JP2849925B2 - Polyamide-based polymer alloy fiber and method for producing the same - Google Patents

Polyamide-based polymer alloy fiber and method for producing the same

Info

Publication number
JP2849925B2
JP2849925B2 JP1188390A JP18839089A JP2849925B2 JP 2849925 B2 JP2849925 B2 JP 2849925B2 JP 1188390 A JP1188390 A JP 1188390A JP 18839089 A JP18839089 A JP 18839089A JP 2849925 B2 JP2849925 B2 JP 2849925B2
Authority
JP
Japan
Prior art keywords
component
fiber
polyamide
polyolefin
polymer alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1188390A
Other languages
Japanese (ja)
Other versions
JPH0351314A (en
Inventor
庸輔 高井
宏 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Original Assignee
Daiwa Boseki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK filed Critical Daiwa Boseki KK
Priority to JP1188390A priority Critical patent/JP2849925B2/en
Publication of JPH0351314A publication Critical patent/JPH0351314A/en
Application granted granted Critical
Publication of JP2849925B2 publication Critical patent/JP2849925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリアミドとポリオレフィンとのポリマーア
ロイからなる繊維であって、双方のポリマーの長所、す
なわちポリアミドの親水性、染色性とポリオレフィンの
耐酸化性、耐アルカリ性を各々生かしたポリマーアロイ
繊維に関する。
The present invention relates to a fiber comprising a polymer alloy of a polyamide and a polyolefin, which has advantages of both polymers, namely, hydrophilicity and dyeability of the polyamide and oxidation resistance of the polyolefin. The present invention relates to a polymer alloy fiber that makes use of the properties and alkali resistance.

(従来の技術) ポリアミド繊維の耐酸化性を向上させるため、ポリオ
レフィンと混合紡糸する方法は古くから知られている。
例えば、特公昭42−11697号ではポリアミドに2〜7%
のポリオレフィンを混合する例がある。また、複合繊維
としては特公昭42−8733号、特公昭47−50012号があ
る。このような複合繊維の耐酸化性、親水性を利用した
電池セパレーターの例もみられる(特開昭50−154745
号、特開昭55−25921号)。
(Prior art) In order to improve the oxidation resistance of a polyamide fiber, a method of spinning with a polyolefin has been known for a long time.
For example, in Japanese Patent Publication No. 42-11697, 2-7%
Of polyolefins. Examples of the conjugate fiber include JP-B-42-8733 and JP-B-47-50012. There is also an example of a battery separator utilizing the oxidation resistance and hydrophilicity of such a conjugate fiber (JP-A-50-154745).
No., JP-A-55-25921).

(発明が解決すべき問題点) しかし、ポリアミドとポリオレフィンとは相溶性、接
着性が悪いため延伸しにくく混合紡糸は強力が弱く、複
合紡糸は剥離しやすいものしか得られなかった。
(Problems to be Solved by the Invention) However, polyamide and polyolefin are poor in compatibility and adhesiveness, so it is difficult to draw, and mixed spinning has low strength, and composite spinning can only be easily peeled.

本発明はポリアミドとポリオレフィンとを任意の割合
で混合したポリマーアロイ繊維に関し、延伸が容易で細
繊度、高強力であり、さらにポリオレフィンとの混合繊
維にすると成分間の剥離がないという利点を持つもので
ある。
The present invention relates to a polymer alloy fiber in which a polyamide and a polyolefin are mixed at an arbitrary ratio. The polymer alloy fiber has an advantage that drawing is easy, fineness is high, and high strength. It is.

(問題点を解決する手段) 本発明者らは、上記問題点を解決する手段として、海
成分であるポリアミドに対してできるだけ微細なポリオ
レフィンの島成分を作ることを見出した。すなわち、粒
状のポリオレフィンの繊維の断面における直径が5μm
未満になっていれば、ポリアミドとの親和性が良好で両
成分の剥離が少ないのである。
(Means for Solving the Problems) As a means for solving the above problems, the present inventors have found that a polyolefin island component as fine as possible with respect to a polyamide as a sea component is produced. That is, the diameter of the cross section of the granular polyolefin fiber is 5 μm.
If it is less than this, the affinity with the polyamide is good and the separation of both components is small.

