて10%低下したら、負極用タンク107に所定量の空気を所定時間導入する、といった操作を行うことで、安定したRF電池2の運転を実現することができる。   Then, next, charging / discharging (the gas phase communication pipe 13 was opened and the liquid phase communication pipe 14 was closed) was repeated while air was introduced from the negative electrode side introduction pipe 10 into the negative electrode tank 107. As a result, a phenomenon in which the battery capacity gradually recovered was observed. At this time, the amount of air introduced into the negative electrode tank 107 is adjusted by opening / closing the negative electrode side introduction pipe 10, blowing pressure control of the negative electrode side supply mechanism 11, blowing time control, etc. I was able to control it. Furthermore, when the amount of air introduced was controlled according to the state of charge of the positive and negative electrolytes measured by the monitor cell, it was possible to control the battery capacity constantly. By applying this result, for example, when the battery capacity is reduced by 10% compared to the initial capacity from the measurement result in the monitor cell, a predetermined amount of air is introduced into the negative electrode tank 107 for a predetermined time. Thus, stable operation of the RF battery 2 can be realized.

本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更して実施することができる。例えば、使用する負極電解液の負極活物質としてVイオンやCrイオンを利用することもできる。その場合、正負の電解液を混合しないことを前提とした実施形態1の構成を採用する。   The present invention is not limited to the above-described embodiment, and can be implemented with appropriate modifications without departing from the gist of the present invention. For example, V ions or Cr ions can be used as the negative electrode active material of the negative electrode electrolyte used. In that case, the structure of Embodiment 1 on the assumption that positive and negative electrolytes are not mixed is employed.

本発明レドックスフロー電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした大容量の蓄電池に好適に利用することができる。その他、本発明レドックスフロー電池は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。本発明レドックスフロー電池の運転方法は、上記本発明レドックスフロー電池を上記種々の用途で使用する際に好適に利用することができる。   The redox flow battery of the present invention has a large capacity for the purpose of stabilizing fluctuations in power generation output, storing electricity when surplus of generated power, load leveling, etc., for power generation of new energy such as solar power generation and wind power generation. It can utilize suitably for a storage battery. In addition, the redox flow battery of the present invention can be suitably used as a large-capacity storage battery that is provided in a general power plant and is intended for measures against instantaneous voltage drop / power outage and load leveling. The operating method of the redox flow battery of the present invention can be suitably used when the redox flow battery of the present invention is used in the above various applications.

1,2 レドックスフロー電池
100 電池要素
101 隔膜 102 正極セル 103 負極セル
104 正極電極 105 負極電極 106 正極用のタンク
107 負極用のタンク 108,109,110,111 配管
112,113 ポンプ
10 負極側導入配管 11 負極側供給機構
12 撹拌機構
13 気相連通管 14 液相連通管
15 正極側導入配管 16 正極側供給機構
DESCRIPTION OF SYMBOLS 1, 2 Redox flow battery 100 Battery element 101 Diaphragm 102 Positive electrode cell 103 Negative electrode cell 104 Positive electrode 105 Negative electrode 106 Positive electrode tank 107 Negative electrode tank 108,109,110,111 Piping 112,113 Pump 10 Negative electrode side introduction piping DESCRIPTION OF SYMBOLS 11 Negative electrode side supply mechanism 12 Agitation mechanism 13 Gas-phase communication pipe 14 Liquid phase communication pipe 15 Positive electrode side introduction piping 16 Positive electrode side supply mechanism

Claims (15)

