JP2828942B2 - Semiconductor memory booster circuit - Google Patents

Semiconductor memory booster circuit

Info

Publication number
JP2828942B2
JP2828942B2 JP7342653A JP34265395A JP2828942B2 JP 2828942 B2 JP2828942 B2 JP 2828942B2 JP 7342653 A JP7342653 A JP 7342653A JP 34265395 A JP34265395 A JP 34265395A JP 2828942 B2 JP2828942 B2 JP 2828942B2
Authority
JP
Japan
Prior art keywords
circuit
boosting
sensing
signal
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7342653A
Other languages
Japanese (ja)
Other versions
JPH08235859A (en
Inventor
世昇 尹
贊鍾 朴
炳▲ちょる▼ 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansei Denshi Co Ltd
Original Assignee
Sansei Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansei Denshi Co Ltd filed Critical Sansei Denshi Co Ltd
Publication of JPH08235859A publication Critical patent/JPH08235859A/en
Application granted granted Critical
Publication of JP2828942B2 publication Critical patent/JP2828942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4085Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/143Detection of memory cassette insertion or removal; Continuity checks of supply or ground lines; Detection of supply variations, interruptions or levels ; Switching between alternative supplies

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体メモリに係
り、特に、低消費電力形の高集積半導体メモリにおける
昇圧電圧Vppを発生する昇圧回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory, and more particularly to a booster circuit for generating a boosted voltage Vpp in a low power consumption type highly integrated semiconductor memory.

【0002】[0002]

【従来の技術】半導体メモリの高集積化と低消費電力化
に伴って、ワード線駆動などの効率低下を補うため、ほ
とんどのチップで昇圧回路を備えるようにしている。こ
れにより発生される昇圧電圧Vppは半導体メモリ内部
で使われる電源電圧Vccより高いレベル(電位)の電
圧で、メモリの低電圧化に伴うワード線駆動電圧の低下
を防ぐために用いられる。即ち、特にDRAMでは、メ
モリセルに記憶したデータ(特にデータ“1”)を読出
す際のメモリセルとビット線との間の電荷分配で感知に
必要な電圧差を形成すべく、十分な電圧をワード線へ供
給してセルトランジスタを十分にONさせる必要があ
る。低電圧化の傾向にある電源電圧Vccではこの作用
を得難くなってきており、最近では少なくともVcc+
Vth(Vthは例えばセルトランジスタのしきい値電
圧)以上のレベルとした昇圧電圧Vppを使用するよう
にしている。
2. Description of the Related Art Most semiconductor chips are provided with a booster circuit in order to compensate for a reduction in efficiency such as word line driving as semiconductor memories become more highly integrated and consume less power. The boosted voltage Vpp thus generated is a voltage (potential) higher than the power supply voltage Vcc used inside the semiconductor memory, and is used to prevent a reduction in the word line drive voltage due to the lowering of the memory voltage. That is, in a DRAM in particular, a voltage sufficient for forming a voltage difference necessary for sensing by charge distribution between the memory cell and the bit line when reading data (especially data "1") stored in the memory cell. To the word line to turn on the cell transistor sufficiently. This effect is becoming difficult to obtain with the power supply voltage Vcc, which tends to lower the voltage, and recently, at least Vcc +
The boosted voltage Vpp at a level equal to or higher than Vth (Vth is, for example, the threshold voltage of the cell transistor) is used.

【0003】このような昇圧電圧Vppを発生するため
の一般的な方法は次の通りである。半導体メモリの待機
状態(待機サイクル)では、小容量の待機用昇圧回路に
よる昇圧作用で必要最小限の昇圧電圧Vppを発生する
ようにしておき、活性状態(活性サイクル)では、該サ
イクルで消費される電力量を補えるだけの大容量を備え
た活性用昇圧回路で昇圧を行うようにしている。図1
に、このような昇圧回路をブロック図で示す。
A general method for generating such a boosted voltage Vpp is as follows. In the standby state (standby cycle) of the semiconductor memory, the required minimum boosted voltage Vpp is generated by the boosting action of the small-capacity standby booster circuit, and in the active state (active cycle), it is consumed in the cycle. The boosting is performed by an activation boosting circuit having a large capacity enough to make up for a certain amount of power. FIG.
FIG. 2 is a block diagram showing such a booster circuit.

【0004】ローアドレスストローブ信号RASB(こ
のBは反転の意味)に応じてチップマスタクロック発生
回路1からチップマスタクロックφRが発生され、例え
ばこのチップマスタクロックφRを利用して昇圧制御回
路2が待機サイクルと活性サイクルを判別し、これらサ
イクルごとに昇圧制御信号φPCが発生される。そし
て、昇圧制御信号φPCの制御により活性用昇圧回路3
及び待機用昇圧回路4の昇圧作用を機能させる。図2〜
図5に示す信号波形及び各詳細回路を参照すると分かる
ように、活性用昇圧回路3と待機用昇圧回路4は昇圧制
御信号φPCに従って相補的に動作し、信号RASBが
ロウ状態の活性サイクルでは活性用昇圧回路3が昇圧電
圧Vppの昇圧を行い、信号RASBがハイ状態の待機
サイクルでは待機用昇圧回路4が昇圧電圧Vppの昇圧
を行う。
A chip master clock generation circuit 1 generates a chip master clock φR in response to a row address strobe signal RASB (B means inversion). For example, the boost control circuit 2 waits using the chip master clock φR. A cycle and an active cycle are determined, and a boost control signal φPC is generated for each of these cycles. The activation booster circuit 3 is controlled by the booster control signal φPC.
In addition, the boosting function of the standby booster circuit 4 is caused to function. Figure 2
As can be seen by referring to the signal waveforms and the detailed circuits shown in FIG. 5, the activation booster circuit 3 and the standby booster circuit 4 operate complementarily according to the boost control signal φPC, and are active in the active cycle in which the signal RASB is in the low state. The booster circuit 3 boosts the boosted voltage Vpp, and the standby booster circuit 4 boosts the boosted voltage Vpp in a standby cycle in which the signal RASB is high.