本発明の請求項1の発明は、脂肪族ポリアミドを海成
分、繊維断面における直径が5μm未満の粒状のポリオ
レフィンを島成分とし、且つ該島成分が繊維の長さ方向
において不連続なポリアミド系ポリマーアロイを第1成
分とし、該島成分のポリオレフィンと同一のポリオレフ
ィンを第2成分として第1成分が繊維断面積の30%以上
且つ繊維表面の60%以上を形成してなるポリアミド系ポ
リマーアロイ複合繊維である。
The invention according to claim 1 of the present invention provides a polyamide-based polymer in which an aliphatic polyamide is a sea component, and a granular polyolefin having a diameter of less than 5 μm in fiber cross section is an island component, and the island component is discontinuous in the fiber length direction. A polyamide-based polymer alloy conjugate fiber comprising an alloy as a first component, a polyolefin identical to the island component polyolefin as a second component, and the first component forming at least 30% of the fiber cross-sectional area and at least 60% of the fiber surface. It is.

上記脂肪族ポリアミドにはナイロン−6、ナイロン−
66、ナイロン−12、ナイロン−11などのホモポリマー又
はコポリマーが用いられるが、ナイロン−6、ナイロン
−66はこれらの中でも価格も安く実用上適している。ま
た、ポリオレフィンはポリプロピレン、ポリエチレン、
ポリブテン、ポリメチルペンテンなどのα−オレフィン
のホモポリマー又はコポリマーが用いられているが、実
用上ポリプロピレンが好ましい。
Nylon-6, nylon-
A homopolymer or copolymer such as 66, nylon-12, nylon-11, etc. is used. Of these, nylon-6 and nylon-66 are inexpensive and suitable for practical use. The polyolefin is polypropylene, polyethylene,
Although homopolymers or copolymers of α-olefins such as polybutene and polymethylpentene are used, polypropylene is practically preferable.

島成分の断面形状は必ずしも円形ではなく、円形でな
い場合その直径とはさしわたし径の最大の個所をいう。
また、ポリオレフィンは原料としてポリマーブレンド法
により、海成分の中に粒状で混合されており、それを紡
糸した島成分は繊維の長さ方向において不連続である。
The cross-sectional shape of the island component is not necessarily circular, and if it is not circular, its diameter is the largest part of the diameter.
In addition, polyolefin is mixed as a raw material in a granular form in a sea component by a polymer blend method, and an island component obtained by spinning the same is discontinuous in a fiber length direction.

前記複合繊維の第1成分は繊維断面積の30%以上、且
つ繊維表面の60%以上を形成している。従って、繊維の
断面形状は芯鞘型でも並列型でもとりうる。第1成分と
第2成分とはその境界面に第1成分の島成分の一部が表
れており、第2成分と相溶化しているので両成分間の接
着力が強く、剥離しにくくなっている。
The first component of the composite fiber forms at least 30% of the fiber cross-sectional area and at least 60% of the fiber surface. Therefore, the cross-sectional shape of the fiber may be a core-sheath type or a side-by-side type. A part of the island component of the first component appears at the boundary surface between the first component and the second component, and since the first component and the second component are compatible with the second component, the adhesive force between the two components is strong, and the two components are hardly peeled off. ing.

第1図はこの芯鞘型複合繊維の断面形状を示す。第1
成分(3)であるポリマーアロイは海成分(1)の中に
島成分(2)が点状に分散している。第1成分(3)中
の島成分(2)とポリオレフィンである第2成分(4)
とはその境界線上で互いに混ざりあって一体化してお
り、境界線はそのため凹凸になり、両成分の接触面積を
増大させている。次に第2図に並列型複合繊維の断面図
を示す。繊維表面の60%以上を第1成分が占めている。
両成分の境界線はやはり島成分と第2成分との混ざりあ
いのため凹凸である。
FIG. 1 shows a cross-sectional shape of the core-sheath composite fiber. First
In the polymer alloy as the component (3), the island component (2) is dispersed in the sea component (1) in the form of dots. The island component (2) in the first component (3) and the second component (4) which is a polyolefin
Are mixed and integrated with each other on the boundary line, and the boundary line becomes uneven, thereby increasing the contact area of both components. Next, FIG. 2 shows a cross-sectional view of the parallel type composite fiber. The first component accounts for 60% or more of the fiber surface.
The boundary between the two components is also uneven due to the mixture of the island component and the second component.

