JP2839203B2 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JP2839203B2
JP2839203B2 JP2252525A JP25252590A JP2839203B2 JP 2839203 B2 JP2839203 B2 JP 2839203B2 JP 2252525 A JP2252525 A JP 2252525A JP 25252590 A JP25252590 A JP 25252590A JP 2839203 B2 JP2839203 B2 JP 2839203B2
Authority
JP
Japan
Prior art keywords
power supply
supply potential
logic
circuit
pmos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2252525A
Other languages
Japanese (ja)
Other versions
JPH04129419A (en
Inventor
義憲 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2252525A priority Critical patent/JP2839203B2/en
Priority to DE69127040T priority patent/DE69127040T2/en
Priority to EP91115846A priority patent/EP0477758B1/en
Priority to KR1019910016330A priority patent/KR950002275B1/en
Publication of JPH04129419A publication Critical patent/JPH04129419A/en
Priority to US07/921,380 priority patent/US5200921A/en
Application granted granted Critical
Publication of JP2839203B2 publication Critical patent/JP2839203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0218Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of field effect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Logic Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔概要〕 降圧電源(VRC)を併用する半導体集積回路に関し、 VCC系ゲート回路の出力を受けるVRC系ゲート回路のPM
OSトランジスタのしきい値を調節することにより、信号
伝達の遅延を防止することを目的とし、 2値論理出力の一方の論理レベルを第1の電源電位に
よって決定し、他方の論理レベルを該第1の電源電位に
対して電位差Aを持つ第2の電源電位によって決定する
前段論理回路と、該前段論理回路からの論理を受けて2
値論理を出力するとともに、該2値論理の一方の論理レ
ベルを前記第1の電源電位によって決定し、他方の論理
レベルを該第1の電源電位に対して前記電位差Aよりも
小さい電位差Bを持つ第3の電源電位によって決定する
後段論理回路と、を具備し、前記後段論理回路は、入力
論理レベルが前記第2の電源電位によって決められた論
理レベルから前記第1の電源電位によって決められた論
理レベルへと変化する間の所定の電位でオフ状態からオ
ン状態へと遷移して出力論理の他方の論理レベルを決定
するPMOSトランジスタを有し、該PMOSトランジスタのし
きい値を調節して、前記所定の電位を第2の電源電位ま
たは第3の電源電位に近づけたことを特徴とする。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a semiconductor integrated circuit using a step-down power supply (V RC ), and relates to a PM of a V RC gate circuit receiving an output of a V CC gate circuit.
The purpose of the present invention is to adjust the threshold value of the OS transistor to prevent delay in signal transmission. One of the logic levels of the binary logic output is determined by the first power supply potential, and the other logic level is determined by the A first logic circuit determined by a second power supply potential having a potential difference A with respect to one power supply potential;
Outputs a value logic, determines one logic level of the binary logic by the first power supply potential, and sets the other logic level to a potential difference B smaller than the potential difference A with respect to the first power supply potential. A second-stage logic circuit that is determined by a third power supply potential of the second-stage logic circuit, wherein the input logic level is determined by the first power supply potential from a logic level determined by the second power supply potential. A PMOS transistor that transitions from an off state to an on state at a predetermined potential while changing to a logic level to determine the other logic level of the output logic, and adjusts the threshold value of the PMOS transistor. The predetermined potential is brought closer to a second power supply potential or a third power supply potential.

または、所定の電源電位とほぼ等しいレベルのハイ論
理を有する出力信号を出力する第1の回路、及び、該出
力信号を受ける第2の回路を有する半導体集積回路であ
って、前記第1の回路は、前記所定の電源電位を受ける
ソースと、前記出力信号を出力するドレインとを有する
第1のPMOSトランジスタを含み、前記第2の回路は、前
記出力信号を受けるゲートと、前記所定の電源電位より
低い電源電位を受けるソースと、出力端子に接続された
ドレインを有する第2のPMOSトランジスタを含み、前記
第1のPMOSトランジスタ及び第2のPMOSトランジスタは
それぞれしきい電圧を有し、該しきい電圧はゲート・ソ
ース間電圧として定義され、該第2のPMOSトランジスタ
のしきい電圧は前記第1のPMOSトランジスタのしきい電
圧より大きいことを特徴とする。
A first circuit for outputting an output signal having a high logic at a level substantially equal to a predetermined power supply potential; and a second circuit for receiving the output signal, wherein the first circuit Includes a first PMOS transistor having a source for receiving the predetermined power supply potential and a drain for outputting the output signal, wherein the second circuit includes a gate for receiving the output signal, and a gate connected to the predetermined power supply potential. A second PMOS transistor having a source receiving a lower power supply potential and a drain connected to the output terminal, wherein the first PMOS transistor and the second PMOS transistor each have a threshold voltage; The voltage is defined as a gate-source voltage, and a threshold voltage of the second PMOS transistor is higher than a threshold voltage of the first PMOS transistor. .