【0005】即ち、図4に示す活性用昇圧回路3では、
昇圧制御信号φPCがロウ状態(待機サイクル)の間に
MOSキャパシタ7によりノード5の昇圧が行われ、こ
れが伝達用のダイオード形NMOSトランジスタ10を
通じてノード6へ伝達される。そして、昇圧制御信号φ
PCがロウ状態からハイ状態(活性サイクル)になる
と、ノード6の電位がMOSキャパシタ12により再昇
圧されつつNMOSトランジスタ11を通じて昇圧電圧
Vppとして発生される。図5に示す待機用昇圧回路4
では昇圧制御信号φPCの論理が逆に使用される。
More specifically, in the activation booster circuit 3 shown in FIG.
While boost control signal φPC is in a low state (standby cycle), MOS capacitor 7 boosts node 5, and this is transmitted to node 6 through diode NMOS transistor 10 for transmission. And the boost control signal φ
When the PC changes from the low state to the high state (active cycle), the potential of the node 6 is generated as the boosted voltage Vpp through the NMOS transistor 11 while being boosted again by the MOS capacitor 12. Standby booster circuit 4 shown in FIG.
In this case, the logic of the boost control signal φPC is used in reverse.

【0006】[0006]

【発明が解決しようとする課題】上記昇圧回路におい
て、活性用昇圧回路3の容量は、活性状態ごとに消費さ
れる電力量を正確に検出して相応の電力供給を行えるよ
うに設定すべきである。しかし、図1のような構成では
消費電力量と昇圧回路容量とを正確に一致させ難く、昇
圧回路容量が消費電力量より大きい場合は過剰電流消費
や高電界等による不具合を招き、信頼性低下につながる
可能性がある。
In the above booster circuit, the capacity of the activation booster circuit 3 should be set such that the amount of power consumed for each active state can be accurately detected and a corresponding power supply can be performed. is there. However, in the configuration shown in FIG. 1, it is difficult to accurately match the power consumption with the booster circuit capacity. If the booster circuit capacity is larger than the power consumption, problems such as excessive current consumption and a high electric field are caused, and the reliability is reduced. Could lead to

【0007】そこで本発明では、活性状態で消費電力量
に見合った昇圧電圧発生を行い得る昇圧回路を提供す
る。そして更に、消費電流抑制が可能な昇圧回路を提供
するものである。
Therefore, the present invention provides a booster circuit capable of generating a boosted voltage corresponding to the power consumption in an active state. Further, the present invention provides a booster circuit capable of suppressing current consumption.

【0008】[0008]

【課題を解決するための手段】本発明によれば、待機状
態と活性状態を判別してこれら状態ごとに相補的な昇圧
制御信号を発生する昇圧制御回路と、該昇圧制御信号に
従い昇圧を行う待機用昇圧回路及び活性用昇圧回路と、
を備えた半導体メモリの昇圧回路において、待機状態と
活性状態を判別して活性状態の始めに感知制御信号を発
生し、該感知制御信号の発生中にラッチ制御信号を発生
する感知制御回路と、前記感知制御信号に応答して昇圧
電圧のレベルを感知し、その感知結果を前記ラッチ制御
信号に応答してラッチし感知信号を発生する昇圧電圧感
知回路と、を備えるようにし、前記活性用昇圧回路を、
前記昇圧制御信号及び前記感知信号に従い昇圧を行うよ
うにすることを特徴とする。このとき、待機用昇圧回路
も昇圧制御信号及び感知信号に従い昇圧を行うようにす
ることも可能である。
According to the present invention, a boosting control circuit for determining a standby state and an active state and generating a complementary boosting control signal for each of these states, and boosting according to the boosting control signal A standby booster circuit and an active booster circuit;
A booster circuit of a semiconductor memory comprising: a sense control circuit that determines a standby state and an active state, generates a sense control signal at the beginning of the active state, and generates a latch control signal during generation of the sense control signal; A boosting voltage sensing circuit for sensing a level of the boosted voltage in response to the sensing control signal and latching the sensing result in response to the latch control signal to generate a sensing signal. Circuit
The boosting is performed according to the boosting control signal and the sensing signal. At this time, the standby booster circuit can also perform boosting according to the boosting control signal and the sensing signal.