ポリマーアロイ中のポリアミドとポリオレフィンの混
合割合は、ポリアミドが海成分、ポリオレフィンが島成
分であるためにはポリアミドが50重量%以上が必要で、
好ましくは60重量%以上である。また、前記複合繊維を
得るにはポリオレフィンが島成分として20重量%以上、
好ましくは30重量%以上含まれていると安定して製造で
きる。従って、ポリアミドをPA、ポリオレフィンをPOと
表すと、PAとPOの混合割合(PA/PO)は50/50<PA/PO≦8
0/20好ましくは60/40<PA/PO≦70/30である。混合割合
はこの範囲内で目的の繊維の親水性、染色性、耐酸化
性、耐アルカリ性等の必要な特性を得られるように選択
すればよい。
The mixing ratio of the polyamide and the polyolefin in the polymer alloy should be at least 50% by weight of the polyamide in order for the polyamide to be the sea component and the polyolefin to be the island component.
It is preferably at least 60% by weight. Further, in order to obtain the composite fiber, the polyolefin is at least 20% by weight as an island component,
Preferably, when the content is 30% by weight or more, stable production can be achieved. Therefore, when polyamide is represented by PA and polyolefin is represented by PO, the mixing ratio of PA and PO (PA / PO) is 50/50 <PA / PO ≦ 8.
0/20, preferably 60/40 <PA / PO ≦ 70/30. The mixing ratio may be selected within this range so as to obtain necessary properties such as hydrophilicity, dyeability, oxidation resistance, and alkali resistance of the target fiber.

また、複合繊維のポリマーアロイとポリオレフィンと
の複合割合は第1成分であるポリマーアロイが繊維表面
の60%以上を占めるようにするためにはポリマーアロイ
は繊維断面比で30%以上を占めることにより安定して製
造できる。
The composite ratio of the polymer alloy and the polyolefin in the composite fiber is determined so that the polymer alloy as the first component occupies 60% or more of the fiber surface by setting the polymer alloy to 30% or more in fiber cross-sectional ratio. Can be manufactured stably.

このような請求項1のポリマーアロイ繊維は次のよう
にして製造することができる。
Such a polymer alloy fiber of claim 1 can be manufactured as follows.

請求項2の発明は、脂肪族ポリアミドの海成分中に直
径5μm未満の粒状のポリオレフィンが島成分として混
在して一体化しており、290℃におけるメルトフローレ
ートが20以上90未満である海島型ポリアミド径ポリマー
アロイを第1成分とし該第1成分中のポリオレフィンと
同一のポリオレフィンを第2成分として、第1成分が繊
維断面積の30%以上繊維表面積の60%以上を占めるよう
に融点+10℃以上360℃未満の温度範囲で溶融紡糸し2
倍以上に延伸することにより、前記直径5μm未満の粒
状のポリオレフィンを繊維の長さ方向において不連続に
することを特徴とする請求項1のポリマーアロイ複合繊
維の製造方法である。
The invention according to claim 2 is a sea-island type polyamide in which a granular polyolefin having a diameter of less than 5 μm is mixed and integrated as an island component with the sea component of the aliphatic polyamide, and the melt flow rate at 290 ° C. is 20 or more and less than 90. The diameter of the polymer alloy is the first component, and the same polyolefin as the first component is the second component. The melting point + 10 ° C. or higher so that the first component occupies 30% or more of the fiber cross-sectional area and 60% or more of the fiber surface area. Melt spinning at a temperature below 360 ° C 2
2. The method for producing a polymer alloy conjugate fiber according to claim 1, wherein the polyolefin having a diameter of less than 5 [mu] m is made discontinuous in the length direction of the fiber by drawing the polyolefin twice or more times.

本発明のポリマーアロイは予め脂肪族ポリアミド中に
直径5μm未満の粒状のポリオレフィンが混在している
原料樹脂を溶融紡糸する。従って、紡糸後の繊維中の島
成分であるポリオレフィンはそのさしわたし径が5μm
以上になることはなく、良好に海成分中に分散して海成
分と共に延伸することができるのである。原料樹脂中の
島成分の直径は好ましくは3μm以下、より好ましくは
1μm程度である。この原料樹脂は290℃におけるメル
トフローレート(MFR)が20以上90未満にあるものを使
用する。MFRがこの範囲内にある原料樹脂の紡糸温度を
選ぶと良好に紡糸できる。
In the polymer alloy of the present invention, a raw material resin in which a particulate polyolefin having a diameter of less than 5 μm is mixed in an aliphatic polyamide in advance is melt-spun. Therefore, the polyolefin which is an island component in the fiber after spinning has a diameter of 5 μm.
This is not the case, and the film can be favorably dispersed in the sea component and stretched together with the sea component. The diameter of the island component in the raw material resin is preferably 3 μm or less, more preferably about 1 μm. This raw material resin has a melt flow rate (MFR) at 290 ° C. of 20 or more and less than 90. If the spinning temperature of the raw resin having an MFR within this range is selected, good spinning can be achieved.