〔産業上の利用分野〕[Industrial applications]

本発明は、半導体集積回路、詳しくは降圧電源
(VRC)を併用する半導体集積回路に関する。半導体集
積回路の密度を向上し、微細化を進めていくと、例えば
トランジスタの耐圧が損なわれることがあり、この対策
として電源電圧の降圧化が行われる。
The present invention relates to a semiconductor integrated circuit, and more particularly, to a semiconductor integrated circuit using a step-down power supply (V RC ). When the density of a semiconductor integrated circuit is increased and miniaturization is advanced, for example, the withstand voltage of a transistor may be impaired. As a countermeasure, a power supply voltage is reduced.

〔従来の技術〕 第4図は降圧電源を併用する半導体集積回路の一部を
示す図であり、第1の回路としての前段のCMOSゲート
(以下、VCC系ゲート回路)10には例えば+5Vの電源
(以下、VCC)が与えられ、第2の回路としての後段のC
MOSゲート(以下、VRC系ゲート回路)11にはVCCよりも
低い例えば+4Vの電源(以下、VRC)が与えられてい
る。なお、GNDは二つのゲートに共通の電源(例えば0
V)である。
[Prior Art] FIG. 4 is a diagram showing a part of a semiconductor integrated circuit used in combination buck power, preceding CMOS gates as the first circuit (hereinafter, V CC system gate circuit) 10 for example, + 5V (Hereinafter referred to as V CC ), and a second circuit C
MOS gate (hereinafter, V RC system gate circuit) of 11 lower for example + 4V than V CC is the power supply (hereinafter, V RC) is given. Note that GND is a common power supply (for example, 0
V).

VCC系ゲート回路10は、VCCとGNDの間にPMOSトランジ
スタ(第1のPMOSトランジスタ)13およびNMOSトランジ
スタ14を接続して構成し、また、VRC系ゲート回路11
は、VRCとGNDの間にPMOSトランジスタ(第2のPMOSトラ
ンジスタ)15およびNMOSトランジスタ16を接続して構成
する。
V CC system gate circuit 10 is constituted by connecting a PMOS transistor (first PMOS transistor) 13 and the NMOS transistor 14 between V CC and GND, Also, V RC system gate circuit 11
Is configured by connecting a PMOS transistor (second PMOS transistor) 15 and an NMOS transistor 16 between VRC and GND.

VCC系ゲート回路10に加えられる入力信号は、そのハ
イ論理レベルをVCC相当電位とし、そのロー論理レベル
をGND相当電位とする。入力信号がハイ論理のときNMOS
トランジスタ14をオン状態にして出力論理をGND電位相
当にし、入力信号がロー論理のときPMOSトランジスタ13
をオン状態にして出力論理をVCC電位相当にする。ここ
で、PMOSトランジスタ13がオフからオン状態に遷移する
電位はVCCにCMOSトランジスタ13のしきい電位(VTH13
を加えた値であり、VTH13はおよそ−0.6Vである。
The input signal applied to the V CC system gate circuit 10 has its high logic level at V CC equivalent potential and its low logic level at GND equivalent potential. NMOS when input signal is high logic
Turn on the transistor 14 to make the output logic equivalent to the GND potential, and when the input signal is low logic, the PMOS transistor 13
To make the output logic equivalent to the V CC potential. Here, the potential of PMOS transistor 13 is shifted to the ON state from the OFF threshold potential of the CMOS transistor 13 to V CC (V TH13)
, And V TH13 is approximately −0.6V.

一方、VRC系ゲート回路11に加えられる入力信号(VCC
系ゲート回路10の出力信号)は、そのハイ論理レベルを
VCC相当電位とし、そのロー論理レベルをGND相当電位と
する。入力信号がハイ論理のときNMOSトランジスタ16を
オン状態にして出力論理をGND電位相当にし、入力信号
がロー論理のときPMOSトランジスタ15をオン状態にして
出力論理をVRC電位相当にする。ここで、PMOSトランジ
スタ15がオフからオン状態に遷移する電位はVRCにCMOS
トランジスタ15のしきい電圧(VTH15)を加えた値であ
り、VTH15は上記VTH13と同じくおよそ−0.6Vである。
On the other hand, the input signal applied to the V RC system gate circuit 11 (V CC
Output signal of the system gate circuit 10)
The potential corresponding to V CC is set, and the low logic level is set to the potential equivalent to GND. When the input signal is high logic, the NMOS transistor 16 is turned on to make the output logic equivalent to the GND potential, and when the input signal is low logic, the PMOS transistor 15 is turned on to make the output logic equivalent to the VRC potential. Here, the potential of PMOS transistor 15 is shifted to the ON state from the OFF CMOS in V RC
This is a value to which the threshold voltage (V TH15 ) of the transistor 15 is added, and V TH15 is approximately −0.6 V like V TH13 described above.