【0009】待機と活性の状態判別は、DRAMであれ
ば上述のようにローアドレスストローブ信号に応じるチ
ップマスタクロックを用いればよく、これに従って昇圧
制御回路及び感知制御回路が動作するようにしておけば
よい。また、昇圧制御信号と感知信号は、活性状態にお
いて同タイミングで発生されるように調整するか、或い
は、感知信号を一旦貯蔵して次の活性状態開始時点で発
生するようにすることができる。感知信号の一旦貯蔵は
一般的なレジスタを昇圧電圧感知回路へ接続して使用す
るだけで簡単に行え、前記チップマスタクロックが使用
されるのであれば、これに従ってそのレジスタが感知信
号を貯蔵・出力するようにしておけばよい。
In the case of a DRAM, it is sufficient to use the chip master clock corresponding to the row address strobe signal as described above to determine the standby state and the active state, and the boosting control circuit and the sensing control circuit operate in accordance with the chip master clock. Good. Also, the boost control signal and the sensing signal may be adjusted to be generated at the same timing in the active state, or may be generated at the start of the next active state by storing the sensing signal once. Once the sensing signal is stored, it can be easily performed simply by using a general register connected to the boosted voltage sensing circuit. If the chip master clock is used, the register stores and outputs the sensing signal according to the chip master clock. You should be able to do so.

【0010】[0010]

【発明の実施の形態】以下、添付図面に基づき本発明の
実施形態を説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】図6は、本発明による昇圧回路の実施形態
を示したブロック図である。ローアドレスストローブ信
号RASBに応じてチップマスタクロックφRを発生す
るチップマスタクロック発生回路1と、チップマスタク
ロックφRにより待機状態(待機サイクル)と活性状態
(活性サイクル)を判別し、活性サイクルの開始で感知
制御信号φDETとラッチ制御信号φLATを発生する
感知制御回路20と、感知制御信号φDETとラッチ制
御信号φLATの制御により昇圧電圧Vppのレベルを
感知して感知信号φPDを活性用昇圧回路40及び待機
用昇圧回路60へ提供する昇圧電圧感知回路30と、チ
ップマスタクロックφRにより待機サイクルと活性サイ
クルを判別して昇圧制御信号φPCを発生する昇圧制御
回路50と、昇圧制御信号φPC帯び感知信号φPDの
制御により昇圧電圧Vppの昇圧を行う活性用昇圧回路
40及び待機用昇圧回路60と、が用いられている。
FIG. 6 is a block diagram showing an embodiment of a booster circuit according to the present invention. A chip master clock generating circuit 1 for generating a chip master clock φR in response to a row address strobe signal RASB; a standby state (standby cycle) and an active state (active cycle) are determined based on the chip master clock φR; A sensing control circuit 20 for generating a sensing control signal φDET and a latch control signal φLAT; a sensing boosting circuit 40 for sensing the level of the boosted voltage Vpp and controlling the sensing signal φPD by controlling the sensing control signal φDET and the latch control signal φLAT; A boosting voltage sensing circuit 30 provided to the boosting circuit 60 for use, a boosting control circuit 50 that determines a standby cycle and an active cycle based on a chip master clock φR to generate a boosting control signal φPC, and a boosting control signal φPC and a sensing signal φPD. Active booster circuit for boosting boosted voltage Vpp by control 40 and a standby booster circuit 60 are used.

【0012】図7に感知制御回路20の具体例を示す。
感知制御信号φDETは、NANDゲートND31及び
該NANDゲートND31の一入力端へつないだ直列接
続の奇数個のインバータI21〜I25からなるパルス
整形回路へチップマスタクロックφRを入力し、このパ
ルス整形回路の出力をインバータI26で反転すること
で発生される。そしてラッチ制御信号φLATは、NA
NDゲートND32及び該NANDゲートND32の一
入力端へつないだ直接接続の奇数個のインバータI27
〜I29からなるパルス整形回路へチップマスタクロッ
クφRを入力し、このパルス整形回路の出力を直列接続
のインバータI30〜I32へ通すことで発生される。
FIG. 7 shows a specific example of the sensing control circuit 20.
The sense control signal φDET inputs the chip master clock φR to a pulse shaping circuit including a NAND gate ND31 and an odd number of inverters I21 to I25 connected in series connected to one input terminal of the NAND gate ND31. The output is generated by inverting the output by an inverter I26. The latch control signal φLAT is
An odd number of directly connected inverters I27 connected to one input terminal of the ND gate ND32 and the NAND gate ND32
The clock signal is generated by inputting the chip master clock φR to a pulse shaping circuit consisting of .about.I29 and passing the output of this pulse shaping circuit to serially connected inverters I30-I32.

【0013】図8に昇圧電圧感知回路30の具体例を示
す。電源電圧Vccと感知ノード31との間に設けたN
MOSトランジスタN31のゲート電極に昇圧電圧Vp
pが入力されている。また、感知ノード31から接地電
圧VssへNMOSトランジスタN32及びNMOSト
ランジスタN33が直列に設けてあり、NMOSトラン
ジスタN32のゲート電極に感知制御信号φDETが、
NMOSトランジスタN33のゲート電極に昇圧電圧V
ppがそれぞれ入力されている。感知ノード31は伝送
ゲートT31を介してノード32へ接続される。伝送ゲ
ートT31のN形制御電極にはラッチ制御信号φLAT
が入力され、P形制御電極にはインバータI33により
ラッチ制御信号φLATが反転入力される。そして、ノ
ード32には直列接続のインバータI34,I35によ
るラッチ回路が接続され、該ノード32からインバータ
I36を経て感知信号φPDが発生される。
FIG. 8 shows a specific example of the boosted voltage sensing circuit 30. N provided between the power supply voltage Vcc and the sensing node 31
The boosted voltage Vp is applied to the gate electrode of the MOS transistor N31.
p has been entered. Also, an NMOS transistor N32 and an NMOS transistor N33 are provided in series from the sensing node 31 to the ground voltage Vss, and a sensing control signal φDET is applied to the gate electrode of the NMOS transistor N32.
The boosted voltage V is applied to the gate electrode of the NMOS transistor N33.
pp are input. Sensing node 31 is connected to node 32 via transmission gate T31. The latch control signal φLAT is applied to the N-type control electrode of the transmission gate T31.
, And the latch control signal φLAT is inverted and input to the P-type control electrode by the inverter I33. A latch circuit including inverters I34 and I35 connected in series is connected to the node 32, and a sense signal φPD is generated from the node 32 via the inverter I36.