正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池要素に、正極用タンクに貯留される正極電解液、及び負極用タンクに貯留される負極電解液を供給して充放電を行うレドックスフロー電池であって、
前記正極電解液は、正極活物質としてMnイオンを含有し、
前記負極電解液は、負極活物質としてTiイオン、Vイオン、およびCrイオンの少なくとも1種を含有し、
前記負極用タンクの外部から内部に連通され、その負極用タンク内部に酸化性気体を導入するための負極側導入配管と、
前記負極側導入配管を介して前記負極用タンク内部に前記酸化性気体を供給する負極側供給機構と、
を備えることを特徴とするレドックスフロー電池。
A battery element including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes is supplied with a positive electrolyte stored in the positive tank and a negative electrolyte stored in the negative tank. A redox flow battery for charging and discharging,
The positive electrode electrolyte contains Mn ions as a positive electrode active material,
The negative electrode electrolyte contains at least one of Ti ions, V ions, and Cr ions as a negative electrode active material,
A negative electrode side introduction pipe communicated from the outside of the negative electrode tank to the inside, and for introducing an oxidizing gas into the negative electrode tank;
A negative electrode side supply mechanism for supplying the oxidizing gas into the negative electrode tank through the negative electrode side introduction pipe;
A redox flow battery comprising:
前記酸化性気体は、酸素を含有する気体であることを特徴とする請求項1に記載のレドックスフロー電池。   The redox flow battery according to claim 1, wherein the oxidizing gas is a gas containing oxygen. 前記正極用タンクの気相と、前記負極用タンクの気相と、を連通する気相連通管を備えることを特徴とする請求項1または2に記載のレドックスフロー電池。   3. The redox flow battery according to claim 1, further comprising a gas phase communication pipe that communicates the gas phase of the positive electrode tank and the gas phase of the negative electrode tank. 4. 前記レドックスフロー電池の充電状態をモニタするモニタ機構を備えることを特徴とする請求項1〜3のいずれか一項に記載のレドックスフロー電池。   The redox flow battery according to claim 1, further comprising a monitor mechanism that monitors a state of charge of the redox flow battery. 前記負極側導入配管は、前記負極用タンクの液相内に開口していることを特徴とする請求項1〜4のいずれか一項に記載のレドックスフロー電池。   The redox flow battery according to any one of claims 1 to 4, wherein the negative electrode side introduction pipe is open in a liquid phase of the negative electrode tank. 前記負極用タンク内部に設けられ、前記負極電解液を撹拌する撹拌機構を備えることを特徴とする請求項1〜5のいずれか一項に記載のレドックスフロー電池。   The redox flow battery according to any one of claims 1 to 5, further comprising a stirring mechanism that is provided inside the negative electrode tank and stirs the negative electrode electrolyte. 前記正極電解液は、Tiイオンを含有することを特徴とする請求項1〜6のいずれか一項に記載のレドックスフロー電池。   The redox flow battery according to claim 1, wherein the positive electrode electrolyte contains Ti ions. 前記負極電解液は、負極活物質としてTiイオンを含有し、さらにMnイオンを含有することを特徴とする請求項7に記載のレドックスフロー電池。   The redox flow battery according to claim 7, wherein the negative electrode electrolyte contains Ti ions as a negative electrode active material, and further contains Mn ions. 前記正極用タンクの液相と、負極用タンクの液相と、を連通する液相連通管を備えることを特徴とする請求項8に記載のレドックスフロー電池。   9. The redox flow battery according to claim 8, further comprising a liquid phase communication pipe that communicates the liquid phase of the positive electrode tank and the liquid phase of the negative electrode tank. 前記正極用タンクの外部から内部に連通され、その正極用タンク内部に酸化性気体を導入するための正極側導入配管と、
前記正極側導入配管を介して前記正極側タンク内部に前記酸化性気体を供給する正極側供給機構と、
を備えることを特徴とする請求項9に記載のレドックスフロー電池。
The positive electrode side introduction pipe communicated from the outside to the inside of the positive electrode tank, and for introducing an oxidizing gas into the positive electrode tank;
A positive electrode side supply mechanism for supplying the oxidizing gas into the positive electrode side tank via the positive electrode side introduction pipe;
The redox flow battery according to claim 9, comprising:
請求項1〜10のいずれか一項に記載のレドックスフロー電池を用いたレドックスフロー電池の運転方法であって、
前記負極電解液に含まれる負極活物質を酸化するために、前記負極用タンク内部に前記酸化性気体を導入することを特徴とするレドックスフロー電池の運転方法。
It is the operating method of the redox flow battery using the redox flow battery as described in any one of Claims 1-10,
A method for operating a redox flow battery, wherein the oxidizing gas is introduced into the negative electrode tank in order to oxidize a negative electrode active material contained in the negative electrode electrolyte.
前記酸化性気体の導入は、前記正極電解液と前記負極電解液の充電状態が異なったときに行うことを特徴とする請求項11に記載のレドックスフロー電池の運転方法。   The method of operating a redox flow battery according to claim 11, wherein the introduction of the oxidizing gas is performed when charge states of the positive electrode electrolyte and the negative electrode electrolyte are different. 前記酸化性気体の導入量を制御することで、前記正極電解液と前記負極電解液の充電状態をほぼ同じ状態にすることを特徴とする請求項12に記載のレドックスフロー電池の運転方法。   The operating method of the redox flow battery according to claim 12, wherein the charged state of the positive electrode electrolyte and the negative electrode electrolyte is made substantially the same by controlling the amount of the oxidizing gas introduced. 前記導入量を制御する基準として、前記負極電解液の透明度を用いることを特徴とする請求項13に記載のレドックスフロー電池の運転方法。   The method of operating a redox flow battery according to claim 13, wherein the transparency of the negative electrode electrolyte is used as a reference for controlling the introduction amount. 前記レドックスフロー電池の充電状態をモニタリングしながら運転することを特徴とする請求項11〜14のいずれか一項に記載のレドックスフロー電池の運転方法。   The operation method of the redox flow battery according to any one of claims 11 to 14, wherein the operation is performed while monitoring a charging state of the redox flow battery.
JP2012111101A 2012-05-15 2012-05-15 Redox flow battery, and operation method thereof Withdrawn JP2012204347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012111101A JP2012204347A (en) 2012-05-15 2012-05-15 Redox flow battery, and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111101A JP2012204347A (en) 2012-05-15 2012-05-15 Redox flow battery, and operation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011067422A Division JP5007849B1 (en) 2011-03-25 2011-03-25 Redox flow battery and operation method thereof