VRC系ゲート回路11を含む後の回路にVCCよりも低電圧
のVRCを使用し、耐圧不足を解消する。
Than V CC to the circuit after including V RC system gate circuit 11 using the V RC low voltage, eliminating the breakdown voltage shortage.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、かかる従来の半導体集積回路にあって
は、VRC系ゲート回路11のPMOSトランジスタ15のしき電
圧(VTH15)が、VCC系ゲート回路10のPMOSトランジスタ
13のしきい電圧(VTH13)とほぼ同一の値(−0.6V)で
あったため、当該PMOSトランジスタ15のオフからオンへ
の遷移が、VRCにVTH15を加えた電位、すなわち+4V+
(−0.6V)=+3.4Vを下回るまで待つ必要があり、例え
ば、VCC系ゲート回路10の出力波形がなまった場合に、V
RC系ゲート回路11の信号伝達に遅延が発生するといった
問題点があった。
However, such conventional semiconductor integrated circuit, threshold voltage of the PMOS transistor 15 of the V RC system gate circuit 11 (V TH15) is, PMOS transistors of V CC system gate circuit 10
13 is approximately the same value (−0.6 V) as the threshold voltage (V TH13 ), the transition of the PMOS transistor 15 from off to on is a potential obtained by adding V TH15 to V RC , that is, +4 V +
It is necessary to wait until the voltage drops below (−0.6 V) = + 3.4 V. For example, when the output waveform of the V CC gate circuit 10 is
There is a problem that a signal transmission of the RC gate circuit 11 is delayed.

また、第5図に示すように、2つのVRC系回路17、18
をPMOSトランジスタ19で接続し、このPMOSトランジスタ
19をVCC系ゲート回路20の出力でオン/オフ制御するよ
うな場合にも、PMOSトランジスタ19のスイッチングに遅
れが生じる結果、2つのVRC系回路17、18間の信号伝達
に遅延が発生する。
Further, as shown in FIG. 5, two V RC circuits 17 and 18
Are connected by a PMOS transistor 19, and this PMOS transistor
19 even when such control on / off output of V CC system gate circuit 20, as a result of delay in the switching of the PMOS transistor 19, a delay in signal transmission between the two V RC circuits 17 and 18 generate I do.

本発明は、このような問題点に鑑みてなされたもの
で、VCC系ゲート回路の出力を受けるVRC系ゲート回路起
のPMOSトランジスタのしきい値を調節することにより、
信号伝達の遅延を防止することを目的としている。
The present invention has been made in view of such problems, by adjusting the threshold value of V RC system gate circuit causing the PMOS transistor receiving an output of V CC system gate circuit,
The purpose is to prevent delay in signal transmission.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記目的を達成するためその原理構成図を
第1図に示すように、2値論理出力の一方の論理レベル
を第1の電源電位によって決定し、他方の論理レベルを
該第1の電源電位に対して電位差Aを持つ第2の電源電
位によって決定する前段論理回路と、該前段論理回路か
らの論理を受けて2値論理を出力するとともに、該2値
論理の一方の論理レベルを前記第1の電源電位によって
決定し、他方の論理レベルを該第1の電源電位に対して
前記電位差Aよりも小さい電位差Bを持つ第3の電源電
位によって決定する後段論理回路と、を具備し、前記後
段論理回路は、入力論理レベルが前記第2の電源電位に
よって決められた論理レベルから前記第1の電源電位に
よって決められた論理レベルへと変化する間の所定の電
位でオフ状態からオン状態へと遷移して出力論理の他方
の論理レベルを決定するPMOSトランジスタを有し、該PM
OSトランジスタのしきい値を調節して、前記所定の電位
を第2の電源電位または第3の電源電位に近づけたこと
を特徴とする。
According to the present invention, in order to achieve the above object, one of the logic levels of the binary logic output is determined by a first power supply potential and the other logic level is determined by the first logic level as shown in FIG. A first-stage logic circuit determined by a second power supply potential having a potential difference A with respect to the power supply potential of the first stage, receiving a logic from the first-stage logic circuit and outputting binary logic, Is determined by the first power supply potential, and the other logic level is determined by a third power supply potential having a potential difference B smaller than the potential difference A with respect to the first power supply potential. The second-stage logic circuit is configured to switch from an off state at a predetermined potential while the input logic level changes from a logic level determined by the second power supply potential to a logic level determined by the first power supply potential. Oh Transitions to a state having a PMOS transistor which determines the other logic level of the output logic, said PM
The threshold value of the OS transistor is adjusted to bring the predetermined potential closer to the second power supply potential or the third power supply potential.