【0014】図9には活性用昇圧回路40の具体例を示
す。この活性用昇圧回路40は前述の図4の活性用昇圧
回路3と同様の構成をもち、但し、昇圧制御信号φPC
及び感知信号φPDを入力するNANDゲートND41
と、NANDゲートND41の出力を反転するインバー
タI41とを付加してある。図10に示すのは昇圧制御
回路50の具体例で、直列接続のインバータI51〜I
56から構成されている。図3の従来例に比べてインバ
ータ数が増えるのは、昇圧電圧感知回路30による感知
信号φPDが発生した後に各昇圧回路40,60を動作
させる、即ちタイミングを合わせるためである。図11
には待機用昇圧回路60の具体例を示す。待機用昇圧回
路60は活性用昇圧回路40に対し相補的に動作するの
で、図5の待機用昇圧回路4のインバータI4の代わり
に、昇圧制御信号φPC及び感知信号φPDを入力する
NANDゲートND61が使われる。
FIG. 9 shows a specific example of the activation booster circuit 40. The activation booster circuit 40 has the same configuration as the activation booster circuit 3 of FIG. 4 described above, except that the booster control signal φPC
Gate ND41 for inputting a sensing signal φPD
And an inverter I41 for inverting the output of the NAND gate ND41. FIG. 10 shows a specific example of the boost control circuit 50, which includes inverters I51 to I51 connected in series.
56. The reason why the number of inverters is increased as compared with the conventional example shown in FIG. 3 is that the boosting circuits 40 and 60 are operated after the detection signal φPD is generated by the boosted voltage sensing circuit 30, that is, the timing is adjusted. FIG.
Shows a specific example of the standby booster circuit 60. The standby booster circuit 60 operates complementarily to the active booster circuit 40. Therefore, instead of the inverter I4 of the standby booster circuit 4 in FIG. 5, a NAND gate ND61 for inputting the boost control signal φPC and the sensing signal φPD is provided. used.

【0015】図12は、上記回路における要部信号の波
形図であり、昇圧電圧Vppが基準値よりも低いレベル
から高いレベルへ変わる時のタイミングを示している。
FIG. 12 is a waveform diagram of a main part signal in the above circuit, and shows a timing when the boosted voltage Vpp changes from a level lower than the reference value to a higher level.

【0016】時刻t1で信号RASBがハイ状態からロ
ウ状態へ遷移し、これに応じてチップマスタクロックφ
Rが時刻t2でハイ状態になると、感知制御回路20に
よるパルス整形で、感知制御信号φDETが時刻t3か
らハイ状態になるパルスとして発生され、続いてラッチ
制御信号φLATが時刻t4からハイ状態になるパルス
として発生される。
At time t1, signal RASB changes from a high state to a low state, and in response to this, chip master clock φ
When R goes high at time t2, the sensing control signal 20 generates a pulse that goes high from time t3 due to pulse shaping by the sense control circuit 20, and then the latch control signal φLAT goes high from time t4. Generated as a pulse.

【0017】昇圧電圧感知回路30においては、信号R
ASBがハイ状態の待機サイクルの間、感知制御信号φ
DETとラッチ制御信号φLATがロウ状態にあるの
で、感知ノード31の電位はNMOSトランジスタN3
1により電源電圧Vccにプリチャージされており、伝
送ゲートT31はOFFしている。そして活性サイクル
に入り、時刻t3で感知制御信号φDETのハイパルス
がNMOSトランジスタN32のゲート電極に印加され
ると、感知ノード31の電位が昇圧電圧Vppのレベル
に応じた影響を受けることになる。即ち、昇圧電圧Vp
pのレベルが高い場合は感知ノード31の電位がハイ状
態となり、昇圧電圧Vppのレベルが低い場合は感知ノ
ード31の電位がロウ状態となる。この後に時刻t4で
ラッチ制御信号φLATがハイ状態となれば伝送ゲート
T31がONし、昇圧電圧Vppのレベルが高い場合に
は感知信号φPDがロウ状態で、昇圧電圧Vppのレベ
ルが低い場合には感知信号φPDがハイ状態で発生され
る。ラッチ制御信号φLATがロウ状態に戻った後には
伝送ゲートT31がOFFするので、インバータI3
4,I35により現状維持される。このように感知制御
信号φDETとラッチ制御信号φLATをパルスにした
のは、活性サイクルで昇圧電圧Vppのレベル感知に必
要な間のみ昇圧電圧感知回路30を動作させることによ
り、不要な電力消費を防ぐためである。
In the boosted voltage sensing circuit 30, the signal R
During a standby cycle in which ASB is high, the sense control signal φ
Since the DET and the latch control signal φLAT are in a low state, the potential of the sensing node 31 becomes the NMOS transistor N3
1, the power supply voltage Vcc is precharged, and the transmission gate T31 is off. Then, when the active cycle starts and the high pulse of the sensing control signal φDET is applied to the gate electrode of the NMOS transistor N32 at time t3, the potential of the sensing node 31 is affected according to the level of the boosted voltage Vpp. That is, the boost voltage Vp
When the level of p is high, the potential of the sensing node 31 is high, and when the level of the boosted voltage Vpp is low, the potential of the sensing node 31 is low. Thereafter, at time t4, when the latch control signal φLAT goes high, the transmission gate T31 turns on. When the level of the boosted voltage Vpp is high, the sensing signal φPD is low, and when the level of the boosted voltage Vpp is low, The sensing signal φPD is generated in a high state. After the latch control signal φLAT returns to the low state, the transmission gate T31 is turned off.
4, I35. The reason why the sensing control signal φDET and the latch control signal φLAT are pulsed in this way is to prevent unnecessary power consumption by operating the boosted voltage sensing circuit 30 only during the active cycle necessary for sensing the level of the boosted voltage Vpp. That's why.