Publications (1)

Publication Number Publication Date
JP2012204347A true JP2012204347A (en) 2012-10-22

Family

ID=47185086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111101A Withdrawn JP2012204347A (en) 2012-05-15 2012-05-15 Redox flow battery, and operation method thereof

Country Status (1)

Country Link
JP (1) JP2012204347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500692A (en) * 2013-11-12 2017-01-05 アカル エネルギー リミテッド Fuel cell assembly and method for operating the fuel cell assembly by monitoring oxidation status
CN110574201A (en) * 2017-04-28 2019-12-13 Ess技术有限公司 Flow battery cleaning cycle to maintain electrolyte health and system performance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500692A (en) * 2013-11-12 2017-01-05 アカル エネルギー リミテッド Fuel cell assembly and method for operating the fuel cell assembly by monitoring oxidation status
CN110574201A (en) * 2017-04-28 2019-12-13 Ess技术有限公司 Flow battery cleaning cycle to maintain electrolyte health and system performance
CN110574201B (en) * 2017-04-28 2023-10-31 Ess技术有限公司 Flow battery cleaning cycle to maintain electrolyte health and system performance

Similar Documents

Publication Publication Date Title
JP5007849B1 (en) Redox flow battery and operation method thereof
US8288030B2 (en) Redox flow battery
KR101178327B1 (en) Redox flow battery
CN107112567B (en) Assembly for regenerating electrolyte of flow battery and method for regenerating electrolyte of flow battery using same
US20210167433A1 (en) In-situ electrolyte preparation in flow battery
JP5712688B2 (en) Redox flow battery
JP6547002B2 (en) Method of treating liquid electrolyte
JP2022535691A (en) Redox flow battery system and methods of manufacture and operation
JP2014137946A (en) Method for operating redox flow cell
JP2011210696A (en) Redox flow battery
KR20160085113A (en) Module for mixing of electrolyte and method for mixing of electrolyte for flow battery using the same
JP2012204347A (en) Redox flow battery, and operation method thereof
JP4863172B2 (en) Redox flow battery
JP5489008B2 (en) Redox flow battery
EP3492628B1 (en) Electrolyte and electrolyzer system
JPWO2019078146A1 (en) Electrolyte and redox flow battery
KR20160024499A (en) Apparatus For Measuring State Of Charging Of Flow Battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603