または、所定の電源電位とほぼ等しいレベルのハイ論
理を有する出力信号を出力する第1の回路、及び、該出
力信号を受ける第2の回路を有する半導体集積回路であ
って、前記第1の回路は、前記所定の電源電位を受ける
ソースと、前記出力信号を出力するドレインとを有する
第1のPMOSトランジスタを含み、前記第2の回路は、前
記出力信号を受けるゲートと、前記所定の電源電位より
低い電源電位を受けるソースと、出力端子に接続された
ドレインを有する第2のPMOSトランジスタを含み、前記
第1のPMOSトランジスタ及び第2のPMOSトランジスタは
それぞれしきい電圧を有し、該しきい電圧はゲート・ソ
ース間電圧として定義され、該第2のPMOSトランジスタ
のしきい電圧は前記第1のPMOSトランジスタのしきい電
圧より大きいことを特徴とする。
A first circuit for outputting an output signal having a high logic at a level substantially equal to a predetermined power supply potential; and a second circuit for receiving the output signal, wherein the first circuit Includes a first PMOS transistor having a source for receiving the predetermined power supply potential and a drain for outputting the output signal, wherein the second circuit includes a gate for receiving the output signal, and a gate connected to the predetermined power supply potential. A second PMOS transistor having a source receiving a lower power supply potential and a drain connected to the output terminal, wherein the first PMOS transistor and the second PMOS transistor each have a threshold voltage; The voltage is defined as a gate-source voltage, and a threshold voltage of the second PMOS transistor is higher than a threshold voltage of the first PMOS transistor. .

〔作用〕[Action]

本発明では、前段論理回路の出力が、第2の電源電位
に相当する論理レベルから第1の電源電位に相当する論
理レベルに変化する過程において、当該論理レベルの電
位が第3の電源電位とPMOSトランジスタのしきい値によ
って決まる所定の電位を下回ったとき、PMOSトランジス
タがオン状態に遷移する。
According to the present invention, in the process in which the output of the preceding logic circuit changes from the logic level corresponding to the second power supply potential to the logic level corresponding to the first power supply potential, the potential of the logic level is changed to the third power supply potential. When the potential falls below a predetermined potential determined by the threshold value of the PMOS transistor, the PMOS transistor transitions to the ON state.

ここで、所定の電位は、第2の電源電位または第3の
電源電位に近づけて設定されている。
Here, the predetermined potential is set close to the second power supply potential or the third power supply potential.

したがって、この近づけた分だけPMOSトランジスタの
遷移が早められ、信号伝達の遅延が防止される。
Therefore, the transition of the PMOS transistor is advanced earlier by an amount closer to this, and a delay in signal transmission is prevented.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be described with reference to the drawings.

第2〜4図は本発明に係る半導体集積回路の一実施例
を示す図であり、降圧電源を併用するメモリ装置への適
用例である。
FIGS. 2 to 4 are views showing one embodiment of a semiconductor integrated circuit according to the present invention, which is an example of application to a memory device using a step-down power supply together.

第2図において、メモリセル20は、ビット線21、22お
よびワード線23を介して、トランスファーゲート24、2
5、共通ビット線26、27、イコライズトランジスタ28、
ビット線駆動回路29、30およびワード線駆動回路31に接
続される。
In FIG. 2, a memory cell 20 is connected to transfer gates 24, 2 via bit lines 21, 22 and a word line 23.
5, common bit lines 26 and 27, equalizing transistor 28,
The bit line driving circuits 29 and 30 and the word line driving circuit 31 are connected.

共通ビット線26、27を除く他の能動回路は、外部電源
(例えば+5V、以下、VCC)から作られた降圧電源(例
えば+4V、以下VRC)によって動作するVRC系ゲート回路
であり、ビット線やワード線およびメモリセルへの印加
電圧を低電圧化して微細化に伴う耐圧不足を解決する。
Other active circuit excluding the common bit lines 26 and 27, an external power source (e.g. + 5V, or less, V CC) is a V RC system gate circuit which operates by the step-down power supply made from (e.g. + 4V, below V RC), A voltage applied to a bit line, a word line, and a memory cell is reduced to solve a shortage of withstand voltage due to miniaturization.