【0018】活性用昇圧回路40は信号RASBがハイ
状態からロウ状態へ遷移するときに昇圧可能となり、待
機用昇圧回路60は信号RASBがロウ状態からハイ状
態へ遷移するときに昇圧可能となる。そして、昇圧電圧
Vppが高レベルの場合は感知信号φPDがロウ状態で
印加されるので各昇圧回路40,60は昇圧電圧Vpp
に対する昇圧抑制状態を保ち、昇圧電圧Vppが低レベ
ルの場合は感知信号φPDがハイ状態で印加されるの
で、信号RASBによりトグル(toggle)する昇圧制御信
号φPCに従って各昇圧回路40,60が交代で昇圧を
行うことになる。つまり、活性サイクルで昇圧電圧Vp
pのレベルが低下する場合にのみ昇圧回路の昇圧作用を
機能させて低下分を補うものである。従って、必要以上
の昇圧電圧発生は抑えられ、活性サイクルの消費電力量
に見合った昇圧電圧発生を行うことができる。しかも、
不要な回路動作は極力控えられるので、消費電流の抑制
にもつながっている。但し、前述のように待機用昇圧回
路60は必要最小限の小容量とされるので、感知信号φ
PDによる制御を活性用昇圧回路40のみとしても同様
の利点を得られる。尚、各昇圧回路40,60自体の動
作は前述した従来の場合と同様である。
The activation booster circuit 40 can be boosted when the signal RASB transitions from a high state to a low state, and the standby booster circuit 60 can be boosted when the signal RASB transitions from a low state to a high state. When the boosted voltage Vpp is at a high level, the sense signal φPD is applied in a low state, so that each of the boosting circuits 40 and 60 applies the boosted voltage Vpp.
, And when the boosted voltage Vpp is at a low level, the sensing signal φPD is applied in a high state. Therefore, the boosting circuits 40 and 60 are alternately switched according to a boosting control signal φPC toggled by the signal RASB. A boost is performed. That is, the boosted voltage Vp in the active cycle
Only when the level of p decreases, the boosting function of the booster circuit functions to compensate for the decrease. Therefore, the generation of the boosted voltage more than necessary is suppressed, and the boosted voltage can be generated according to the power consumption of the active cycle. Moreover,
Unnecessary circuit operations are kept to a minimum, which leads to suppression of current consumption. However, as described above, since the standby booster circuit 60 has a minimum necessary small capacity, the sensing signal φ
The same advantage can be obtained even when the control by the PD is performed only by the activation booster circuit 40. The operation of each of the booster circuits 40 and 60 is the same as in the above-described conventional case.

【0019】図13は、昇圧回路の他の実施形態を示し
たブロック図である。この実施形態では、図6に示す昇
圧電圧感知回路30と各昇圧回路40,60との間にレ
ジスタ70を更に配置した構成を有する。即ち、昇圧電
圧感知回路30から発生された感知信号φPDは、レジ
スタ70を通過してから各昇圧回路40,60へ印加さ
れるようになっている。
FIG. 13 is a block diagram showing another embodiment of the booster circuit. This embodiment has a configuration in which a register 70 is further arranged between the boosted voltage sensing circuit 30 shown in FIG. That is, the sensing signal φPD generated from the boosted voltage sensing circuit 30 is applied to each of the boosting circuits 40 and 60 after passing through the register 70.

【0020】レジスタ70は、図14に示すように、チ
ップマスタクロックφRにより伝送制御される伝送ゲー
トT71,T72と反転ラッチL71,L72とから構
成された通常のシフトレジスタである。このレジスタ7
0によれば、チップマスタクロックφRがロウ状態にあ
る間に伝送ゲートT71がONし、その前の活性サイク
ルで昇圧電圧感知回路30から発生される感知信号φP
Dが反転ラッチL71に貯蔵される。そしてチップマス
タクロックφRがハイ状態になれば、伝送ゲートT72
がONして反転ラッチL71の貯蔵内容が反転ラッチL
72へ移り信号φSPDとして出力される。この後にチ
ップマスタクロックφRが再びロウ状態になると伝送ゲ
ートT71がONし且つ伝送ゲートT72がOFFし、
反転ラッチL71の貯蔵内容はそのときの感知信号φP
Dに応じることになる。つまりレジスタ70は、直前の
活性サイクルで設定された感知信号φPDに従って、現
在の活性サイクルで各昇圧回路40,60の昇圧作用を
決定する役割をもつ。
The register 70 is, as shown in FIG. 14, a normal shift register composed of transmission gates T71 and T72 whose transmission is controlled by the chip master clock φR and inversion latches L71 and L72. This register 7
0, the transmission gate T71 is turned on while the chip master clock φR is in the low state, and the sensing signal φP generated from the boosted voltage sensing circuit 30 in the previous active cycle.
D is stored in the inverting latch L71. When the chip master clock φR goes high, the transmission gate T72
Turns ON and the storage content of the inversion latch L71 is changed to the inversion latch L
72, and is output as a signal φSPD. Thereafter, when the chip master clock φR goes low again, the transmission gate T71 turns on and the transmission gate T72 turns off,
The stored content of the inverting latch L71 is the sensing signal φP at that time.
D. That is, register 70 has a role of determining the boosting action of each booster circuit 40, 60 in the current active cycle according to sensing signal φPD set in the immediately preceding active cycle.