上記MFRはJIS7210に準じて測定、加重2169g、10分間
の流量(g)で表す。
The above MFR is measured according to JIS7210, expressed by weight (2169 g) and flow rate (g) for 10 minutes.

紡糸温度は、ポリマーアロイの融点+10℃以上360℃
未満である。360℃を超えるとポリアミドの分解が著し
い。ポリアミドがナイロン−6の場合250℃以上360℃未
満、ナイロン−66の場合270℃以上360℃未満の範囲内で
MFRが紡糸上好ましい値をとるように選定する。
Spinning temperature is the melting point of polymer alloy + 10 ° C or more and 360 ° C
Is less than. If it exceeds 360 ° C., the decomposition of polyamide is remarkable. If the polyamide is nylon-6, the temperature must be between 250 ° C and 360 ° C. If the polyamide is nylon-6, the temperature must be between 270 ° C and less than 360 ° C.
The MFR is selected so as to take a preferable value for spinning.

(発明の作用) ポリアミドとポリオレフィンの混合体から海島型構造
をもった繊維を紡糸しても、糸切れが多数発生していた
が、本発明のように、ポリオレフィンを予め直径5μm
未満の粒状にしてポリアミド中に分散させた型のポリマ
ーアロイを使用することによって良好な紡糸延伸性を得
ることができる。さらに、ポリアミドとポリオレフィン
の複合繊維は成分間の剥離が起こりやすかったが、ポリ
アミドをポリオレフィンとのポリマーアロイを使うこと
によって成分間の剥離のない複合繊維が得られた。
(Effect of the Invention) Even when spinning a fiber having a sea-island structure from a mixture of a polyamide and a polyolefin, a large number of thread breaks occurred.
Good spin drawability can be obtained by using a polymer alloy of a type which is dispersed in a polyamide with a particle size smaller than the above. Further, the composite fiber of polyamide and polyolefin was liable to cause separation between components. However, by using a polymer alloy of polyamide and polyolefin, a composite fiber having no separation between components was obtained.

(実施例) 実施例1〜3 ナイロン−6(Ny)を海成分、ポリプロピレン(PP)
を島成分とするポリアミド系ポリマーアロイQA−5000
(商品名、三井石油化学工業株式会社製)を用意した。
両成分の混合割合はナイロン−6が60重量%、ポリプロ
ピレンが40重量%の割合で、ポリプロピレンは直径約1
μmの粒状で分散されていた。MFRは290℃で45g/10分で
あった。
(Examples) Examples 1 to 3 Nylon-6 (Ny) is a sea component and polypropylene (PP) is used.
Polyamide polymer alloy QA-5000 containing
(Trade name, manufactured by Mitsui Petrochemical Industry Co., Ltd.).
The mixing ratio of the two components is 60% by weight of nylon-6 and 40% by weight of polypropylene.
It was dispersed in the form of μm particles. The MFR was 45 g / 10 minutes at 290 ° C.

このポリマーアロイ繊維及びポリプロピレン(MFR45g
/10分)を複合成分とする鞘芯型又は並列型の複合繊維
を複合比(面積%)を変えて紡糸した。紡糸条件は、口
金孔数500孔、吐出量150g/分、紡糸温度290℃で溶融紡
糸し、95℃の熱水中で延伸した。上記ポリマーアロイ複
合繊維の繊維形状、複合比、ポリマーアロイが繊維表面
を占める割合(表面比)、繊維の強伸度等を表1に示
す。
This polymer alloy fiber and polypropylene (MFR45g
/ 10 min) as a composite component and spun at a different composite ratio (area%). The spinning conditions were as follows: melt spinning was performed at a spinning temperature of 290 ° C. at a spinning temperature of 290 ° C., and the drawing was performed in hot water at 95 ° C. Table 1 shows the fiber shape, the composite ratio, the ratio of the polymer alloy occupying the fiber surface (surface ratio), the fiber elongation, and the like of the polymer alloy composite fiber.