各VRC系ゲート回路には、少なくとも1つのPMOSトラ
ンジスタが含まれている。すなわち、トランスファーゲ
ート24にはPMOSトランジスタT1a、T1bが、トランスファ
ーゲート25にはPMOSトランジスタT2a、T2bが、ビット線
駆動回路29にはPMOSトランジスタT3が、ビット線駆動回
路30にはPMOSトランジスタT4が、ワード線駆動回路31に
はPMOSトランジスタT5a、T5bが、各々含まれている。な
お、イコライズトランジスタ28はそれ自体がPMOSトラン
ジスタである。
Each VRC gate circuit includes at least one PMOS transistor. That is, the transfer gate 24 includes the PMOS transistors T 1a and T 1b , the transfer gate 25 includes the PMOS transistors T 2a and T 2b , the bit line driving circuit 29 includes the PMOS transistor T 3 , and the bit line driving circuit 30 includes the PMOS transistor T 3. PMOS transistor T 4 is, to the word line drive circuit 31 is a PMOS transistor T 5a, T 5b is included respectively. Note that the equalizing transistor 28 is itself a PMOS transistor.

各PMOSトランジスタは、インバータ記号で示す図中の
各ゲートG1〜G7の出力によって駆動され、これらのPMOS
トランジスタを有する上記VRC系ゲート回路は、本願発
明の要旨に記載の後段論理回路(または第2の回路)と
して機能する。
Each PMOS transistor is driven by the output of the gate G 1 ~G 7 in diagram illustrating an inverter symbol, these PMOS
The VRC gate circuit having a transistor functions as a subsequent logic circuit (or a second circuit) described in the gist of the present invention.

一方、各ゲートG1〜G7は、外部電源VCCで動作するVCC
系ゲート回路であり、各ゲートの出力はそのハイ論理レ
ベルがVCC電位(第2の電源電位)に相当し、ロー論理
レベルがGND電位(第1の電源電位)に相当する。各ゲ
ートG1〜G7は、本願発明の要旨に記載の前段論理回路
(または第1の回路)として機能する。
Meanwhile, the gate G 1 ~G 7 is, V CC operating at the external power supply V CC
The output of each gate has a high logic level corresponding to the VCC potential (second power supply potential) and a low logic level corresponding to the GND potential (first power supply potential). Each gate G 1 ~G 7 functions as a pre-stage logic circuit according (or first circuit) to the gist of the present invention.

ここで、ゲートG1を前段論理回路の代表とし、このゲ
ートG1の出力を受けるビット線駆動回路29を後段論理回
路の代表とすると、ゲートG1は、2値論理出力の一方の
論理レベル(ロー論理レベル)を第1の電源電位(GN
D、0V)によって決定し、他方の論理レベル(ハイ論理
レベル)を該第1の電源電位に対して電位差A(A=5
V)を持つ第2の電源電位(VCC、+5V)によって決定す
る。また、ビット線駆動回路29は、ゲートG1からの論理
を受けて2値論理を出力するとともに、該2値論理の一
方の論理レベル(ロー論理レベル)を第1の電源電位
(GND、0V)によって決定し、他方の論理レベル(ハイ
論理レベル)を該第1の電源電位に対して前記電位差A
よりも小さい電位差B(B=4V)を持つ第3の電源電位
(VRC、+4V)によって決定する。
Here, the gate G 1 as a representative of the pre-stage logic circuit, when the bit line drive circuit 29 which receives the output of the gate G 1 representative of downstream logic circuit, the gate G 1 is binary one logic level of the logic output (Low logic level) to the first power supply potential (GN
D, 0 V), and the other logic level (high logic level) is set to a potential difference A (A = 5) with respect to the first power supply potential.
V) with the second power supply potential (V CC , + 5V). Also, the bit line drive circuit 29 outputs the binary logic receives the logic of the gate G 1, the binary logic of the one logic level (low logic level) to the first power supply potential (GND, 0V ), And the other logic level (high logic level) is set to the potential difference A with respect to the first power supply potential.
It is determined by a third power supply potential (V RC , +4 V) having a smaller potential difference B (B = 4 V).

ビット線駆動回路29のPMOSトランジスタT3は、ゲート
G1の出力がハイ論理からロー論理へと変化する間の「所
定の電位」でオフ状態からオン状態へと遷移するが、本
実施例では、この「所定の電位」を第2の電源電位(V
CC)または第3の電源電位(VRC)に近づける。
PMOS transistor T 3 of the bit line drive circuit 29, the gate
While the transition from the off state to the on state at a "predetermined potential", in the present embodiment, the "predetermined potential" second power supply potential between the output of G 1 is changed from a high logic to a low logic (V
CC ) or the third power supply potential (V RC ).

これは、PMOSトランジスタT3のしきい値(VTH)を調
節することにより実現できる。例えば、当該トランジス
タのチャネル領域に注入する不純物の濃度を調節すれば
よい。
This can be achieved by adjusting the PMOS transistor T 3 of the threshold (V TH). For example, the concentration of an impurity implanted into a channel region of the transistor may be adjusted.