【0021】信号φSPDは、図15及び図16に示す
ように、図9及び図11の各昇圧回路40,60におけ
る感知信号φPDに代えてNANDゲートND41、N
D61へ入力される。また、図17に示すように昇圧制
御回路80は、直列接続した2つのインバータI81,
I82から構成される。即ち、レジスタ70を使うこと
により、図10の昇圧制御回路50のように感知信号φ
PDの発生タイミングに合わせるための6つのインバー
タが不要となる。これは、図6の昇圧回路におけるより
も、活性サイクルでの昇圧回路の動作時間を十分に確保
することにつながる。
As shown in FIGS. 15 and 16, the signal φSPD is replaced with NAND gates ND41 and ND41 instead of the sensing signal φPD in each of the boosting circuits 40 and 60 in FIGS.
It is input to D61. Further, as shown in FIG. 17, the boost control circuit 80 includes two inverters I81,
I82. That is, by using the register 70, the sense signal φ is changed like the boosting control circuit 50 of FIG.
Six inverters for adjusting to the PD generation timing are not required. This leads to a longer operation time of the booster circuit in the active cycle than in the booster circuit of FIG.

【0022】図13の昇圧回路による動作タイミングを
示す図18を参照すれば分かるように、活性サイクルで
低レベルとなった昇圧電圧Vppは、次の活性サイクル
の始めから昇圧開始されることになる。このように1サ
イクルほど遅れて昇圧回路40が動作しても、昇圧電圧
Vppは大きい負荷特性を有するので十分な効果を得ら
れる。
As can be seen from FIG. 18 showing the operation timing of the booster circuit of FIG. 13, boosted voltage Vpp which has become low in the active cycle starts boosting from the beginning of the next active cycle. . Thus, even if the booster circuit 40 operates with a delay of about one cycle, the boosted voltage Vpp has a large load characteristic, so that a sufficient effect can be obtained.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、活性
状態での消費量に応じて昇圧電圧Vppの昇圧を行う昇
圧回路を提供できるので、活性状態での昇圧電圧過剰供
給を的確に防ぐことが可能になり、常に活性状態の消費
電力量に見合った昇圧電圧発生が可能であるのに加え
て、消費電流抑制をも可能になる。
As described above, according to the present invention, it is possible to provide a booster circuit for boosting the boosted voltage Vpp in accordance with the consumption in the active state, so that excessive supply of the boosted voltage in the active state can be accurately performed. This makes it possible to generate a boosted voltage consistent with the amount of power consumption in the active state, and also to suppress current consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の昇圧回路の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of a conventional booster circuit.

【図2】図1の回路で使用する信号の波形図。FIG. 2 is a waveform diagram of signals used in the circuit of FIG.

【図3】図1中の昇圧制御回路2の回路図。FIG. 3 is a circuit diagram of a boost control circuit 2 in FIG. 1;

【図4】図1中の活性用昇圧回路3の回路図。FIG. 4 is a circuit diagram of an activation booster circuit 3 in FIG. 1;

【図5】図1中の待機用昇圧回路4の回路図。FIG. 5 is a circuit diagram of a standby booster circuit 4 in FIG. 1;

【図6】本発明による昇圧回路の実施形態を示すブロッ
ク図。
FIG. 6 is a block diagram showing an embodiment of a booster circuit according to the present invention.

【図7】図6中の感知制御回路20の回路図。FIG. 7 is a circuit diagram of the sensing control circuit 20 in FIG. 6;

【図8】図6中の昇圧電圧感知回路30の回路図。FIG. 8 is a circuit diagram of a boosted voltage sensing circuit 30 in FIG. 6;

【図9】図6中の活性用昇圧回路40の回路図。FIG. 9 is a circuit diagram of an activation booster circuit 40 in FIG. 6;

【図10】図6中の昇圧制御回路50の回路図。FIG. 10 is a circuit diagram of a boost control circuit 50 in FIG. 6;

【図11】図6中の待機用昇圧回路の回路図。FIG. 11 is a circuit diagram of a standby booster circuit in FIG. 6;

【図12】図6の回路で使用する信号の波形図。FIG. 12 is a waveform chart of a signal used in the circuit of FIG. 6;

【図13】本発明による昇圧回路の他の実施形態を示す
ブロック図。
FIG. 13 is a block diagram showing another embodiment of the booster circuit according to the present invention.

【図14】図13中のレジスタ70の回路図。FIG. 14 is a circuit diagram of a register 70 in FIG.