比較例1〜3 比較例としてポリプロピレン単一繊維、ナイロン−6
とポリプロピレンの複合繊維及び実施例1と同じポリマ
ーアロイとポリプロピレンからなる並列型複合繊維を紡
糸した。実施例と同様の繊維物性を表1に示す。
Comparative Examples 1-3 Polypropylene single fiber, nylon-6 as comparative examples
And a parallel type composite fiber comprising the same polymer alloy and polypropylene as in Example 1 was spun. Table 1 shows the fiber properties similar to those of the examples.

次に以上を実施例、比較例について電池セパレーター
材料としての適否を以下の3項目について試験した結果
を第1表に示す。
Next, Table 1 shows the results of tests on the following three items as to whether or not the above examples and comparative examples were suitable as battery separator materials.

試験サンプル用不織布として、上記実施例、比較例の
各繊維(繊維長51mm)を70%とポリプロピレンを芯に高
密度ポリエチレンを鞘にした複合繊維(2デニール、繊
維長51mm)30%を混綿し、140℃、1分間の熱風処理を
して目付75g/m2の熱接着不織布とした後、線圧33kg/cm
の平熱ロール(140℃)で熱加工して、厚さ0.23mmの不
織布を作った。
As a nonwoven fabric for a test sample, 70% of each fiber (fiber length 51 mm) of the above-mentioned Example and Comparative Example and 30% of a composite fiber (2 denier, fiber length 51 mm) made of high density polyethylene sheathed with polypropylene as a core. , 140 ° C., after a basis weight 75 g / m 2 of thermal bonding nonwoven by hot air for 1 minute, linear pressure 33 kg / cm
The non-woven fabric having a thickness of 0.23 mm was formed by hot working with a flat heat roll (140 ° C.).

3項目の試験方法は以下のとおりである。 The three test methods are as follows.

親水性試験(電解液吸収速度試験) 試料のタテ方向から2.5×18cmの試験片を3枚採取
し、水分平衡状態とする。次に、試験片を20±2℃の比
重1.30(20℃)苛性カリ溶液を入れた水槽上の一定の高
さに支えた水平棒上のピンで止める。試験片の下端を一
線に並べて水平棒を下ろし、試験片の下端が5mmだけ液
中に漬かるように垂直に立て、毛細管現象により苛性カ
リ溶液が上昇した高さを30分後に測定する。
Hydrophilicity test (electrolyte absorption rate test) Three test pieces measuring 2.5 × 18 cm are taken from the vertical direction of the sample, and the sample is brought into a water equilibrium state. Next, the test piece is fixed with a pin on a horizontal bar supported at a certain height on a water tank containing a caustic potash solution having a specific gravity of 1.30 (20 ° C.) at 20 ± 2 ° C. The lower end of the test piece is lined up, the horizontal bar is lowered, and the test piece is set up vertically so that the lower end of the test piece is immersed in the liquid by 5 mm.

耐アルカリ性試験 試料から10cm×10cmの試験片を3枚採取し、水分平衡
に至らせた状態の重量(W)を1mgまで測定した後、比
重1.30(20℃)の苛性カリ溶液中に浸し、80±2℃で7
日間保存する。
Alkali resistance test Three test specimens of 10 cm × 10 cm were sampled from a sample, and the weight (W) in a state where water equilibrium was reached was measured up to 1 mg. 7 at ± 2 ° C
Save for days.

その後、中和点に達するまで水洗、乾燥し、再び水分
平衡に至らせた状態の重量(W1)を測定し次の式により
耐アルカリ性を求める。
Thereafter, the sample is washed with water until it reaches the neutralization point, dried, and again weighed (W 1 ) in a state of reaching water equilibrium, and the alkali resistance is determined by the following equation.

耐アルカリ性=(W−W1)/W×100 耐酸化性試験 試料から10cm×10cmの試験片を3枚採取し、水分平衡
に至らせた状態の重量(W)を1mgまで測定する。次に
5%KMnO4溶液250ccに30%KHO溶液50ccを加えた混合溶
液中に浸し、50±2℃で1時間浸漬する。
Alkali resistance = (W−W 1 ) / W × 100 Oxidation resistance test Three test pieces of 10 cm × 10 cm are sampled from a sample, and the weight (W) in a state of reaching water equilibrium is measured to 1 mg. Next, it is immersed in a mixed solution obtained by adding 50 cc of a 30% KHO solution to 250 cc of a 5% KMnO 4 solution, and immersed at 50 ± 2 ° C. for 1 hour.

その後、中和点に達するまで水洗、乾燥し、再び水分
平衡に至らせた状態の重量(W1)を測定し次の式により
耐酸化性を求める。
Thereafter, the sample is washed with water until it reaches the neutralization point, dried, and again weighed (W 1 ) in a state where water equilibrium is reached, and the oxidation resistance is determined by the following equation.

耐酸化性=(W−W1)/W×100 実施例4〜8及び比較例4〜5 第1成分のポリマーアロイのナイロンの種類及び重量
比を変えて実施例1と同様のポリプロピレンとの芯鞘型
複合繊維(複合比率50:50)を紡糸した。第1成分の内
容、複合繊維の複合比、紡糸性及び実施例1〜3と同じ
親水性試験結果を表2に示す。
Oxidation resistance = (W-W 1) / W × 100 Examples 4 to 8 and Comparative Examples 4 and 5 The same core-sheath type composite fiber as polypropylene as in Example 1 (composite ratio of 50:50) was spun by changing the kind and weight ratio of nylon of the first component polymer alloy. did. Table 2 shows the content of the first component, the composite ratio of the composite fiber, the spinnability, and the same hydrophilicity test results as in Examples 1 to 3.

(発明の効果) 本発明のポリアミド系ポリマーアロイ繊維はポリアミ
ドの特性である親水性、染色性を残したままポリオレフ
ィンの耐薬品性をとり入れた性質を持ち、一般の衣料用
途はもとより、耐酸化性、耐アルカリ性を要求される用
途にも適用しうる。特に電池セパレーターの材料として
親水性があるため液へのなじみがよく、良好な耐酸化
性、耐アルカリ性を持っているので最適である。
(Effect of the Invention) The polyamide-based polymer alloy fiber of the present invention has the property of incorporating the chemical resistance of polyolefin while retaining the hydrophilicity and dyeing properties of polyamide. It can also be applied to applications requiring alkali resistance. In particular, since the material of the battery separator is hydrophilic, it is well suited to liquids, and is optimal because it has good oxidation resistance and alkali resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は請求項1の発明の芯鞘型複合繊維の断面図であ
る。第2図は同じく並列型複合繊維の断面図である。図
において(1)海成分、(2)島成分、(3)第1成
分、(4)第2成分
FIG. 1 is a cross-sectional view of the core-in-sheath type composite fiber according to the first aspect of the present invention. FIG. 2 is a sectional view of the parallel type composite fiber. In the figure, (1) sea component, (2) island component, (3) first component, (4) second component