一般に、PMOSトランジスタのしきい値は、チャネル領
域の界面部分と界面よりも深い部分の双方の不純物濃度
の関係で決まる。しきい値の調節に当たっては、深い部
分の不純物濃度、すなわちイニシャル濃度を考慮する必
要がある。
Generally, the threshold value of a PMOS transistor is determined by the relationship between the impurity concentration at both the interface portion of the channel region and the portion deeper than the interface. In adjusting the threshold value, it is necessary to consider the impurity concentration in the deep portion, that is, the initial concentration.

例えば、イニシャル濃度が濃いN導電型の場合には、
P導電型のドーパント(dopant)を注入することによ
り、意図する方向にしきい値を調節することができる。
For example, in the case of N conductivity type with a high initial concentration,
By implanting a P-type dopant, the threshold can be adjusted in the intended direction.

なお、イニシャル濃度が薄い導電型の場合には、P
導電型の不純物を注入する、N導電型の不純物を注入
する、あるいはどれも注入しない、の何れかに分かれ
る。何れを採用するかはイニシャル濃度によって決め
る。〜の方法のうちチャネル領域の界面における最
終的な濃度が、よりP導電型に近づくものを採用する。
In the case of a conductive type having a low initial concentration, P
There are two types: implanting impurities of conductivity type, implanting impurities of N conductivity type, or not implanting any. Which one to use is determined by the initial density. Of the above methods, the one whose final concentration at the interface of the channel region is closer to the P conductivity type is adopted.

以上述べたようにPMOSトランジスタのしきい値を調節
すると、第3図に示すように、VCC系ゲート回路の出力
がハイ論理からロー論理へと変化する過程において「所
定の電位」を下回った時点で、PMOSトランジスタがオン
状態に遷移し始める。
As described above, when the threshold value of the PMOS transistor was adjusted, as shown in FIG. 3, the output of the Vcc gate circuit dropped below the "predetermined potential" in the process of changing from high logic to low logic. At this point, the PMOS transistor starts to transition to the ON state.

かかる「所定の電位」は、PMOSトランジスタのしきい
値VTHとVRCによって決まり、この図では、VTHを調節し
た結果「所定の電位」がVRC+0.4V=+4.4Vに位置して
いる。
Such a “predetermined potential” is determined by the threshold values V TH and V RC of the PMOS transistor. In this figure, the “predetermined potential” is located at V RC +0.4 V = + 4.4 V as a result of adjusting V TH . ing.

これは、従来例のしきい値VTHが−0.6Vであり、「所
定の電位」に相当する電位がVRC−0.6V=+3.4Vであっ
たのに対し、およそ1Vも上昇している。
This is because the threshold value V TH of the conventional example is −0.6 V, and the potential corresponding to the “predetermined potential” is V RC −0.6 V = + 3.4 V, but increases by about 1 V. I have.

したがって、PMOSトランジスタのオン状態への遷移を
1Vに対応する時間Tdだけ早くすることができ、VRC系ゲ
ート回路の信号伝達の遅延を解消することができる。
Therefore, the transition of the PMOS transistor to the ON state
Can be earlier by time Td corresponding to 1V, it is possible to eliminate the delay of the signal transmission V RC system gate circuit.

なお、上記実施例では、VRC系ゲート回路としてCMOS
ゲートを例示したが、これに限らず、例えば、Bi−CMOS
ゲートであってもよい。要は、VCC系ゲート回路の出力
を受けるPMOSトランジスタを備え、且つ降圧電源によっ
て動作するものであればよい。
In the above embodiment, CMOS as V RC system gate circuit
Although the gate is exemplified, the present invention is not limited to this. For example, Bi-CMOS
It may be a gate. The point is that it only needs to have a PMOS transistor that receives the output of the V CC system gate circuit and operate with a step-down power supply.