【図15】図13中の活性用昇圧回路40の回路図。FIG. 15 is a circuit diagram of an activation booster circuit 40 in FIG. 13;

【図16】図13中の待機用昇圧回路60の回路図。FIG. 16 is a circuit diagram of a standby booster circuit 60 in FIG. 13;

【図17】図13中の昇圧制御回路80の回路図。17 is a circuit diagram of the boost control circuit 80 in FIG.

【図18】図13の回路で使用する信号の波形図。FIG. 18 is a waveform diagram of signals used in the circuit of FIG.

【符号の説明】[Explanation of symbols]

1 チップマスタクロック発生回路 2,50,80 昇圧制御回路 3,40 活性用昇圧回路 4,60 待機用昇圧回路 20 感知制御回路 30 昇圧電圧感知回路 70 レジスタ φR チップマスタクロック φPC 昇圧制御信号 φPD 感知信号 φDET 感知制御信号 φLAT ラッチ制御信号 1 Chip Master Clock Generation Circuit 2, 50, 80 Boost Control Circuit 3, 40 Boost Circuit for Activation 4, 60 Standby Boost Circuit 20 Sensing Control Circuit 30 Boost Voltage Sensing Circuit 70 Register φR Chip Master Clock φPC Boost Control Signal φPD Sensing Signal φDET sensing control signal φLAT Latch control signal

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G11C 11/40 - 11/409──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G11C 11/40-11/409

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 待機状態と活性状態を判別してこれら状
態ごとに相補的な昇圧制御信号を発生する昇圧制御回路
と、該昇圧制御信号に従い昇圧を行う待機用昇圧回路及
び活性用昇圧回路と、を備えた半導体メモリの昇圧回路
において、 待機状態と活性状態を判別して活性状態の始めにパルス
状の感知制御信号を発生し、該感知制御信号のパルス幅
中にラッチ制御信号を発生する感知制御回路と、前記感
知制御信号に応答して昇圧電圧のレベルを感知し、その
感知結果を前記ラッチ制御信号に応答してラッチし感知
信号を発生する昇圧電圧感知回路と、を備え、前記活性
用昇圧回路が、前記昇圧制御信号及び前記感知信号に従
い昇圧を行うようになっていることを特徴とする昇圧回
路。
1. A boosting control circuit for distinguishing between a standby state and an active state and generating a complementary boosting control signal for each of these states, a standby boosting circuit and an active boosting circuit for performing boosting according to the boosting control signal. in the booster circuit of a semiconductor memory with a pulse at the beginning of the active state to determine the standby state and an active state
A sensing control signal having a pulse shape, and a pulse width of the sensing control signal.
A sense control circuit for generating a latch control signal therein, a boost voltage for sensing a level of the boosted voltage in response to the sense control signal, and latching the sensing result in response to the latch control signal to generate a sense signal A booster circuit for activation, wherein the booster circuit for activation performs boosting in accordance with the booster control signal and the sense signal.
【請求項2】 待機用昇圧回路も昇圧制御信号及び感知
信号に従い昇圧を行うようになっている請求項1記載の
昇圧回路。
2. The booster circuit according to claim 1, wherein the standby booster circuit also boosts the voltage in accordance with the boost control signal and the sense signal.
【請求項3】 昇圧制御信号と感知信号が活性状態にお
いて同タイミングで発生される請求項1又は請求項2記
載の昇圧回路。
3. The boosting circuit according to claim 1, wherein the boosting control signal and the sensing signal are generated at the same timing in an active state.
【請求項4】 ローアドレスストローブ信号に応じるチ
ップマスタクロックに従って昇圧制御回路及び感知制御
回路が動作する請求項1〜3のいずれか1項に記載の昇
圧回路。
4. The boosting circuit according to claim 1, wherein the boosting control circuit and the sensing control circuit operate according to a chip master clock corresponding to a row address strobe signal.
【請求項5】 感知信号を一旦貯蔵して次の活性状態開
始時点で発生するようになっている請求項1又は請求項
2記載の昇圧回路。
5. The booster circuit according to claim 1, wherein the sense signal is temporarily stored and generated at the start of the next active state.
【請求項6】 ローアドレスストローブ信号に応じるチ
ップマスタクロックに従って昇圧制御回路及び感知制御
回路が動作し、そして、前記チップマスタクロックに従
って感知信号を貯蔵・出力するレジスタを昇圧電圧感知
回路に接続して使用する請求項5記載の昇圧回路。
6. A boosting control circuit and a sensing control circuit operate according to a chip master clock according to a row address strobe signal, and a register for storing and outputting a sensing signal according to the chip master clock is connected to a boosting voltage sensing circuit. The booster circuit according to claim 5, which is used.
JP7342653A 1994-12-29 1995-12-28 Semiconductor memory booster circuit Expired - Fee Related JP2828942B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019940038503A KR0137317B1 (en) 1994-12-29 1994-12-29 Boost circuit of semiconductor memory device
KR1994P38503 1994-12-29

Publications (2)

Publication Number Publication Date
JPH08235859A JPH08235859A (en) 1996-09-13
JP2828942B2 true JP2828942B2 (en) 1998-11-25

Family

ID=19404725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7342653A Expired - Fee Related JP2828942B2 (en) 1994-12-29 1995-12-28 Semiconductor memory booster circuit

Country Status (7)