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】脂肪族ポリアミドを海成分、繊維断面にお
ける直径が5μm未満の粒状のポリオレフィンを島成分
とし、且つ該島成分が繊維の長さ方向において不連続な
ポリアミド系ポリマーアロイを第1成分とし、該島成分
のポリオレフィンと同一のポリオレフィンを第2成分と
して第1成分が繊維断面積の30%以上且つ繊維表面の60
%以上を形成してなるポリアミド系ポリマーアロイ複合
繊維。
1. A polyamide polymer alloy comprising a sea component of an aliphatic polyamide, a granular polyolefin having a diameter of less than 5 μm in a fiber cross section as an island component, and a polyamide polymer alloy in which the island component is discontinuous in the fiber length direction. The same polyolefin as that of the island component is used as the second component, and the first component is 30% or more of the fiber cross-sectional area and 60% of the fiber surface.
% Of a polyamide-based polymer alloy composite fiber.
【請求項2】脂肪族ポリアミドの海成分中に直径5μm
未満の粒状のポリオレフィンが島成分として混在して一
体化しており、290℃におけるメルトフローレートが20
以上90未満である海島型ポリアミド系ポリマーアロイを
第1成分とし、該第1成分中のポリオレフィンと同一の
ポリオレフィンを第2成分として、第1成分が繊維断面
積の30%以上、繊維表面の60%以上を占めるように融点
+10℃以上360℃未満の温度範囲で溶融紡糸し2倍以上
に延伸することにより、前記直径5μm未満の粒状のポ
リオレフィンを繊維の長さ方向において不連続にするこ
とを特徴とする請求項2のポリマーアロイ複合繊維の製
造方法。
2. The aliphatic polyamide has a diameter of 5 μm in the sea component.
The polyolefin having a particle size of less than 1 is mixed and integrated as an island component, and has a melt flow rate at 290 ° C of 20 or less.
A sea-island type polyamide-based polymer alloy having a value of not less than 90 is used as a first component, and a polyolefin identical to the polyolefin in the first component is used as a second component. % By melting and spinning in a temperature range of 10 ° C. or more and less than 360 ° C. and stretching it twice or more, thereby making the particulate polyolefin having a diameter of less than 5 μm discontinuous in the fiber length direction. The method for producing a polymer alloy conjugate fiber according to claim 2, characterized in that:
JP1188390A 1989-07-19 1989-07-19 Polyamide-based polymer alloy fiber and method for producing the same Expired - Lifetime JP2849925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188390A JP2849925B2 (en) 1989-07-19 1989-07-19 Polyamide-based polymer alloy fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188390A JP2849925B2 (en) 1989-07-19 1989-07-19 Polyamide-based polymer alloy fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0351314A JPH0351314A (en) 1991-03-05
JP2849925B2 true JP2849925B2 (en) 1999-01-27

Family

ID=16222795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188390A Expired - Lifetime JP2849925B2 (en) 1989-07-19 1989-07-19 Polyamide-based polymer alloy fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2849925B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006275585A1 (en) 2005-08-01 2007-02-08 Invitrogen Corporation Labels, containers, system and methods for providing reagents
JP2008266864A (en) * 2007-03-28 2008-11-06 Toray Ind Inc Polyamide filament
AU2010247771A1 (en) * 2009-05-11 2011-11-24 Invista Technologies S.A. R.L. Nylon carpet fibers having bleach resistance
US9212433B2 (en) * 2012-03-23 2015-12-15 Toray Industries, Inc. Polymethylpentene conjugate fiber or porous polymethylpentene fiber and fiber structure comprising same
KR20240019401A (en) * 2015-02-25 2024-02-14 셀가드 엘엘씨 Improved separators for high voltage rechargeable lithium batteries and related methods

Also Published As

Publication number Publication date
JPH0351314A (en) 1991-03-05

Similar Documents

Publication Publication Date Title
US5130196A (en) Conjugate fibers and formed product using the same
JPH08144166A (en) Polyamide ultrafine fiber nonwoven fabric and its production
TWI787248B (en) Splittable conjugate fiber and fiber structure using the same
JP2849925B2 (en) Polyamide-based polymer alloy fiber and method for producing the same
JPH1140129A (en) Battery separator consisting of extra fine complex fiber nonwoven cloth and manufacture thereof
DE2318831A1 (en) METHOD OF MANUFACTURING A PRODUCT COMPOSED OF MICROFIBRILLES
US5965084A (en) Process for producing non-woven fabrics of ultrafine polyolefin fibers
JP4577920B2 (en) Battery separator and battery using the same
JP2000336568A (en) Nonwoven cloth and filter made thereof
JP3799202B2 (en) Polypropylene-containing fiber and fiber sheet
US4699858A (en) Separator for an alkaline battery
JP2007321294A (en) Sheath-core type polymer alloy fiber and hollow fiber and method for producing them
JP2622744B2 (en) Water-retaining nonwoven
JP3063074B2 (en) Mixed fiber nonwoven
JP5752462B2 (en) Separator material and battery using the same
JP3918965B2 (en) Composite nonwoven fabric
JPH08188923A (en) Sheath-core type conjugate fiber having projecting part on the surface
JP3246787B2 (en) Nonwoven fabric using porous fiber and method for producing the same
JP2001348725A (en) Water-repellent fiber and water-repellent fiber sheet prepared by using the same
JPS6139409B2 (en)
JPH11273653A (en) Nonwoven fabric for battery separator
JPH03249249A (en) Nonwoven fabric of olefin-based ultrathin yarn
JPH0438462Y2 (en)
JP4316783B2 (en) Manufacturing method of long fiber nonwoven fabric
JPH0393154A (en) Separator for alkaline battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11