〔発明の効果〕〔The invention's effect〕

本発明によれば、VCC系ゲート回路の出力を受けるVRC
系ゲート回路のPMOSトランジスタのしきい値を調節した
ので、当該トランジスタのオン状態への遷移を早めるこ
とができ、信号伝達遅延を防止できる。
According to the present invention, V RC receiving the output of the V CC system gate circuit
Since the threshold value of the PMOS transistor of the system gate circuit is adjusted, the transition of the transistor to the ON state can be hastened, and a signal transmission delay can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理図、 第2〜3図は本発明に係る半導体集積回路の一実施例を
示す図であり、 第2図はその構成図、 第3図はその電位関係を示すグラフ、 第4、5図は従来例を示す図であり、 第4図はそのVCC系ゲート回路とVRC系ゲート回路の接続
図、 第5図はそのPMOSトランジスタをスイッチング素子とし
て使用する構成図である。 24、25……トランスファーゲート(後段論理回路)、 28……イコライズトランジスタ(PMOSトランジスタ)、 29……ビット線駆動回路(後段論理回路)、 T1a、T1b……PMOSトランジスタ、 T2a、T2b……PMOSトランジスタ、 T3、T4……PMOSトランジスタ、 T5a、T5b……PMOSトランジスタ、 G1〜G7……ゲート(前段論理回路)、 30……ビット線駆動回路(後段論理回路)、 31……ワード線駆動回路(後段論理回路)、 VCC……第2の電源電位、 VRC……第3の電源電位、 GND……第1の電源電位。
1 is a diagram showing the principle of the present invention, FIGS. 2 and 3 are diagrams showing an embodiment of a semiconductor integrated circuit according to the present invention, FIG. 2 is a diagram showing the configuration thereof, and FIG. FIG. 4 and FIG. 5 are diagrams showing a conventional example, FIG. 4 is a connection diagram of the V CC system gate circuit and the V RC system gate circuit, and FIG. 5 is a configuration using the PMOS transistor as a switching element. FIG. 24, 25: transfer gate (later logic circuit), 28: equalizing transistor (PMOS transistor), 29: bit line drive circuit (later logic circuit), T1a , T1b ... PMOS transistor, T2a , T 2b ...... PMOS transistor, T 3, T 4 ...... PMOS transistor, T 5a, T 5b ...... PMOS transistor, G 1 ~G 7 ...... gate (front logic circuit), 30 ...... bit line driving circuit (downstream logic 31) Word line drive circuit (later logic circuit), V CC ... second power supply potential, V RC ... third power supply potential, GND ... first power supply potential.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2値論理出力の一方の論理レベルを第1の
電源電位によって決定し、他方の論理レベルを該第1の
電源電位に対して電位差Aを持つ第2の電源電位によっ
て決定する前段論理回路と、 該前段論理回路からの論理を受けて2値論理を出力する
とともに、該2値論理の一方の論理レベルを前記第1の
電源電位によって決定し、他方の論理レベルを該第1の
電源電位に対して前記電位差Aよりも小さい電位差Bを
持つ第3の電源電位によって決定する後段論理回路と、
を具備し、 前記後段論理回路は、入力論理レベルが前記第2の電源
電位によって決められた論理レベルから前記第1の電源
電位によって決められた論理レベルへと変化する間の所
定の電位でオフ状態からオン状態へと遷移して出力論理
の他方の論理レベルを決定するPMOSトランジスタを有
し、 該PMOSトランジスタのしきい値を調節して、前記所定の
電位を第2の電源電位または第3の電源電位に近づけた
ことを特徴とする半導体集積回路。
1. A logic level of a binary logic output is determined by a first power supply potential, and the other logic level is determined by a second power supply potential having a potential difference A with respect to the first power supply potential. A first-stage logic circuit, receiving a logic from the first-stage logic circuit, outputting binary logic, determining one logic level of the binary logic by the first power supply potential, and setting the other logic level to the second logic level. A subsequent logic circuit determined by a third power supply potential having a potential difference B smaller than the potential difference A with respect to one power supply potential;
Wherein the subsequent logic circuit is turned off at a predetermined potential while the input logic level changes from a logic level determined by the second power supply potential to a logic level determined by the first power supply potential. A PMOS transistor that transitions from a state to an ON state to determine the other logic level of the output logic, and adjusts the threshold value of the PMOS transistor to change the predetermined potential to a second power supply potential or a third power supply potential. A semiconductor integrated circuit characterized by being brought close to a power supply potential of the semiconductor integrated circuit.
【請求項2】所定の電源電位とほぼ等しいレベルのハイ
論理を有する出力信号を出力する第1の回路、及び、該
出力信号を受ける第2の回路を有する半導体集積回路で
あって、 前記第1の回路は、前記所定の電源電位を受けるソース
と、前記出力信号を出力するドレインとを有する第1の
PMOSトランジスタを含み、 前記第2の回路は、前記出力信号を受けるゲートと、前
記所定の電源電位より低い電源電位を受けるソースと、
出力端子に接続されたドレインを有する第2のPMOSトラ
ンジスタを含み、 前記第1のPMOSトランジスタ及び第2のPMOSトランジス
タはそれぞれしきい電圧を有し、該しきい電圧はゲート
・ソース間電圧として定義され、 該第2のPMOSトランジスタのしきい電圧は前記第1のPM
OSトランジスタのしきい電圧より大きいことを特徴とす
る半導体集積回路。
2. A semiconductor integrated circuit comprising: a first circuit that outputs an output signal having a high logic level substantially equal to a predetermined power supply potential; and a second circuit that receives the output signal. A first circuit having a source receiving the predetermined power supply potential and a drain outputting the output signal;
A second transistor including a PMOS transistor; a gate receiving the output signal; a source receiving a power supply potential lower than the predetermined power supply potential;
A second PMOS transistor having a drain connected to an output terminal, wherein the first PMOS transistor and the second PMOS transistor each have a threshold voltage, wherein the threshold voltage is defined as a gate-source voltage. And the threshold voltage of the second PMOS transistor is equal to the first PM
A semiconductor integrated circuit characterized by being higher than a threshold voltage of an OS transistor.
JP2252525A 1990-09-20 1990-09-20 Semiconductor integrated circuit Expired - Lifetime JP2839203B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2252525A JP2839203B2 (en) 1990-09-20 1990-09-20 Semiconductor integrated circuit
DE69127040T DE69127040T2 (en) 1990-09-20 1991-09-18 Integrated semiconductor circuit made of P-channel MOS transistors with different threshold voltages
EP91115846A EP0477758B1 (en) 1990-09-20 1991-09-18 Semiconductor integrated circuit including P-channel MOS transistors having different threshold voltages
KR1019910016330A KR950002275B1 (en) 1990-09-20 1991-09-19 Semiconductor integrated circuit including p-channel mos transistors having different threshold voltages
US07/921,380 US5200921A (en) 1990-09-20 1992-07-30 Semiconductor integrated circuit including P-channel MOS transistors having different threshold voltages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252525A JP2839203B2 (en) 1990-09-20 1990-09-20 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH04129419A JPH04129419A (en) 1992-04-30
JP2839203B2 true JP2839203B2 (en) 1998-12-16

Family

ID=17238584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252525A Expired - Lifetime JP2839203B2 (en) 1990-09-20 1990-09-20 Semiconductor integrated circuit

Country Status (4)

Country Link
EP (1) EP0477758B1 (en)
JP (1) JP2839203B2 (en)
KR (1) KR950002275B1 (en)
DE (1) DE69127040T2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566608B2 (en) * 1999-12-28 2004-09-15 Necエレクトロニクス株式会社 Semiconductor integrated circuit
KR100862832B1 (en) * 2002-08-28 2008-10-13 주식회사 포스코 Apparatus for drawing out fine coal blowing lance and reforming deflected portion thereof in blast furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822423A (en) * 1981-07-31 1983-02-09 Hitachi Ltd Reference voltage generating circuit
JPS59112640A (en) * 1982-12-18 1984-06-29 Toshiba Corp Semiconductor integrated circuit

Also Published As

Publication number Publication date
EP0477758B1 (en) 1997-07-30
DE69127040D1 (en) 1997-09-04
JPH04129419A (en) 1992-04-30
EP0477758A2 (en) 1992-04-01
KR950002275B1 (en) 1995-03-15
DE69127040T2 (en) 1998-01-22
KR920007176A (en) 1992-04-28
EP0477758A3 (en) 1992-06-03

Similar Documents

Publication Publication Date Title
EP0223786B1 (en) Ttl to cmos input buffer
US6064227A (en) Output buffer circuit having low breakdown voltage
US6437627B1 (en) High voltage level shifter for switching high voltage in non-volatile memory intergrated circuits
US5200921A (en) Semiconductor integrated circuit including P-channel MOS transistors having different threshold voltages
US6741098B2 (en) High speed semiconductor circuit having low power consumption
JP3216925B2 (en) Semiconductor integrated circuit
US6665354B1 (en) Differential input receiver and method for reducing noise
JP3400294B2 (en) Pull-up circuit and semiconductor device
KR20030087741A (en) Input/output buffer of differential type for reducing variation of reference voltage
JP2839203B2 (en) Semiconductor integrated circuit
JP2006295252A (en) Level shift circuit and device
JP3927312B2 (en) Input amplifier
JPH11355116A (en) Integrated circuit provided with cmos output buffer protecting circuit
JPH0685497B2 (en) Semiconductor integrated circuit
US20080042723A1 (en) Junction field effect transistor input buffer level shifting circuit
KR940006507B1 (en) Output buffer circuit
JP3000950B2 (en) Word line drive circuit for semiconductor memory device
JPH0210763A (en) Semiconductor integrated circuit
JP3226535B2 (en) Output buffer circuit
KR100515023B1 (en) Logic circuit having a dynamic circuit
JPH0666656B2 (en) Schmitt trigger circuit
JPH07273633A (en) Input circuit
JPH0756940B2 (en) Level conversion circuit
JPH10117138A (en) Semiconductor integrated circuit
JPH0554669A (en) Input circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071016

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

EXPY Cancellation because of completion of term