Country Link
JP (1) JP2828942B2 (en)
KR (1) KR0137317B1 (en)
CN (1) CN1045838C (en)
DE (1) DE19547796C2 (en)
FR (1) FR2729020B1 (en)
GB (1) GB2296593B (en)
TW (1) TW282544B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0142963B1 (en) * 1995-05-17 1998-08-17 김광호 Semiconductor memory apparatus having the boosting circuit
KR0172337B1 (en) * 1995-11-13 1999-03-30 김광호 Semiconductor memory device
US6094395A (en) * 1998-03-27 2000-07-25 Infineon Technologies North America Corp. Arrangement for controlling voltage generators in multi-voltage generator chips such as DRAMs
CN1299432C (en) * 2001-10-29 2007-02-07 旺宏电子股份有限公司 Drive voltage generator for reducing the effect of work voltage and temperature
KR100846484B1 (en) 2002-03-14 2008-07-17 삼성전자주식회사 Rotation magnetron in magnetron electrode and method of manufacturing the same and sputtering apparatus with the same
KR100741471B1 (en) * 2006-09-29 2007-07-20 삼성전자주식회사 Latch-free boosting scheme
JP5137545B2 (en) * 2006-12-25 2013-02-06 株式会社半導体エネルギー研究所 Semiconductor device and driving method thereof
US9502119B2 (en) * 2014-11-20 2016-11-22 Samsung Electronics Co., Ltd. Distributed capacitive delay tracking boost-assist circuit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153791A (en) * 1986-12-17 1988-06-27 Mitsubishi Electric Corp Word line drive signal generating circuit
US4752699A (en) * 1986-12-19 1988-06-21 International Business Machines Corp. On chip multiple voltage generation using a charge pump and plural feedback sense circuits
KR920010749B1 (en) * 1989-06-10 1992-12-14 삼성전자 주식회사 Circuit for changeing inner voltage in semiconductor memory device
GB9007791D0 (en) * 1990-04-06 1990-06-06 Foss Richard C High voltage boosted wordline supply charge pump and regulator for dram
US5157278A (en) * 1990-10-30 1992-10-20 Samsung Electronics Co., Ltd. Substrate voltage generator for semiconductor device
US5272676A (en) * 1990-11-20 1993-12-21 Hitachi, Ltd. Semiconductor integrated circuit device
JPH04287418A (en) * 1991-03-18 1992-10-13 Fujitsu Ltd Semiconductor integrated circuit
KR950002015B1 (en) * 1991-12-23 1995-03-08 삼성전자주식회사 Static source voltage generating circuit operated by an oscillator
JPH05174591A (en) * 1991-12-25 1993-07-13 Sharp Corp Charge pumping circuit
US5329168A (en) * 1991-12-27 1994-07-12 Nec Corporation Semiconductor integrated circuit device equipped with substrate biasing system selectively powered from internal and external power sources
JP3179848B2 (en) * 1992-03-27 2001-06-25 三菱電機株式会社 Semiconductor storage device
KR950002726B1 (en) * 1992-03-30 1995-03-24 삼성전자주식회사 Charge-pump circuit of substrate voltage generator
US5337284A (en) * 1993-01-11 1994-08-09 United Memories, Inc. High voltage generator having a self-timed clock circuit and charge pump, and a method therefor

Also Published As

Publication number Publication date
KR960025707A (en) 1996-07-20
CN1045838C (en) 1999-10-20
GB2296593B (en) 1997-07-23
FR2729020A1 (en) 1996-07-05
GB9526716D0 (en) 1996-02-28
TW282544B (en) 1996-08-01
DE19547796C2 (en) 1998-04-16
CN1127919A (en) 1996-07-31
JPH08235859A (en) 1996-09-13
KR0137317B1 (en) 1998-04-29
GB2296593A (en) 1996-07-03
FR2729020B1 (en) 1998-07-10
DE19547796A1 (en) 1996-07-11

Similar Documents

Publication Publication Date Title
US6845055B1 (en) Semiconductor memory capable of transitioning from a power-down state in a synchronous mode to a standby state in an asynchronous mode without setting by a control register
JP4353621B2 (en) Semiconductor device
US7969234B2 (en) Clock control circuit and voltage pumping device using the same
US5119334A (en) Dynamic random access memory having improved word line control
KR0172337B1 (en) Semiconductor memory device
US4766572A (en) Semiconductor memory having a bypassable data output latch
US5696729A (en) Power reducing circuit for synchronous semiconductor device
US7227794B2 (en) Internal voltage generation control circuit and internal voltage generation circuit using the same
US6061295A (en) Integrated circuit memory devices having time compensated column selection capability for improving write operation reliability
US5455803A (en) Semiconductor device which operates at a frequency controlled by an external clock signal
JPH08279289A (en) Voltage step-up circuit of word line
US6337833B1 (en) Memory device
US5687128A (en) Power supply voltage boosting circuit of semiconductor memory device
JP3375504B2 (en) Pulse generating circuit and semiconductor memory device
JP2828942B2 (en) Semiconductor memory booster circuit
US5608677A (en) Boosting voltage circuit used in active cycle of a semiconductor memory device
JP3751594B2 (en) Semiconductor memory device
US5502684A (en) Semiconductor memory having high speed and low power data read/write circuit
JPH0935474A (en) Semiconductor memory
JPH05234373A (en) Semiconductor memory device
US6532177B1 (en) Low voltage charge pump apparatus and method
KR0157289B1 (en) Column selecting signal control circuit
EP1327990A2 (en) Semiconductor memory device
US6222787B1 (en) Integrated circuit memory devices having improved sense and restore operation reliability
JP4804609B2 (en) Memory circuit that prevents cell array power supply from rising

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees